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Abstract 
In 2007, Judkins, Krenzke, Piesse, Fan, and Haung reported on the performance of a new 
semi-parametric imputation algorithm designed to impute entire questionnaires with 
minimal human supervision while preserving important first- and second-order 
distributional properties. In a 2008 paper, we reported on procedures for post-imputation 
variance estimation to be used in conjunction with the semi-parametric imputation 
algorithm. In this paper, we discuss recent enhancements to handle very large 
longitudinal datasets for the Mental Health Treatment Study.  
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1. Introduction 
 
Panel surveys often have very high rates of cumulative nonresponse. The number of 
study participants with complete records can be vanishingly small (Marker, et al., 2001). 
The most common solution in the past has been a mixture of hotdecks for scattered item 
nonresponse and weighting adjustments for attrition, with strong consideration of last 
observation carried forward (LOCF) for wave nonresponse (Kalton, 1986, Lepkowski, 
1989, Singh, et al., 1990). Bolder thinking since then has demonstrated that larger 
variance reductions can be achieved, at least for targeted outcomes (Ezzati-Rice, et al., 
1995) through broader use of imputation. Along these lines, recently the analysis of a 
large panel survey conducted as part of the Mental Health Treatment Study (MHTS) was 
performed using imputation for scattered item missingness, missed waves, and even 
attrition for those who responded at baseline and to at least two followup rounds (Frey, et 
al., 2011). In this paper, we report on a Monte Carlo evaluation of the imputation 
methodology used for the MHTS. 
  
The methodology is a slight revision to that tested in Judkins, et al. (2007). The core of 
the algorithm is based on cyclic p-partition hotdecks (Judkins, 1997). Adapting 
terminology from more recent literature such as van Buuren and Groothuis-Oudshoorn 
(2011), the core could also be referred to as chained model-assisted hotdecks or as semi-
parametric fully conditional specification. For a general discussion of hotdecks, see 
Andridge and Little (2010). As mentioned there, little has been proven about the 
asymptotic properties of hotdecks and there has been no theoretical development at all for 
cyclic p-partition hotdecks. What is known about their properties has been discovered by 
simulation studies and is generally encouraging. The general idea of the research 
presented here is to develop a complex superpopulation with challenging nonresponse 
patterns and then apply the methodology to samples from that superpopulation. 
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In the remaining sections of this paper, we document the imputation algorithm, describe 
the artificial population that was constructed for the evaluation, discuss performance 
measures, present results, and close with further discussion. One difficult issue for this 
type of research is the selection of a foil to place the performance of the studied method 
in context. We decided to use complete case analysis as the foil, by which we mean 
analysis based on the set of cases that have complete values for all variables required for 
a particular analysis. When the missing data mechanism is not MCAR (missing 
completely at random, as defined in Little and Rubin, 2002), it is well known that this 
type of analysis is easily outperformed – at least for simple statistics like marginal means. 
Because our simulation involves a missing data mechanism that is NMAR, it might be 
argued that we have picked too easy of a foil for our methodology. However, complete 
case analysis is still a very common approach and for complex multivariate statistics, it is 
not even clear that it can easily be beaten.  
 

2. Imputation Algorithm 
 
Let 1, , pY Y  be a collection of variables that require imputation. Let X be a vector of 

other variables that are never missing, such as frame variables. For each variable iY  to be 

imputed, let { }( ),i i j ih X Y ≠℘ =  be a partition of the dataset. Within each cell of i℘ , cases 

(beggars) with missing values of iY  are randomly matched to cases (donors) with 
nonmissing values of iY . The value from the matched donor is then imputed to the 
beggar. Each cell of i℘  is defined by the skip controllers1 of iY  and by coarsened 
predicted values, îY , of iY . Each potential donor is used once before any is used twice. If 
beggars outnumber donors within a cell by a user-selected factor, then donors are sought 
from neighboring cells of the partition. In this search, donors with less well matched 
predicted values of iY  are accepted, but donors with different skip controller values are 
never selected. A “sweep” involves executing this procedure once for every iY . Multiple 
sweeps are performed until either the R-squared coefficients for the models show only 
minimal change from sweep to sweep or until an upper limit on the number of sweeps is 
reached. If coarsening of îY  is not used and if there are no skip patterns, then the 
algorithm is nearly equivalent to chained predictive mean matching as in Siddique and 
Belin (2008). 
 
In order to reduce the need for human supervision, the predicted values of iY  are obtained 
from stepwise regression models. To speed execution, the regression models are linear 
even for categorical variables, provided that that the categorical variables are ordered. For 
unordered categorical variables, a separate stepwise regression model is formed for each 
level of the variable, and then a k-means clustering algorithm is run on the collection of 
predictions to form the partition.  
 
The use of stepwise modeling procedures allows the processing of datasets with very 
large values of p. This has been found to work well in cross-sectional surveys. However, 
in panel surveys, the ratio of p to n (the sample size) can be so large as to lead to serious 
                                                           
1 A skip controller is a variable that determines the eligibility of a respondent for additional 
questions on a topic. As an example, questions about smoking habits would only be asked of 
smokers, so smoking status would be a skip controller for all variables about smoking habits.  

Section on Survey Research Methods – JSM 2012

4041



problems with overfit in the stepwise modeling procedure. Such problems were noted in 
the preliminary imputation runs on the MHTS panel data: some variables with no 
theoretical relationship to iY  nonetheless entered the model for iY  while other potential 
predictors with theoretical grounds for entering the model were omitted. To reduce these 
problems with overfit for the MHTS, restrictions were placed on the stepwise modeling 
procedure. The problems were more severe for monthly time series than for quarterly 
time series and so stronger restrictions were placed on the stepwise algorithm for 
modeling of monthly series than for modeling of quarterly series. In this paper, we study 
only the procedure used in the MHTS for quarterly series. 
 
The restrictions placed on the stepwise selection process are as follows: 

• If there are some respondents who are eligible to answer iY  but not jY , then jY  is 

not allowed to enter the model for iY ;2 and 
• If 1j i− >  and iY  and jY  are from different time series, then jY  is not allowed 

to enter the model for iY . 
 
Note that these restrictions allow: all variables within a wave with consistent skip 
controllers to enter models for each other; all waves of a time series to enter the models 
for all other waves of the same series; and lagged and reverse-lagged predictions across 
time series. The rationale for allowing lagged predictions across series was that changes 
in one area of life (such as marital status) often lead to changes in other areas of life (such 
as emotional and financial stress). If there are L time series, w waves, no skip patterns, 
and no other potential predictor variables, then the addition of the second restriction 
reduces the number of eligible predictors from 1Lw −  to 3 4w L+ −  for bounded waves 
and 2 3w L+ −  for the first and last waves. If the number of waves is large or a Markov 
assumption is reasonable, then future users might wish to consider further restricting the 
eligible predictors by applying the maximum lag rule within a time series as well.3 Also 
note that if there is a monotone pattern of nonresponse, then there is no point in allowing 

jY  to enter the model for iY  when j>i, but for the MHTS quarterly series, there were 
strong efforts to convert apparent attritors back into respondents. 
 
The imputation algorithm can also produce multiple imputations. This was not done for 
the MHTS but was done for this paper. For each multiple imputation, a completely new 
chain of hotdeck imputations was generated with fresh stepwise searches for variable 
selections. It would have been simpler instead to match several donors to each beggar 
with a single fixed partition, but we rejected this approach because we think that the 
stepwise searches could be generating a fair amount of variability in the results. 
 
There are several tuning parameters for the imputation algorithm. The most important of 
these govern coarsening of predicted values when forming partitions, the number of 
sweeps through the p variables, and the number of multiple imputations. For this paper, 

                                                           
2 Note that this restriction prevents variables from entering models for their own skip controllers. 
For example, smoking habits are not allowed to enter the model for smoking status. This 
restriction was also used in the imputation work described by Judkins, et al. (2007, 2008), and is 
necessary to prevent perfect models that would cause the cyclic procedure to get stuck at the initial 
imputed values. 
3 Something similar to this was done for the imputation of the MHTS monthly time series.  
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we formed 20 equal-sized portions of the sample based on îY , conducted 10 sweeps 
through the variable set, and drew three multiple imputations. We think that more sweeps 
might have been useful, but they are computationally costly. Running the procedure on 
200 draws from the superpopulation described in the next section (80 time series, 
arranged across 10 waves) required 120 hours of high-speed server time.  
 

3. Monte Carlo Superpopulation 
 
We created a superpopulation of eight related time series with skip patterns, strong cross-
sectional and longitudinal correlations, and non-standard distributions. Underlying the 
eight series was a latent nonstochastic process for each person that was driven by a 
random starting vector and random transition matrix. The process is perhaps best 
envisioned as a propensity vector for a five-level categorical variable. For person i at 
wave j, the latent propensity vector was generated as  
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The eight manifest time series were then generated as follows. An ordinal variable for 
wellbeing was generated as 
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( )1 5~ 1,  , , .ij ij ijWellbeing M L L  
A binary substance abuse indicator was generated as  
 

[ ]( )
1~ 1,  .

1 exp 30 3 0 3 20ij
ij

Abuse B
 
 
 + − − − L

 

 
A binary prison indicator was generated as an absorbing event with the following hazard 
function: 
 

[ ]
0                                                        for  1,
0.3 0.1 0.01 0.001 0.001   for  1.ij

ij

j
h

j
==  > L

 
 
Mental health was generated as  
 

[ ]( )~ 2 1 0 1 2 ,  1 .ij ij ijMHealth N Prison− − −L  
 
Labor force status (1=employed, 2=unemployed, 3=not in labor force) was generated as  
 

3                                                                       if  = 1,
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  
    
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Number of cigarettes per day was generated as a two-step process, with one random 
variable to determine smoking status (smoker or not) and a second to conditionally 
determine number of cigarettes per day:  
 

.ij ij ijC Any Num=  
 
At wave 1, smoking status was generated as 
 

[ ]( )1 1~ 1,  0.7 0.5 0.3 0.15 0.05 .i iAny B L
 

 
At subsequent waves, persistent smoking was generated as 
 

( ) [ ]( )( )( ), 1 , 11 ~ 1,  max 0.01,  min 0.99,  0.99 0.98 0.97 0.96 0.95ij i j i jAny Any B− −= L

 
and uptake was generated as 
 

( ) [ ]( )( )( ), 1 , 10 ~ 1,  max 0.01,  min 0.99,  0.1 0.05 0.01 0.01 0.005 .ij i j i jAny Any B− −= L

 
For the first wave, the daily cigarette consumption for smokers was generated as  
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( ) [ ]( )1 1 1log 1 ~ 1.6 1.8 2 2.5 3 ,  0.25 .i i iNum Any N= L
 

 
For subsequent waves, the daily cigarette consumption for smokers was generated as  
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Hours worked per week for the employed was constructed with an usual distribution, 
generated as 
 

[ ]( )
39round 1 ,

1 exp 10 7 3 0 2 8ij
ij ij

Hours
U

  = + 
+ − −  L

 

 
where ijU  was randomly drawn from the uniform distribution between 0 and 1. Hours 
worked per week for the unemployed and those not in the labor force were, of course, set 
to zero. 
 
Income was generated as a contaminated heteroscedastic normal variable. Income 
outliers were generated with a probability of 0.005 and their income was multiplied by 
factor of 1.5. Otherwise, income was generated to be heteroscedastic normal as 
 

[ ](
[ ]{ } )2

~ 1,000 5,000 20,000 80,000 200,000 ,

200 1,000 4,000 16,000 40,000 .

ij ij

ij

Income N L

L
 

If the resulting income amount was negative, it was rounded up to $0. Also, for the 
unemployed, the resulting income amount was halved, and for those in prison, the 
amount was reduced by factor of 10. 
 
Item nonresponse was generated as completely at random with a rate of 5% for all 
variables. Wave nonresponse was also generated as completely at random with a rate of 
4%. Attrition was generated as ignorable given wellbeing and prison at last wave, but 
these were, of course, not always observed. So attrition is nonignorable, but of a form 
that should be handled reasonably well by procedures that assume ignorable nonresponse. 
Attrition was 3% per wave but the logit of the probability of attrition was  
 

{ } ( ), 1
. 1logit Pr 3.48 3 1 1.2 0.7 .

3
i j

ij i j
Wellbeing

Attrit Prison−
−

   = − + − + −      
The wave 1 sample size was set to 2,000 and the number of waves was set to 10.  
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4. Performance Measures 
 
We envision the imputation process as being carried out by a data publisher rather than 
by an expert analyst. The goal of this approach to imputation is to create a rectangular 
dataset that can meet the needs of future “journeyman” or even novice analysts. An 
expert analyst working on a small subset of variables might prefer to try the Bayesian 
methods in Chapter 21 of Gelman, et al. (2004) or some of the frequentist methods in 
Molenberghs and Kenward (2007), but these methods are beyond the skill levels of most 
analysts. Fay (1993) demonstrated how difficult it can be to support unplanned analyses 
well. Given the way that partitions are built and beggars are matched to donors by our 
imputation method, one can expect that examinations of univariate statistics will be well 
supported and hope that the same will be true for bivariate statistics; however, it would 
obviously be too much to hope that three-way or higher relationships will be well 
supported, other than those induced by skip patterns. 
  
Accordingly, we evaluated the performance of the imputation algorithm for marginal 
means, standard deviations, skewnesses, and kurtoses and for conditional means of binary 
and ordinal variables given (other) categorical variables. Two common analyses of panel 
datasets are growth curve modeling and hazard modeling, so we also evaluated the 
performance of the imputation for supporting these analyses. For continuous variables 
(wellbeing, mental health, daily cigarette consumption, hours worked per week, and 
income), we fit models of the form 
 

( )
( )
( )

( )
( )
( )

( )

2

2

2

2

~ 0,  

Cov , 0   for  

~ 0,  

Cov , 0   for  

Cov , 0   ,

~ 0,  

0            for  ,
Cov ,

  for . 

ij i i ij

i

i j

i

i j

i j

ij

ij i k k j

Y j u b j e

u N

u u i j

b N

b b i j

u b i j

e N

i i
e e

i i

µ β

τ

ϕ

σ

ρ σ
′ −

= + + + +

= ≠

= ≠

= ∀

′≠= 
′=

 

 
This is not how any of the variables were generated, so the models are wrong but 
possibly useful (as are all models, as famously noted by G.E.P. Box). We evaluated our 
imputation method by comparing the parameter estimates from fitting the model on the 
complete data to the parameter estimates from fitting the model on the imputed data. We 

focused on the estimation of /β σ , /ϕ σ , ρ , and 
2

2 2
τδ

τ σ
=

+
. 

 
For the binary variables except prison (abuse, smoking status, employed, unemployed, 
and not in the labor force), we fit models of the form: 
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Again, these models are “wrong” but potentially useful. As with the linear mixed models, 
we evaluated the imputation algorithm by comparing the results of fitting the model on 
the complete data and on the imputed data. For the binary growth models, we focused on 

the estimation of /1.65β , / 1.65ϕ , and 
2

2 3.29
τδ

τ
=

+
. (The 1.65 comes from a 

suggestion by Sir David Cox favorably evaluated for meta-analysis by Sánchez-Meca, et 
al., 2003, and the 3.29= 2 / 3π  comes from a suggestion by Donald Hedeker built into his 
MIXOR program, Hedeker and Gibbons, 1996.) 
 
For prison (created as an absorbing binary variable), we fit a Cox proportional hazards 
model with a single covariate (abuse at wave 1) and no random effects.  
 
We computed nominal 95-percent confidence intervals for the marginal means (of 11 
variables – the seven ordered variables, binary indicators for the three levels of the 
unordered categorical variable, and the binary indicator for smoking status), conditional 
means (of the other ten variables given each categorical variable), growth rates (the β  
coefficients from 11 growth models), and the hazard rate of prison given abuse at wave 1. 
These nominal confidence intervals were calculated using Donald Rubin’s standard 
formula for post-imputation variance (equation 2.2 in Rubin, 1996) and infinite degrees 
of freedom. We then computed empirical coverage rates for these nominal confidence 
intervals where success was including the cross-replicate average of the same statistic 
based on analysis of complete datasets.  
 
To describe this using formulae, let r index repeated draws from the superpopulation and 
t index multiple imputations. Let F̂rθ represent the estimated parameter on the full sample 
with complete response, Îrtθ  represent the estimated parameter on the imputed dataset, 

Ĉrθ  represent the estimated parameter based on cases that have complete values for all 
variables required to compute the statistic, and ˆ

FrQ , ˆ
IrtQ , and ˆ

CrQ , respectively, 
represent the naïve variance estimates for these point estimates. Limits for nominal 
confidence intervals based on the imputed data were calculated as 

2
1 1 1 1 1ˆ ˆ ˆ ˆ1.96

1Irt Irt Irt Irs
t t t s

TQ
T T T T T

θ θ θ
 +

± + − 
−  

∑ ∑ ∑ ∑ . Limits for nominal 

confidence intervals based on the complete case analysis were calculated as 
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ˆ ˆ1.96Cr CrQθ ± . The confidence intervals were classified as successful if they contained 
1

F̂r
rR
θ∑ .  

 
Bias and root mean square error (RMSE) were also computed for all statistics of interest. 
These were calculated as  
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Note that it might also have been interesting to calculate an alternative measure of root 
mean square error where the pivot was the full sample statistic from the draw from the 
superpopulation. However, we did not compute that measure. We felt that accuracy in 
estimating the fundamental quantity of interest, F̂s

s
θ∑  , was more important than 

approximating the full sample statistic, F̂rθ , on every draw.  
 

5. Results 
 
Due to the computational intensity of the imputation algorithm, performance was 
assessed on only 200 draws from the superpopulation. Figure 1 shows empirical coverage 
rates for nominal 95-percent confidence intervals, for four types of analysis by two 
approaches to handling missing data. For marginal means, our imputation procedure 
dramatically outperforms complete case analysis, but in absolute terms, performance still 
leaves something to be desired. Empirical coverage rates for the 11 marginal means 
varied from 55 to 94 percent. These coverage problems were caused by a combination of 
bias and underestimation of variance. Our imputation procedure also outperformed 
complete case analysis for conditional means in two-way analyses, however the 
advantage was not as strong presumably because the missing data mechanism did not 
create as much bias in conditional means. For estimation of growth rates, our procedure 
again dramatically outperformed complete case analysis, but did not perform as well as 
desired in absolute terms. The two methods both did well for hazard analysis.  
 
Where the complete case methodology had poor coverage, it was because of bias. Figures 
2 and 3 show various biases. For marginal means, standard deviations, and skew and 
kurtosis measures, our method is virtually unbiased despite the NMAR attrition, while 
complete case analyses are badly biased. The results for wave 10 (W10) correlations are 
particularly satisfying in that imputation methods are well known for causing attenuation 
of correlation, but our method actually led to less attenuation on this superpopulation than 
did complete case analysis. Our method also performed very well for average growth 
rates (upper left panel of Figure 3 shows /β σ ) and for the standard deviation of 
personal growth rates (lower right panel of Figure 3 shows /ϕ σ ). For intraclass 
correlations (ICCs) and autoregressive correlations, the imputation method was generally 
okay, but for one of the outcomes, it borrowed too much strength from distant waves 
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rather than neighboring waves and thereby ended up overestimating the ICC and 
underestimating the autoregressive correlation. 
  
Figures 4 and 5 show root mean square errors. The pattern of results is consistent with 
those for biases. Our method has much lower RMSE than complete case analysis for 
marginal statistics, cross-sectional correlations, average growth rates, and the standard 
deviation of personal growth rates. The two methods were roughly tied for conditional 
means, and complete case analysis was better for estimating both intraclass correlations 
and autoregressive correlations. 
 

6. Discussion 
 
The superpopulation crafted for this research would, we believe, pose a serious challenge 
for any imputation system. We hope that others will take up the challenge and test their 
systems against it. The SAS code for generating and analyzing the population is available 
from the authors. The code for our imputation system is a proprietary product of Westat 
and is not available for sharing. However, in this and previous papers, we have shared the 
core algorithmic details.  
 

 
Figure 1: Coverage rates by type of statistic and approach to missing data 

Section on Survey Research Methods – JSM 2012

4049



 
Figure 2: Biases in cross-sectional parameters by type of statistic and approach to 
missing data 
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Figure 3: Biases in longitudinal parameters by type of statistic and approach to missing 
data 
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Figure 4: Root mean square errors of cross-sectional statistics at wave 10 by type of 
statistic and approach to missing data 
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Figure 5: Root mean square errors of cross-sectional correlations at wave 10 and of 
longitudinal statistics by type of statistic and approach to missing data 
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