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Abstract
Bootstrap algorithms are simple and appealing solutions for variance estimation under a complex

sampling design, however, they must account for the non-iidnature of data. Literature about boot-
strapping finite population samples appears to have developed according to two major approaches.
A more practicalad-hocapproach refers to the so-called scaling problem and is based on a data-
rescaling so that, in the linear case, the resulting bootstrap estimate for the variance perfectly
matches the analytic variance estimate. A more fundamentalplug-inapproach is based on the mim-
icking bootstrap principle and on the bootstrap populationcreated on the basis of (original) sample
data. Recent proposals suggest a direct bootstrap matchingthe linear case variance but avoiding
any data scaling under mixed re-sampling designs. In this paper, a new perspective to the bootstrap
population plug-in approach is provided that avoids the physical reconstruction of the bootstrap
population. Basic sampling designs, both with and without replacement as well as unequal proba-
bility designs are considered. Focusing on probability-proportional-to-size sampling, a simulation
study is conducted that compares all the approaches considered.

Key Words: Bootstrap principles, Conditional Poisson design, non-central Hypergeometric distri-
bution, Probability-proportional-to-size design, Pseudo-population, Variance estimation.

1. Introduction

Bootstrap algorithms are simple and general tools for (a) assessing estimators’ accuracy via
variance estimation, and (b) producing confidence intervals and p-values. Bootstrap applies
to finite samples and provides numerical solutions for non-standard situations so that it is
particularly appealing when dealing with finite populations and complex sampling designs.

We focus on a general sampling design where each population unit is assigned a spe-
cific probability to be included in the sample, not necessarily equal, and the sample contains
distinct units only. It is of particular practical interestin this framework the without replace-
ment probability proportional to size –πps – sampling, where the inclusion probabilities
are set proportional to an available positive auxiliary variable. πps sampling is extensively
used in large scale survey for it has increasing efficiency potential as the relation between
the study and the auxiliary variable approaches proportionality versus a conventional (equal
probability) simple random sampling - SRS.

However, crucial survey objectives as in (a) and (b) above are challenging under aπps
sampling even in the simplest linear case, i.e. estimation of means and totals, essentially
for computational reasons and become unmanageable for morecomplex non-linear cases,
e.g. estimation of quantiles, multi-dimensional indicators etc. A bootstrap solution appears
then appropriate. However, since the original Efron’s bootstrap (Efron, 1979) applies to
independent and identical distributed – iid – sample data suitable adaptations are needed in
order to account for the non-iid nature of data due to the complexity of the sampling design.
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Literature about bootstrapping finite population (complex) samples appears to have de-
veloped according to two major approaches, which we will refer to asad-hocandplug-in,
respectively (see e.g. Presnell and Booth, 1994; Chauvet, 2007).

1. The ad-hoc approach is based on iid re-sampling, as for theoriginal – naı̈ve – boot-
strap, and requires the re-scaling of sample data in such a way that in the linear case
the final bootstrap estimate for the variance perfectly matches the analytic variance
estimate. This more practical approach includes for instance the with-replacement
bootstrap (McCarthy and Snowden, 1985) the rescaling bootstrap (Rao and Wu,
1988), the mirror-match bootstrap (Sitter, 1992), the generalized bootstrap based on
weighting (Bertail and Combris, 1997; Beaumont and Patak, 2012). The recently
proposed direct bootstrap (Antal and Tillé, 2011), thoughbased on variance match-
ing, involves non-iid re-sampling and it does not require data re-scaling.

2. The plug-in approach is more fundamental and is based on bootstrap principles such
as the mimicking principle (Hall, 1992) and the bootstrap population (see Gross,
1980; Chao and Lo, 1985; Boothet al., 1994 for equal probability sampling designs;
Holmberg, 1998; Chauvet, 2007; Barbiero and Mecatti, 2009 for unequal probability
sampling designs).

We focus here on approach 2. Besides being consistent with bootstrap principles and
foundations, it appears preferable for handlingπps sampling. In fact, the variance matching
ad-hoc approach might be problematic to apply owing to the many alternative variance
estimators available for the linear case, either exact or approximate, thus requiring problem-
dependent arbitrary choices to be justified. A bootstrap population is a pseudo or empirical
population built up by using sample data only, and assumed toestimate the unknown parent
population. According to the mimicking principle, bootstrap samples (i.e. the re-sampling
result) are selected from this estimated population with the same sample size as the original
sample and by mimicking the original sampling design to the largest extent.

Algorithms based on the bootstrap population are proved to ensure second order ac-
curacy as for the Efron’s iid bootstrap (Boothet al., 1994). However, the reconstruction
of the bootstrap population may be cumbersome and repeatedπps selections from it ex-
tremely time consuming. This work aims at developing a method to drive a completely
plug-in bootstrap inference by directly re-sampling from the sample, with no need to phys-
ically reconstruct the bootstrap population. We will consider a number of popular sampling
designs, both with and without replacement, with equal and unequal probabilities. Empiri-
cal evidence from a limited simulation study is also provided, in the case ofπps sampling
and for estimating different linear, semi-linear and non-linear finite population parameters
of interest. The simulation has the main objective of evaluating the performance and appli-
cability of the proposed methodology and to compare it with recent competitors.

2. Notation

Let U = {1, . . . , k, . . . ,N} be a finite population of sizeN and let a random sample be
represented by a random vector

S = (S1, . . . , Sk, . . . , SN ),

whereSk indicates the number of times unitk is selected in the sample. For sampling
without replacement – WOR –Sk is the sample membership indicator taking value 1 if
unit k is included in the sample and 0 otherwise (see Traat et al., 2004; Tillé, 2006, for
examples of use of this notation). For designs with fixed sample size

∑

N

k=1 Sk = n. Let s
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be a realization ofS. Then, the sampling design is the (multivariate) probability distribution
p(s) = P (S = s), with

∑

s
p(s) = 1. Inclusion probabilities are given by the expectation

of the product of the components of any sub-vector ofS, for instanceπk = E(Sk) and
πkℓ = E(SkSℓ) for first and second order inclusion probabilities, respectively.

Let Y =
∑

N

k=1 yk be the total of a study variabley with design-unbiased estimator

Ŷ =
N
∑

k=1

Skyk/πk =
∑

k∈S

yk/πk =
∑

k∈S

dkyk,

whereS = {k s.t.Sk > 0} is the set of labels selected in the sample (possibly repeated).
For any WOR sampling design, its variance

V (Ŷ ) =
N
∑

k=1

N
∑

ℓ=1

yk

πk

yℓ

πℓ

(πkℓ − πkπℓ)

can be estimated by either the familiar Horvitz-Thompson orSen-Yates-Grundy variance
estimator, both design-unbiased and available with well-known analytic and closed formu-
lae.

According to this notation, a general finite population bootstrap algorithm for variance
estimation can be illustrated as follows. A bootstrap sample s

∗ – sometimes named re-
sample – informed by (original) sample data only in assortedfrequency, is produced by
generating a realization of the random vectorS

∗ = (S∗
k
, k ∈ S) (re-sampling step). A

replicate of the estimator is then computed over the bootstrap sample (replication step), for
instance in the linear casêY ∗ =

∑

k∈S S∗
k
yk/πk. The process is iterated a large number

of times, sayC, to obtain the bootstrap distribution, for instance in the linear casêY ∗
c , for

c = 1, . . . , C. The bootstrap distribution is assumed as aC−run Monte Carlo estimate of
the actual (usually unknown) estimator distribution and then used to produce the bootstrap
estimate of interest, the bootstrap variance estimate being for instance in the linear case

V ∗(Ŷ ∗) =
1

C − 1

C
∑

c=1

(Ŷ ∗
c −

¯̂
Y ∗)2.

Bootstrap algorithms under the ad-hoc approach as described at point 1. of the Intro-
duction, provide a perfect variance matching in the linear case, namelyV ∗(Ŷ ∗) = V̂ (Ŷ ),
in addition to the traditional matchingE∗(Ŷ ∗) = Ŷ , which we will refer to as bootstrap
unbiasedness as featuring the iid Efron’s bootstrap already. This is accomplished either by
an iid re-sampling of possibly different sizen∗ 6= n joined with a data-rescaling as in the
Rao-Wu bootstrap, or by performing the re-sampling under a particular mixture of designs
as for the recently proposed direct bootstrap (Antal and Tillé, 2011).

On the other side, algorithms based on the bootstrap population as mentioned at point
2. of the Introduction, enforce the mimicking principle to alarger extent. A bootstrap-
population step is included on top of the algorithm where a set U∗ is created by replicating
d∗

k
times each unitk ∈ S. U∗ is assumed as an estimate of the unknown actual populationU

- from which the original sampleS is selected - and thus used to perform the re-sampling.
According to the mimicking principle,U∗ should copy known features ofU and the re-
sampling designp∗(s∗|U∗) should be mirroring the original designp(s). For instance
the WOR bootstrap (Gross, 1980; Chao and Lo, 1985; Boothet al., 1994) applying to
SRS, involves the choiced∗

k
= N/n ensuring a bootstrap population with the same size

N∗ =
∑

n

k=1 d∗
k

= N and a WOR re-sampling fromU∗ of sizen∗ = n. For aπps design
the choiced∗

k
= 1/πk ensures the matching of the total of the auxiliary size variable,
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sayx, namelyX∗ =
∑

k∈S d∗
k
xk = X =

∑

N

k=1 xk, and aπps re-sampling is suggested
(Holmberg, 1998; Chauvet, 2007; Barbiero and Mecatti, 2009).

This approach obeys to a real plug-in principle as for the Efron’s iid Bootstrap (Booth
et al., 1994; Chauvet, 2007) and it is not just motivated by a forced adjustment on the first
two moments of the estimator of the linear case. However, theplug-in principle has the
drawback of being resource-consuming and potentially cumbersome in the reconstruction
of the pseudo-population as well as in re-sampling from it bymirroring the original sam-
pling design, thus substantially limiting its application. In the next section we propose a
methodology for bootstrapping under the bootstrap population approach by re-sampling
directly from the original sampleS, in fact skipping both the physical reconstruction ofU∗

and the re-sampling from it.

3. Methodology proposed for implementing the Plug-in approach

A number of sampling designs of increasing complexity will be considered. For simplicity
we will assume that the bootstrap weightsd∗

k
are integer for allk ∈ S. This is a strong

assumption, rarely realized in real applications. At the end of this section a discussion
about how to deal with this issue is provided.

3.1 Simple random sampling with replacement

When the original sample fromU is obtained by SRS with replacement,S has a Multino-
mial distribution, i.e.S ∼ M(n; 1

N
, . . . , 1

N
) defined as

p(s) = n!
N
∏

k=1

(1/N)Sk

Sk!

with Sk ∈ {0, 1, . . . , n}. The bootstrap populationU∗ involves the familiar SRS choice
d∗

k
= N/n , i.e. each sampled unitk ∈ S is replicatedN/n times leading toN∗ = N under

the integer assumption. Re-sampling fromU∗ mimicking the original sampling design
givesS

∗ ∼ M(n; 1

N∗ , ..., 1

N∗ ) and

p∗(s∗|U∗) = n!
∏

k∈U∗

(1/N∗)S
∗
k

S∗
k
!

with S∗
k
∈ {0, 1, . . . , n}, k ∈ U∗.

Note thatU∗ is made by means of onlyn distinct units each one with frequencyN/n;
as a consequence re-sampling fromU∗ with probabilities1/N∗, ∀k ∈ U∗ is equivalent to
re-sampling fromS with probabilities(1/N∗)(N∗/n) = 1/n, i.e. S∗|S ∼ M(n; 1

n
, . . . , 1

n
)

and

p∗(s∗|S) = n!
∏

k∈S

(1/n)S
∗
k

S∗
k
!

with S∗
k
∈ {0, 1, . . . , n}, k ∈ S. Bootstrap unbiasedness is automatically provided in this

case sinceE∗(S∗
k
|S) = 1. This is indeed a general property of the methodology that holds

in all subsequent cases. In addition, in this case, it can be shown that the bootstrap variance
estimate resultsV ∗(Ŷ ∗) = n−1

n
V̂ (Ŷ ). This is, indeed, the original iid Efron’s Bootstrap.

3.2 Sampling with unequal probabilities and with replacement

When selecting with replacement and unequal probabilities, each population unitk has at-
tached a fixed selection probabilitypk and each element is replaced in the population after it
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is drawn. The resulting multivariate distribution ofS is Multinomial, i.e.S ∼ M(n; p1, . . . , pN ),
so that

p(s) = n!
N
∏

k=1

pSk

k

Sk!
(1)

with Sk ∈ {0, 1, . . . , n}. Again, assumingd∗
k

= 1/npk is integer,U∗ is made ofN∗ =
∑

k∈S d∗
k

units, in which each unitk ∈ S is replicatedd∗
k

times. Then re-sampling fromU∗

is such thatS∗ ∼ M(n; pk, k ∈ U∗) and

p∗(s∗|U∗) = n!
∏

k∈U∗

(pk)
S∗

k

S∗
k
!

with S∗
k
∈ {0, 1, . . . , n}, k ∈ U∗.

Still note that the bootstrap populationU∗ is effectively made ofn distinct units each
with frequencyd∗

k
. Consequentelyp∗(s∗|U∗) is equivalent to re-sample with replacement

from S with probabilitiesd∗
k
pk = 1/n. That is,S∗|S ∼ M(n; 1

n
, . . . , 1

n
) and

p∗(s∗|S) = n!
∏

k∈S

(1/n)S
∗
k

S∗
k
!

with S∗
k
∈ {0, 1, . . . , n}, k ∈ S. It can be shown thatV ∗(Ŷ ∗) = n−1

n
V̂ (Ŷ ). This shows

that when sampling with replacement, even if the original design is with unequal probabili-
ties, the pseudo-population approach reduces to re-sampling directly from the sample with
equal probabilities, i.e. using the naı̈ve iid bootstrap. Antal and Tillé (2011) reach a similar
conclusion when applying their direct bootstrap methodology.

3.3 Poisson sampling

Under Poisson sampling, the sample selection is random-size and list-sequential by per-
forming as many independent trials as the population size, each with probabilityπk. There-
fore, for every population unitk ∈ U the sample membership indicator has Bernoulli dis-
tribution, i.e.Sk ∼ Be(πk), so that

p(s) =
N
∏

k=1

πSk

k
(1 − πk)

1−Sk (2)

with Sk ∈ {0, 1}. Using the plug-in principle, the bootstrap populationU∗ is built up by
replicatingd∗

k
= dk = π−1

k
times each sampled unitk ∈ S and the re-sampling from it is

such thatS∗
k
∼ Be(πk) for k ∈ U∗, that is

p∗(s∗|U∗) =
∏

k∈U∗

π
S∗

k

k
(1 − πk)

1−S∗
k

with S∗
k
∈ {0, 1}, k ∈ U∗.

Nevertheless, this procedure is equivalent to re-samplingfromS by generatingS∗
k

inde-
pendently for everyk ∈ S distinct in U∗ with frequencydk, i.e. with Binomial distribution
S∗

k
|S ∼ Bin(dk, πk). This gives

p∗(s∗|S) =
∏

k∈S

(

dk

πk

)

π
S∗

k

k
(1 − πk)

dk−S∗
k

with S∗
k
∈ {0, 1, ..., dk}, k ∈ S. This equivalence has also been noted by Beaumont and

Patak (2012), who prove that not onlyV ∗(Ŷ ∗) = V̂ (Ŷ ), but that this procedure matches
also the third design moment of the sampling error.
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3.4 Simple random sampling without replacement

When units are selected with equal probabilities and WOR, the random vectorS repre-
senting the (original) sample selection has multivariate Hypergeometric distribution. By
referring to the classical urn representation, we haven selections out ofN balls of distinct
colors (population units) each with maximal possible selection count equal to 1 (WOR
selection). ThusS ∼ Multi.Hyperg(n; 1, ..., 1) and

p(s) =

(

N

n

)−1 N
∏

k=1

(

1

Sk

)

=

(

N

n

)−1

with Sk ∈ {0, 1}, k ∈ U (see also Traat et al., 2004 for details on this). As for the SRS
with replacement case in Section 3.1, the bootstrap population U∗ is built by replicating
d∗

k
= N/n times each sampled unitk ∈ S and the re-sampling vector mimics the original

WOR selection, i.e.S∗ ∼ Multi.Hyperg(n; 1, ..., 1). Hence

p∗(s∗|U∗) =

(

N∗

n

)−1

with S∗
k
∈ {0, 1}, k ∈ U∗.

Note thatU∗ is indeed an urn comprisingn balls of distinct colors each with frequency
N/n so that re-sampling fromU∗ is equivalent to re-sample fromS under theworking
re-sampling vectorS∗|S ∼ Multi.Hyperg(n; N

n
, ..., N

n
) which gives

p∗(s∗|S) =

(

N

n

)−1
∏

k∈S

(

N/n

Sk

)

with S∗
k
∈ {0, 1, . . . , N/n}, k ∈ S. It can be shown that this leads to the familiar WOR

Bootstrap variance estimate for the linear case (Chao and Lo, 1985)

V ∗(Ŷ ∗) =
N

N − 1

n − 1

n
V̂ (Ŷ ).

3.5 πps sampling

We finally consider a fixed-sizeπps design with inclusion probability exactly proportional
to a known (positive) auxiliary variablex, i.e. πk = nxk/X, with X =

∑

N

k=1 xk. This
figures a more complex case than in previous sections, in factincluding a large collection
of different designs each providing a particular set of joint inclusion probabilities (see e.g.
Brewer and Hanif, 1983; Tillé, 2006, Ch. 6, 7). Each of this fixed-size (exactly)πps design
therefore induces a different joint multivariate distribution for the sampling vectorS. We
will consider here the special though relevant case of Conditional Poisson sampling as
starting point to illustrate ourπps-Bootstrap methodology and to discuss other possibilities.

The Conditional Poisson design is essentially a Poisson design in which the sampling
size is fixed to be equal ton. This can be achieved for instance by rejection (see Tillé,2006,
for a set of different algorithms to select Conditional Poisson samples). By conditioning
on a fixed sample size, the basic practical disadvantage of Poisson sampling is removed
while maintaining the appealing simplicity. The joint distribution ofS can be obtained by
suitably conditioning the probability distribution of thePoisson design in (2), i.e.

p(s) = C1

N
∏

k=1

πSk

k
(1 − πk)

1−Sk if
N
∑

k=1

Sk = n, (3)
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whereSk ∈ {0, 1}, k ∈ U and C1 is the normalizing constant (see also Traat et al.,
2004). Note that under a Conditional Poisson design the probability distributionp(s) can
equivalently be derived as a conditional Multinomial distribution, given thatSk ≤ 1 and
∑

N

k=1 Sk = n (for connections between Poisson, Multinomial and Conditional Poisson
designs see Tillé, 2006, Chap. 5). In particular, ifS̃ ∼ M(n; p1, p2, . . . , pN ) andS̃k ≤ 1,
then from (1)

p(s̃|S̃k ≤ 1,
N
∑

k=1

S̃k = n) = p(s) = C2

N
∏

k=1

pSk

k
, if

N
∑

k=1

Sk = n. (4)

Note that ifpk ∝ πk/(1 − πk), then (3) and (4) coincide.
With the natural choiced∗

k
= dk = π−1

k
(Holmberg, 1998) for constructing the boot-

strap populationU∗ and under a (mimicking) Conditional Poisson re-sampling wehave:

p∗(s∗|U∗) = C3

∏

k∈U∗

π∗
k

S∗
k(1 − π∗

k)
1−S∗

k , if
∑

k∈U∗

S∗
k = n, (5)

whereπ∗
k

= nxk/X
∗ andX∗ =

∑

k∈U∗ xk =
∑

k∈S d∗
k
xk is the bootstrap auxiliary total.

As in Section 3.4,U∗ can be thought as an urn comprisingN∗ balls ofn distinct colors
each with frequencyd∗

k
. Therefore the re-sampling can be associated with the experiment

of taking colored balls fromU∗ at random and without replacement. However, differently
from the SRS case, each unit has now a specific and possibly different probability (∝ xk)
of being selected, leading to balls of one color that have a higher probability of being
taken than balls of another color. This is named abiased urnsetting and the number of
balls drawn of each color follows a non-central multivariate Hypergeometric distribution
(Johnsonet al., 1997, Chap. 39). The distribution, because of the different probability each
ball is given, depends on how the balls are taken from the urn.In the literature, two different
probability distributions are known as non central multivariate Hypergeometric: Wallenius’
and Fisher’s. The former is obtained ifn balls are taken one by one, while the latter if
balls are taken still WOR and independently of each other (see Fog, 2008, for a detailed
distinction between the two). As a consequence, re-sampling fromU∗ by generating from
p∗(s∗|U∗) in (5) is equivalent to re-sampling directly fromS by generating from a Fisher
non-central Hypergeometric distribution, i.e.

S
∗|S ∼ F.nc.Multi.Hyperg(n; dk;ω∗

k; for k ∈ S),

wheren is the number of colors (distinct unitsk ∈ S appearing inU∗), dk is the frequency
of color k in U∗ andω∗

k
is theweightassociated to balls of colork, so that the probability

that a particular ball is sampled at a given draw is proportional to its weight. Then

p∗(s∗|S) = C4

∏

k∈S

(

dk

S∗
k

)

ω∗
k

S∗
k (6)

whereC4 is a normalizing constant given by the sum over those draws for which
∑

k∈s S∗
k

=
n. Note that (6) can be obtained from (5) by setting weightω∗

k
proportional to the odds of

unit k, i.e. if ω∗
k
∝ π∗

k
/(1 − π∗

k
).

Draw-by-draw WOR (fixed-size exactly)πps designs can be handled similarly but by
referring to Wallenius’ non-central Hypergeometric distribution. Further research concern-
ing this most complex case is needed.
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3.6 Non-integerdk ’s

As mentioned at the beginning of this section, so far we have assumed integer weights
d∗

k
= dk, k ∈ S for constructing the bootstrap populationU∗. We have made this as-

sumption also for illustrating the equivalence between re-sampling from it by mimicking
the original sampling design and re-sampling directly fromthe (original) sampleS by gen-
erating from a suitable working probability distributionp∗(s∗|S) clearly depending ond∗

k
.

Such integer assumption is rarely fulfilled in real applications even in the simpler constant
cased∗

k
= N/n and become unrealistic in the general cased∗

k
= π−1

k
, for which it should

hold for all k ∈ S. According to a recurring suggestion for dealing with non-integerd∗
k
, a

further randomization step is often added on top of the bootstrap algorithm – as described
in Section 1 – producing a set of integer weightsd∗

k
by means ofn independent Bernoulli

trials. In particular,

d∗k =

{

⌊dk⌋ with probability1 − (dk − ⌊dk⌋)
⌊dk⌋ + 1 with probabilitydk − ⌊dk⌋

,

where⌊·⌋ denotes the integer part of a number.
The randomization step can be avoided, with both computational and efficiency advan-

tages, by systematically rounding each non-integerd∗
k

to the nearest integer, for instance
according to a 0.5-rule for whichd∗

k
= ⌊dk + 0.5⌋ (Chauvet, 2007; Barbiero and Mecatti

2009).
Notice that both solutions affect the characteristics of the resulting bootstrap population

which might differ from thenominalU∗ to an uncontrollably large extent, thus violating
in the same measure the mimicking principle and the plug-in approach. For instance the
constant weightsd∗

k
= N/n guarantee a bootstrap population with the same known size

of the original one, i.e.N∗ = N , in the integer case only. Similarly theπps weights
d∗

k
= π−1

k
= X/nxk must be integer for both bootstrap and original populationsto share

the auxiliary total, i.e.X∗ = X. Furthermore, non-integer weights usually result from
any calibration procedure applied tod∗

k
= dk = π−1

k
aiming at producing a bootstrap

population mimicking all the known features of the originalone (Barbieroet al., 2012).
This non-integer/rounding issue appears as worthing further investigation.

4. Simulation study

In this section we report results from a limited simulation study aimed at comparing some
recent approaches to bootstrappingπps samples and to verify the equivalence illustrated in
Section 3.5. The structure of the simulation is inspired by that in Antal and Tillé (2011,
Section 11). In particular, a population has been considered of dimensionN = 100 and the
sample size is taken to ben = 30 so that the sampling fraction is particularly large.

Population values for the variable of interest are generated asyk = (12.5 + 3z1.2
k

+
15εk)2 + 4000, wherezk ∼ |N(0, 7)| andεk ∼ N(0, 1). The auxiliary (measure of size)
variablex is generated asxk = y0.2

k
ǫk, with ǫk ∼ log N(0, 0.25). Figure 1 shows the

pairwise scatterplots and correlation coefficients for thegenerated population values for
the three variablesy, x andz. πps sampling is conducted via Conditional Poisson using the
UPmaxentropy function of thesampling package of the R environment.M = 1000
Monte Carlo runs andC = 1000 Bootstrap runs are conducted to estimate the variance
of the Horvitz-Thompson estimators of four population parameters: total, Gini index and
median ofy, ratio of the total ofy on the total ofz.

Five bootstrap variance estimators have been compared. Twoestimators are produced
by re-sampling from a physically reconstructed bootstrap populationU∗, while the other
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Figure 1: Pairwise scatterplots and correlation coefficients for population values of the
variable of interesty, the auxiliary variablez and the size variablex generated for the
simulation study.

three are derived by re-sampling directly fromS. In particular they can be classified as
follows:

• Plug-in Bootstrap Population approach (re-sampling fromU∗)

– BP-Chauvet (0.5-rule, Chauvet, 2007)

– BP-CAL (Barbieroet al., 2012), the bootstrap population is built usingd∗
k

=
⌊wk + 0.5⌋, wherewk is a weight calibrated to match both the population size
N and the auxiliary totalX, namelyN∗ = N andX∗ = X.

• Direct bootstrap (re-sampling fromS)

– DI-AT (Antal and Tillé, 2011, Algorithm 4)

– Direct Plug-in Bootstrap Population approach as introduced in Section 3.5 (us-
ing the Fisher non-central Hypergeometric distribution,biasedurn package
of the R software):
- DI-BP-RND, using the randomization step,
- DI-BP-Round, using the rounding approximation.

BP-Chuvet and DI-BP-Round should be equivalent ignoring random number generation
variability. The following Monte Carlo measures of performance have been computed for
comparison:

• Percentage Relative Bias

%RB =
EMC [V ∗(θ̂∗)] − VMC(θ̂)

VMC(θ̂)
· 100 =

B

VMC(θ̂)
· 100;
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Table 1: Simulation results: percentage Relative Bias, percentage Relative Root Mean
Squared Error, 95% Confidence Interval coverage for the parameter based on the Normal
approximation and on the Bootstrap distribution for the fiveestimators and the four popu-
lation parameters.

%RB %RRMSE Norm 95% Cov Boot 95% Cov

TOTAL
BP-Chauvet -0.4 68.3 87.2 88.5
BP-Cal -3.0 69.4 86.2 84.8
DI-AT -1.3 72.3 86.9 88.4
DI-BP-RND 3.3 74.1 87.2 87.3
DI-BP-Round 0.5 68.1 87.2 88.7

GINI
BP-Chauvet -23.6 53.9 83.7 81.5
BP-Cal -20.5 58.5 83.6 74.5
DI-AT -31.3 55.2 82.1 82.3
DI-BP-RND -11.0 57.6 85.1 76.6
DI-BP-Round -16.7 54.4 84.5 79.3

MEDIAN
BP-Chauvet 49.6 125.2 96.1 92.6
BP-Cal 35.2 111.9 96.0 92.9
DI-AT 41.9 113.7 95.4 93.3
DI-BP-RND 29.6 103.7 95.3 92.0
DI-BP-Round 38.1 114.7 95.3 91.3

RATIO
BP-Chauvet 1.5 44.8 93.0 93.5
BP-Cal 4.6 43.9 92.9 94.1
DI-AT 3.8 44.1 93.3 93.2
DI-BP-RND 1.7 45.5 94.6 92.8
DI-BP-Round 1.1 42.3 94.1 92.8

• Percentage Relative Root Mean Squared Error

%RRMSE=

√

√

√

√

B2 + VMC [V ∗(θ̂∗)]

VMC(θ̂)
· 100;

• 95% Confidence Interval coverage based on the Normal approximation;

• 95% Confidence Interval coverage based on the Bootstrap distribution (percentile
method).

Table 1 reports the results for the simulation study. The performance of the estimators
is quite similar for a given parameter. There is no evidence of a uniform superiority of a
method over the other in terms of efficiency. For non-linear parameters all methods appear
to need improvement as far as bias is concerned (see GINI and MEDIAN). DI-BP type
estimators seem to be less affected by this issue.
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Figure 2: Monte Carlo distribution of the variance estimator DI-BP-Round for the variance
of the estimators of the four parameters. The red line denotes the Monte Carlo variance.

Coverage, on the other side, is relatively better for MEDIANand RATIO, and usually
better using the Normal approximation rather than the bootstrap distribution. An expla-
nation for this may be the following. Figure 2 shows the MonteCarlo distribution of the
variance estimator DI-BP-Round for the variance of the estimators of the four parameters.
The red line denotes the Monte Carlo variance over replications. The shape of the distribu-
tion is very similar for the other estimators. The first two distributions are clearly bimodal
and this affects coverage. The two modes (especially when estimating TOTAL) derive for
the different values the estimator takes according to whether or not a few influential points
are selected in the sample. From Figure 1 it can be noted that there are about four units
for which the variable of interesty takes particularly large values. The larger mode in the
distribution of the estimators for TOTAL and GINI derives from those samples in which
such units are selected in the sample. MEDIAN and RATIO are not affected because the
former is a robust indicator and in the latter the effect of those units is mitigated by the fact
that they show relatively larger values also for the auxiliary variablez. In simulations in
which the generated population did not have such large values, the coverage for TOTAL
and GINI is much closer to the nominal one and the shape of the distributions is clearly
unimodal.

5. Conclusions

We have shown that it is possible to perform a fully plug-in approach without the need to
physically reconstruct the bootstrap population for a number of popular sampling designs of
increasing complexity. This provides a solution to a major limit for the application of this
method otherwise appealing for respecting basic bootstrapprinciples. The methodology
refers to the definition of a probability distribution for the re-sampling directly from the
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original sample, which is proved to be equivalent to the nominal re-sampling from the
bootstrap population. This can be shown to provide bootstrap unbiasedness as well second
order accuracy as shown for SRS in Boothet al. (1994).

Moreover, the proposed methodology appears to provide a unified framework that al-
lows to encompass other bootstrap algorithms already proposed under different approaches.
See, for instance, the analogies with the naı̈ve bootstrap (Section 3.1) and with the direct
bootstrap by Antal and Tillé (2011), (Section 3.2). The rounding issue as discussed in
Section 3.6 needs further attention and may be addressed by suitably modifying and gener-
alizing the non-central multivariate Hypergeometric distribution. Finally, robustness issues
as emerged from the simulation study need to be addressed to properly treat the presence
of influential observations in the original sample.
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