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Comparing Recent Approaches For Bootstrapping Sample Sumey Data: A
First Step Towards A Unified Approach
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Abstract

Bootstrap algorithms are simple and appealing solutionsddance estimation under a complex
sampling design, however, they must account for the nondtdre of data. Literature about boot-
strapping finite population samples appears to have desdlapcording to two major approaches.
A more practicabd-hocapproach refers to the so-called scaling problem and isdbaise data-
rescaling so that, in the linear case, the resulting bagiséstimate for the variance perfectly
matches the analytic variance estimate. A more fundamphiglinapproach is based on the mim-
icking bootstrap principle and on the bootstrap populatigated on the basis of (original) sample
data. Recent proposals suggest a direct bootstrap matttieérinear case variance but avoiding
any data scaling under mixed re-sampling designs. In thpgipa new perspective to the bootstrap
population plug-in approach is provided that avoids thesidaf reconstruction of the bootstrap
population. Basic sampling designs, both with and witheplacement as well as unequal proba-
bility designs are considered. Focusing on probabilitypprtional-to-size sampling, a simulation
study is conducted that compares all the approaches coedide

Key Words: Bootstrap principles, Conditional Poisson design, namse¢ Hypergeometric distri-
bution, Probability-proportional-to-size design, Pseydpulation, Variance estimation.

1. Introduction

Bootstrap algorithms are simple and general tools for (@@ssng estimators’ accuracy via
variance estimation, and (b) producing confidence interamad p-values. Bootstrap applies
to finite samples and provides numerical solutions for nandard situations so that it is
particularly appealing when dealing with finite populas@and complex sampling designs.

We focus on a general sampling design where each populatibislassigned a spe-
cific probability to be included in the sample, not nece$garual, and the sample contains
distinct units only. Itis of particular practical interastthis framework the without replace-
ment probability proportional to size #ps — sampling, where the inclusion probabilities
are set proportional to an available positive auxiliaryialale. 7ps sampling is extensively
used in large scale survey for it has increasing efficiendgri@l as the relation between
the study and the auxiliary variable approaches propatitynversus a conventional (equal
probability) simple random sampling - SRS.

However, crucial survey objectives as in (a) and (b) abogechallenging under aps
sampling even in the simplest linear case, i.e. estimationaans and totals, essentially
for computational reasons and become unmanageable forgopmglex non-linear cases,
e.g. estimation of quantiles, multi-dimensional indicatetc. A bootstrap solution appears
then appropriate. However, since the original Efron’s btvap (Efron, 1979) applies to
independent and identical distributed — iid — sample datalde adaptations are needed in
order to account for the non-iid nature of data due to the dexity of the sampling design.
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Literature about bootstrapping finite population (compkamples appears to have de-
veloped according to two major approaches, which we wikréd asad-hocandplug-in,
respectively (see e.g. Presnell and Booth, 1994; Chaud@t)2

1. The ad-hoc approach is based on iid re-sampling, as farrtimal — naive — boot-
strap, and requires the re-scaling of sample data in sucly @hatin the linear case
the final bootstrap estimate for the variance perfectly hegtahe analytic variance
estimate. This more practical approach includes for imgtahe with-replacement
bootstrap (McCarthy and Snowden, 1985) the rescaling tapt{Rao and Wu,
1988), the mirror-match bootstrap (Sitter, 1992), the gaimed bootstrap based on
weighting (Bertail and Combris, 1997; Beaumont and Pat@k2®. The recently
proposed direct bootstrap (Antal and Tille, 2011), thobgked on variance match-
ing, involves non-iid re-sampling and it does not requirtada-scaling.

2. The plug-in approach is more fundamental and is based atstoap principles such
as the mimicking principle (Hall, 1992) and the bootstrapydation (see Gross,
1980; Chao and Lo, 1985; Boogt al., 1994 for equal probability sampling designs;
Holmberg, 1998; Chauvet, 2007; Barbiero and Mecatti, 2@0@hequal probability
sampling designs).

We focus here on approach 2. Besides being consistent wittstbap principles and
foundations, it appears preferable for handlifg sampling. In fact, the variance matching
ad-hoc approach might be problematic to apply owing to theyraternative variance
estimators available for the linear case, either exactpregmate, thus requiring problem-
dependent arbitrary choices to be justified. A bootstrapladiopn is a pseudo or empirical
population built up by using sample data only, and assumedtimate the unknown parent
population. According to the mimicking principle, bootgirsamples (i.e. the re-sampling
result) are selected from this estimated population wighstime sample size as the original
sample and by mimicking the original sampling design to #rgdst extent.

Algorithms based on the bootstrap population are provedhsure second order ac-
curacy as for the Efron’s iid bootstrap (Boath al, 1994). However, the reconstruction
of the bootstrap population may be cumbersome and repeatedelections from it ex-
tremely time consuming. This work aims at developing a mettwodrive a completely
plug-in bootstrap inference by directly re-sampling frdra sample, with no need to phys-
ically reconstruct the bootstrap population. We will calesia number of popular sampling
designs, both with and without replacement, with equal aretjual probabilities. Empiri-
cal evidence from a limited simulation study is also prodidie the case ofrps sampling
and for estimating different linear, semi-linear and nimedr finite population parameters
of interest. The simulation has the main objective of evatigethe performance and appli-
cability of the proposed methodology and to compare it wéttent competitors.

2. Notation

Leti = {1,...,k,..., N} be a finite population of siz& and let a random sample be
represented by a random vector

S =(S1,...,5,. ..,5n),

where S, indicates the number of times urktis selected in the sample. For sampling
without replacement — WOR S, is the sample membership indicator taking value 1 if
unit & is included in the sample and 0 otherwise (see Traat et &04;20ille, 2006, for
examples of use of this notation). For designs with fixed damipezj,f:l S =n. Lets
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be arealization of. Then, the sampling design is the (multivariate) probghdlistribution
p(s) = P(S = s), with >, p(s) = 1. Inclusion probabilities are given by the expectation
of the product of the components of any sub-vectoSoffor instancer, = FE(Sx) and
e = E(SkSy) for first and second order inclusion probabilities, respebt

LetY = Z],f:l y. be the total of a study variablewith design-unbiased estimator

Y Zskyk/ﬂ'k— Zyk/ﬂ'k— deyka

keS keS

whereS = {k s.t. S, > 0} is the set of labels selected in the sample (possibly regeate
For any WOR sampling design, its variance

can be estimated by either the familiar Horvitz-Thompsoisen-Yates-Grundy variance
estimator, both design-unbiased and available with watiwn analytic and closed formu-
lae.

According to this notation, a general finite population Istratp algorithm for variance
estimation can be illustrated as follows. A bootstrap sampl— sometimes named re-
sample — informed by (original) sample data only in assoftequency, is produced by
generating a realization of the random vecr = (S}, k € S) (re-sampling step). A
replicate of the estimator is then computed over the bamstample (replication step), for
instance in the linear casé* = X", s Siyr /7. The process is iterated a large number
of times, sayC, to obtain the bootstrap distribution, for instance in thedr casé/c*, for
c=1,...,C. The bootstrap distribution is assumed as-arun Monte Carlo estimate of
the actual (usually unknown) estimator distribution anehtised to produce the bootstrap
estimate of interest, the bootstrap variance estimataydeirinstance in the linear case

* (V% 1 < O % *\2
Vi) = g X ST

Bootstrap algorithms under the ad-hoc approach as dedcaibgoint 1. of the Intro-
duction, provide a perfect variance matching in the lineesec namely/*(Y*) = V(Y),
in addition to the traditional matching*(Y*) = Y, which we will refer to as bootstrap
unbiasedness as featuring the iid Efron’s bootstrap ajréHuls is accomplished either by
an iid re-sampling of possibly different sizé # n joined with a data-rescaling as in the
Rao-Wu bootstrap, or by performing the re-sampling undearéiqular mixture of designs
as for the recently proposed direct bootstrap (Antal ané, T2011).

On the other side, algorithms based on the bootstrap papulas mentioned at point
2. of the Introduction, enforce the mimicking principle tdaager extent. A bootstrap-
population step is included on top of the algorithm wheretd £eis created by replicating
di times each unik € S. U/* is assumed as an estimate of the unknown actual populdtion
- from which the original samplé is selected - and thus used to perform the re-sampling.
According to the mimicking principlel/* should copy known features &f and the re-
sampling desigrp*(s*|U4*) should be mirroring the original design(s). For instance
the WOR bootstrap (Gross, 1980; Chao and Lo, 1985; Beobthl, 1994) applying to
SRS, involves the choicé;, = N/n ensuring a bootstrap population with the same size
N* =3"7_,d; = N and a WOR re-sampling fro@* of sizen* = n. For arps design
the choiced; = 1/m; ensures the matching of the total of the auxiliary size \deia
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sayz, namelyX™ = 3, csdjri = X = Z],f:l x, and arps re-sampling is suggested
(Holmberg, 1998; Chauvet, 2007; Barbiero and Mecatti, 2009

This approach obeys to a real plug-in principle as for the$riid Bootstrap (Booth
et al., 1994; Chauvet, 2007) and it is not just motivated bgradd adjustment on the first
two moments of the estimator of the linear case. Howeverpthg-in principle has the
drawback of being resource-consuming and potentially @rstme in the reconstruction
of the pseudo-population as well as in re-sampling from itdigroring the original sam-
pling design, thus substantially limiting its applicatiom the next section we propose a
methodology for bootstrapping under the bootstrap pojulaapproach by re-sampling
directly from the original sampl&, in fact skipping both the physical reconstructior6f
and the re-sampling from it.

3. Methodology proposed for implementing the Plug-in apprach

A number of sampling designs of increasing complexity willdonsidered. For simplicity
we will assume that the bootstrap weighfsare integer for alk € S. This is a strong
assumption, rarely realized in real applications. At thd efthis section a discussion
about how to deal with this issue is provided.

3.1 Simple random sampling with replacement

When the original sample from is obtained by SRS with replacemest,has a Multino-
mial distribution, i.e.S ~ M(n; %, ..., +) defined as

H 1/N )%k

with S, € {0,1,...,n}. The bootstrap populatiotr* involves the familiar SRS choice
d; = N/n ,i.e. each sampled uriite S is replicatedV/n times leading taV* = N under
the integer assumption Re-sampling frém mimicking the original sampling design

givesS* ~ M(n; &, ..., 5=) and

(1/N*
|u* _ n' H /S*')
keu*
with S; € {0,1,...,n}, k e U*.
Note that//* is made by means of only distinct units each one with frequenéy/n;
as a consequence re-sampling frathwith probabilities1/N*, Vk € U* is equivalent to
re-sampling fron® with probabilities(1/N*)(N*/n) = 1/n,i.e. §*|S ~ M(n; L, ... 1)

‘n

and
H (1/n)%
hes 5?2'
with S§ € {0,1,...,n}, k € S. Bootstrap unbiasedness is automatically provided in this

case since&* (S;|S) = 1. This is indeed a general property of the methodology thhtsho
in all subsequent cases. In adgitipn, in this case, it cambwis that the bootstrap variance
estimate resulty*(Y*) = =LV (Y). This is, indeed, the original iid Efron’s Bootstrap.
3.2 Sampling with unequal probabilities and with replacemat

When selecting with replacement and unequal probabiliash population unit has at-
tached a fixed selection probability and each element is replaced in the population after it
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is drawn. The resulting multivariate distribution8fis Multinomial, i.e.S ~ M(n;p1,...,pn),
so that

NSk
s)=n! ] = 1
)=n I1 ®

with S, € {0,1,...,n}. Again, assumingl; = 1/npy, is integer,{* is made of N* =
> kes di. units, in which each unit € Sis replicated?; times. Then re-sampling frotd*
is such thatS* ~ M(n; py, k € U*) and

v =nt IT 6
with S; € {0,1,...,n}, k e U*.

Still note that the bootstrap populatidfi is effectively made of: distinct units each
with frequencyd;,. Consequentely*(s*|i/*) is equivalent to re-sample with replacement
from S with probabilitiesd;py, = 1/n. Thatis,S*|S ~ M(n ,1)and

] e

keS

7n7...

1/n
S,’;'

with Sj € {0,1,...,n}, k € S. It can be shown tha’*(Y*) = 21V (Y). This shows
that when sampling with replacement, even if the originaigieis with unequal probabili-
ties, the pseudo-population approach reduces to re-sagmgiliectly from the sample with
equal probabilities, i.e. using the naive iid bootstraptahand Tille (2011) reach a similar
conclusion when applying their direct bootstrap methogsplo

3.3 Poisson sampling

Under Poisson sampling, the sample selection is randoeeasid list-sequential by per-
forming as many independent trials as the population sah with probabilityr;,. There-
fore, for every population unit € U/ the sample membership indicator has Bernoulli dis-
tribution, i.e. Sy ~ Be(my), so that

N
= [ 72k (@ — mp)' =5 @)
k=1

with Sy € {0,1}. Using the plug-in principle, the bootstrap populatigh is built up by
replicatingd;, = dj, = w,;l times each sampled unite S and the re-sampling from it is
such thatS} ~ Be(my) for k € U*, that is

s U*) = H 7Tk (1 — ) 5%
keu*
with S} € {0,1}, k e U*.
Nevertheless, this procedure is equivalent to re-samfiiomg S by generatings;; inde-
pendently for every: € S distinct in /* with frequencydy, i.e. with Binomial distribution
S;|S ~ Bin(dy, 7). This gives

* [k d Sy —-S¥
p(s718) = 1 (W’;>wkk<1 — mi) 5

keS

with S} € {0,1,...,d;}, kK € S. This equiyalencg hgs also been noted by Beaumont and
Patak (2012), who prove that not orll§*(Y*) = V(Y"), but that this procedure matches
also the third design moment of the sampling error.
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3.4 Simple random sampling without replacement

When units are selected with equal probabilities and WOR réimdom vectolS repre-
senting the (original) sample selection has multivariaygetgeometric distribution. By
referring to the classical urn representation, we hagelections out ofV balls of distinct
colors (population units) each with maximal possible d@eccount equal to 1 (WOR
selection). ThusS' ~ Multi.Hyperg(n; 1, ...,1) and

o= (5 T () -(2)

with S, € {0,1}, k£ € U (see also Traat et al., 2004 for details on this). As for th& SR
with replacement case in Section 3.1, the bootstrap papulat* is built by replicating
d; = N/n times each sampled uriite S and the re-sampling vector mimics the original
WOR selection, i.eS™ ~ Multi.Hyperg(n; 1, ..., 1). Hence

o -1
ﬁwmm:(N)

n

with S} € {0,1}, k e U*.
Note that/* is indeed an urn comprising balls of distinct colors each with frequency
N/n so that re-sampling frort¥* is equivalent to re-sample fro under theworking

re-sampling vectoS*|S ~ Multi.Hyperg(n; &, ..., &) which gives
-1
N N/n
o= () ()
n)  jes\ Sk

with S} € {0,1,...,N/n}, k € S. It can be shown that this leads to the familiar WOR
Bootstrap variance estimate for the linear case (Chao anti985)
N n—1x

v*(i/*):ﬁ - V(Y).

3.5 7ps sampling

We finally consider a fixed-sizeps design with inclusion probability exactly proportional
to a known (positive) auxiliary variable, i.e. m, = nxy/X, with X = Z],f:l Zk. This
figures a more complex case than in previous sections, inrfeletding a large collection
of different designs each providing a particular set ofti@melusion probabilities (see e.g.
Brewer and Hanif, 1983; Tille, 2006, Ch. 6, 7). Each of thiedi-size (exactly}rps design
therefore induces a different joint multivariate disttibn for the sampling vecto§. We
will consider here the special though relevant case of Gmmdil Poisson sampling as
starting point to illustrate ourps-Bootstrap methodology and to discuss other possiiliti

The Conditional Poisson design is essentially a Poissoigr@s which the sampling
size is fixed to be equal te. This can be achieved for instance by rejection (see T0OB,
for a set of different algorithms to select Conditional Bois samples). By conditioning
on a fixed sample size, the basic practical disadvantage isf&osampling is removed
while maintaining the appealing simplicity. The joint dibution of S can be obtained by
suitably conditioning the probability distribution of tifoisson design in (2), i.e.

N N
p(s) =Cr [T (1 —mp) =5 it Y S =n, ©)
k=1 k=1
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where S, € {0,1}, k£ € U and C is the normalizing constant (see also Traat et al.,
2004). Note that under a Conditional Poisson design thegtibty distributionp(s) can
equivalently be derived as a conditional Multinomial diition, given thatS, < 1 and
SN | S, = n (for connections between Poisson, Multinomial and Coadél Poisson
designs see Tille, 2006, Chap. 5). In particula§if- M(n;p1,ps,...,py) andSy < 1,
then from (1)

B N R N 5 N
p(5]S}, ZS =n)=p(s) =Co [[ pg*, i D Sk=n. (4)
k=1 k=1 k=1

Note that ifp,, < 7 /(1 — 7x), then (3) and (4) coincide.
With the natural choicel; = d;, = w,gl (Holmberg, 1998) for constructing the boot-
strap populatiord/* and under a (mimicking) Conditional Poisson re-samplinghaee:

s =0y [ mp% @ —ap)=Si, it Y Sp=n, ®)
keU* keU*

wherer;, = nx/X* andX* = 37, o 2 = D res di 1S the bootstrap auxiliary total.
As in Section 3.41(* can be thought as an urn comprisiig balls ofn distinct colors
each with frequencyl;. Therefore the re-sampling can be associated with the iexpet
of taking colored balls frond/* at random and without replacement. However, differently
from the SRS case, each unit has now a specific and possifdyetit probability ¢ x;)
of being selected, leading to balls of one color that havegadri probability of being
taken than balls of another color. This is namebiased urnsetting and the number of
balls drawn of each color follows a non-central multivagi&typergeometric distribution
(Johnsoret al,, 1997, Chap. 39). The distribution, because of the diffigpesbability each
ball is given, depends on how the balls are taken from thelarte literature, two different
probability distributions are known as non central multiage Hypergeometric: Wallenius'’
and Fisher’s. The former is obtainedrifballs are taken one by one, while the latter if
balls are taken still WOR and independently of each othex Esmy, 2008, for a detailed
distinction between the two). As a consequence, re-sagiflam L/* by generating from
p*(s*|U*) in (5) is equivalent to re-sampling directly fro§ by generating from a Fisher
non-central Hypergeometric distribution, i.e.

S*|S ~ F.nc.Multi.Hyperdn; di; wy; for k € S),

wheren is the number of colors (distinct unitse S appearing irif*), dy. is the frequency
of color k in U* andwy, is theweightassociated to balls of coldr, so that the probability
that a particular ball is sampled at a given draw is propodido its weight. Then

~ ol () ®

keS

whereC is a normalizing constant given by the sum over those dramsliech )", . S; =
n. Note that (6) can be obtained from (5) by setting weightproportional to the odds of
unitk, i.e. ifwy oc /(1 — 7).

Draw-by-draw WOR (fixed-size exactly)ps designs can be handled similarly but by
referring to Wallenius’ non-central Hypergeometric disition. Further research concern-
ing this most complex case is needed.
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3.6 Non-integerdy’s

As mentioned at the beginning of this section, so far we haseiraed integer weights
di = dg, k € S for constructing the bootstrap populatidfi. We have made this as-
sumption also for illustrating the equivalence betweesampling from it by mimicking
the original sampling design and re-sampling directly friia (original) sampl& by gen-
erating from a suitable working probability distributipri(s*|S) clearly depending of,.
Such integer assumption is rarely fulfilled in real appimas even in the simpler constant
cased; = N/n and become unrealistic in the general cdse= 7, *, for which it should
hold for allk € S. According to a recurring suggestion for dealing with notegerd;,, a
further randomization step is often added on top of the @gsalgorithm — as described
in Section 1 — producing a set of integer weigtifsby means of: independent Bernoulli
trials. In particular,

dF = Ldk] with probability 1 — (dj, — |dg])
; ld] +1  with probability dj, — | dj] ,

where|- | denotes the integer part of a number.

The randomization step can be avoided, with both compuatiand efficiency advan-
tages, by systematically rounding each non-intefjeto the nearest integer, for instance
according to a 0.5-rule for whictiiy, = |dy + 0.5] (Chauvet, 2007; Barbiero and Mecatti
20009).

Notice that both solutions affect the characteristics efrsulting bootstrap population
which might differ from thenominalZ/* to an uncontrollably large extent, thus violating
in the same measure the mimicking principle and the plugppr@ach. For instance the
constant weightgl; = N/n guarantee a bootstrap population with the same known size
of the original one, i.e.N* = N, in the integer case only. Similarly theps weights

N = w,gl = X/nz;, must be integer for both bootstrap and original populationshare
the auxiliary total, i.e. X* = X. Furthermore, non-integer weights usually result from
any calibration procedure applied & = d, = w,;l aiming at producing a bootstrap
population mimicking all the known features of the origimaie (Barbiercet al,, 2012).
This non-integer/rounding issue appears as worthingduitivestigation.

4. Simulation study

In this section we report results from a limited simulatidindy aimed at comparing some
recent approaches to bootstrappitygs samples and to verify the equivalence illustrated in
Section 3.5. The structure of the simulation is inspired st in Antal and Tillé (2011,
Section 11). In particular, a population has been considefdimensionN = 100 and the
sample size is taken to be= 30 so that the sampling fraction is particularly large.

Population values for the variable of interest are gendrata;, = (12.5 + 3z,i-2 +
15e)2 + 4000, wherez, ~ |N(0,7)| ande, ~ N(0,1). The auxiliary (measure of size)
variablez is generated as; = yp-2ex, With ¢, ~ log N(0,0.25). Figure 1 shows the
pairwise scatterplots and correlation coefficients for gbeeerated population values for
the three variableg, x andz. mps sampling is conducted via Conditional Poisson using the
UPnaxent r opy function of thesanpl i ng package of the R environment/ = 1000
Monte Carlo runs and’ = 1000 Bootstrap runs are conducted to estimate the variance
of the Horvitz-Thompson estimators of four population paeters: total, Gini index and
median ofy, ratio of the total ofy on the total ofz.

Five bootstrap variance estimators have been compared e3tivoators are produced
by re-sampling from a physically reconstructed bootstraputationZ/*, while the other
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Figure 1: Pairwise scatterplots and correlation coefficients fopysation values of the
variable of interesty, the auxiliary variablez and the size variable generated for the
simulation study.

three are derived by re-sampling directly frasn In particular they can be classified as
follows:

e Plug-in Bootstrap Population approach (re-sampling ftéth

— BP-Chauvet (0.5-rule, Chauvet, 2007)

— BP-CAL (Barbieroet al, 2012), the bootstrap population is built usidig =
|wg + 0.5], wherewy, is a weight calibrated to match both the population size
N and the auxiliary totaK', namelyN* = N and X* = X.

e Direct bootstrap (re-sampling fros)

— DI-AT (Antal and Tille, 2011, Algorithm 4)

— Direct Plug-in Bootstrap Population approach as introdunésection 3.5 (us-
ing the Fisher non-central Hypergeometric distributiohasedur n package
of the R software):

- DI-BP-RND, using the randomization step,
- DI-BP-Round, using the rounding approximation.

BP-Chuvet and DI-BP-Round should be equivalent ignoringdoan number generation
variability. The following Monte Carlo measures of perf@nte have been computed for
comparison:

e Percentage Relative Bias
Buc[V*(6)] — Vue(9)

%RB = ~ -100 = B — - 100;
Ve (0) Ve (0)
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Table 1. Simulation results: percentage Relative Bias, percenfRglative Root Mean
Squared Error, 95% Confidence Interval coverage for thenpeter based on the Normal
approximation and on the Bootstrap distribution for the &géimators and the four popu-
lation parameters.

%RB %RRMSE Norm 95% Cov Boot 95% Cov

TOTAL

BP-Chauvet -0.4 68.3 87.2 88.5
BP-Cal -3.0 69.4 86.2 84.8
DI-AT -1.3 72.3 86.9 88.4
DI-BP-RND 3.3 74.1 87.2 87.3
DI-BP-Round 0.5 68.1 87.2 88.7
GINI

BP-Chauvet -23.6 53.9 83.7 81.5
BP-Cal -20.5 58.5 83.6 74.5
DI-AT -31.3 55.2 82.1 82.3
DI-BP-RND  -11.0 57.6 85.1 76.6
DI-BP-Round -16.7 54.4 84.5 79.3
MEDIAN

BP-Chauvet 49.6 125.2 96.1 92.6
BP-Cal 35.2 111.9 96.0 92.9
DI-AT 41.9 113.7 95.4 93.3
DI-BP-RND 29.6 103.7 95.3 92.0
DI-BP-Round  38.1 114.7 95.3 91.3
RATIO

BP-Chauvet 15 44.8 93.0 93.5
BP-Cal 4.6 43.9 92.9 94.1
DI-AT 3.8 441 93.3 93.2
DI-BP-RND 1.7 455 94.6 92.8
DI-BP-Round 11 42.3 94.1 92.8

e Percentage Relative Root Mean Squared Error

B2+ Vo [V*(6)]
VMC(é)

%RRMSE= $ - 100;

e 95% Confidence Interval coverage based on the Normal appadixin;

e 95% Confidence Interval coverage based on the Bootstrapbdiidn (percentile
method).

Table 1 reports the results for the simulation study. Théopeance of the estimators
is quite similar for a given parameter. There is no eviderfca aniform superiority of a
method over the other in terms of efficiency. For non-linesmameters all methods appear
to need improvement as far as bias is concerned (see GINI d&idIAMN). DI-BP type
estimators seem to be less affected by this issue.
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Figure 2: Monte Carlo distribution of the variance estimator DI-B®und for the variance
of the estimators of the four parameters. The red line dertheeMonte Carlo variance.

Coverage, on the other side, is relatively better for MEDIAN RATIO, and usually
better using the Normal approximation rather than the @gdistribution. An expla-
nation for this may be the following. Figure 2 shows the Mo@telo distribution of the
variance estimator DI-BP-Round for the variance of thawetiors of the four parameters.
The red line denotes the Monte Carlo variance over reptinati The shape of the distribu-
tion is very similar for the other estimators. The first twetdbutions are clearly bimodal
and this affects coverage. The two modes (especially whitmatihg TOTAL) derive for
the different values the estimator takes according to veraeihnot a few influential points
are selected in the sample. From Figure 1 it can be notedhbet tare about four units
for which the variable of interegt takes particularly large values. The larger mode in the
distribution of the estimators for TOTAL and GINI derive®fin those samples in which
such units are selected in the sample. MEDIAN and RATIO ateaffected because the
former is a robust indicator and in the latter the effect okthunits is mitigated by the fact
that they show relatively larger values also for the auwjligariablez. In simulations in
which the generated population did not have such large sathe coverage for TOTAL
and GINI is much closer to the nominal one and the shape of igigbaitions is clearly
unimodal.

5. Conclusions

We have shown that it is possible to perform a fully plug-iprgach without the need to
physically reconstruct the bootstrap population for a nenah popular sampling designs of
increasing complexity. This provides a solution to a maijwitlfor the application of this

method otherwise appealing for respecting basic bootgiragiples. The methodology
refers to the definition of a probability distribution foretlie-sampling directly from the
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original sample, which is proved to be equivalent to the m@ahre-sampling from the
bootstrap population. This can be shown to provide boqisirdiasedness as well second
order accuracy as shown for SRS in Boettal. (1994).

Moreover, the proposed methodology appears to providefeedriramework that al-
lows to encompass other bootstrap algorithms already pezponder different approaches.
See, for instance, the analogies with the naive bootsBaptipn 3.1) and with the direct
bootstrap by Antal and Tille (2011), (Section 3.2). Thending issue as discussed in
Section 3.6 needs further attention and may be addressadtalglg modifying and gener-
alizing the non-central multivariate Hypergeometric migttion. Finally, robustness issues
as emerged from the simulation study need to be addressadperly treat the presence
of influential observations in the original sample.
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