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Abstract: Multiple imputation has become one of the most popular and 
successful methods for dealing with missing data in statistical analyses.  Multiple 
imputation allows one to use observed data to model relationships among 
variables, represent uncertainty in missing values through multiple draws from 
conditional distributions, and produce both point estimates and variance 
estimates for parameters.  Variance estimates incorporate contributions to 
variance from both within and between completed data set analyses.  Despite the 
advantages of multiple imputation, it has been noted that multiple imputation 
variance estimators can be biased.  Bias is possible when, in the imputation 
model, survey weights are not used.  Calibration weighting and its familiar 
forms, including raking and post-stratification, are often used in sample surveys 
to adjust sample estimates to match control total values and reduce variance.  We 
explore the possibility of using calibration weighting in combination with 
multiple imputation to remove or reduce bias in multiple imputation variance 
estimation when survey weights are not used in the imputation model.  Methods 
could apply to both sample survey and more general study design contexts. 
 
Key words and phrases:  Calibration weighting; Missing data; Sample survey; 
Variance estimation. 
 

1.  Introduction 
 

Multiple imputation (MI; Rubin 1978, 1987, 1996) has become one of the most popular and 
successful methods for dealing with missing data in statistical analyses (e.g., Barnard and Meng 
1999, Klebanoff and Cole 2008, and Reiter and Raghunathan 2007).  MI allows one to use 
observed data to model relationships among variables, represent uncertainty in missing values 
through multiple draws from conditional distributions, and produce both point estimates and 
variance estimates for parameters.  Variance estimates incorporate contributions to variance from 
both within and between completed data set analyses.  Advances have been made in 
computational issues of multivariate data sets and for variables exhibiting complex patterns and 
relationships (e.g., Raghunathan et al. 2001, Burgette and Reiter 2010, Azur et al. 2011, and Ofer 
and Zhou 2007) 

 
Despite the advantages of MI for missing data in sample surveys and other studies, it has been 
noted that MI variance estimators can be biased to some degree.  Bias has been found when 
survey weights are not used in the imputation model.   

 

                                                 
1 Disclaimer:  Any views expressed are those of the authors and not necessarily those of the U.S. Census 
Bureau or of The George Washington University. 
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An example is when survey weights are not used in the imputation model under informative 
sampling (Kott 1995).  Specifically, Kott (1995) considers a situation in which there is interest on 
a domain that crosses strata and sampling and/or response rates vary by strata.   If an unweighted 
model is posited for the missing data, then the fitted model may produce biased parameter 
estimates and predictions.  If the weights, which reflect the sampling/response rates, had been 
used to develop the imputation model, then Kott’s scenario would not be a concern.   Ignoring 
key aspects of the sampling design and response mechanisms for an analysis and approach to 
missing data can lead to bias in general (Rubin 1983).  Kott and Folsom (2010) comment further 
on the interaction of MI models and survey weights for a multi-item survey.  See also Reiter, 
Raghunathan, and Kinney (2006) in this context.  

 
This condition was later explored by Kim et al. (2006).  They decompose the MI estimator (ߠ෠ெ) 
of a parameter θ into three pieces: the complete data point estimator (ߠ෠௡), the difference between 
the infinite replicate MI estimator and the complete data point estimator (ߠ෠௡ െ	ߠ෠ஶ), and the 
difference between the finite replicate and the infinite replicate MI estimators (ߠ෠ஶ െ	ߠ෠ெ), where 
n is the planned sample size and M is the number of imputations per missing value. The bias of 
Rubin’s MI variance estimator ( ෠ܸ ሺߠ෠ெ)) is shown to occur due to covariance between the 
complete data point estimator and the finite replicate MI estimator.  Special cases of their 
presentation apply to domain estimation and linear regression models with fully observed 
independent variables.  One troubling result from Kim et al. (2006) is that if survey weights are 
not used in the imputation model under informative sampling it is possible that the MI variance 
estimator can have negative bias.  Prior papers had pointed to the MI variance estimator having 
positive bias.  Unlike a point estimator, the direction of the bias for variance estimator is almost 
as important as the magnitude of the bias since negative bias can lead to less than the nominal 
confidence interval (CI) coverage.   The general rule of thumb is that one unit of negative bias is 
equivalent to three units of positive bias for a variance estimator (Johnson and King 1987). 

 
One of the major limitations of the prior work on bias in Rubin’s MI variance estimator is that the 
correlation between imputation and weighting as it often occurs in practice is not considered.  In 
many large-scale government surveys some form of calibration weighting, such as raking and 
post-stratification, is performed after imputation has been completed.  The calibration then is 
dependent on the imputed values.  This raises the question, if these weighting steps are performed 
after imputation and can take into account information external to the survey, not available for 
imputation, can these weighting steps reduce the bias in Rubin’s MI variance estimator?  In this 
paper we will focus on the case in which survey weights are not used in the imputation model 
under informative sampling.   

 
Section 2 reviews the theoretical background used in this paper.  Section 3 describes the design of 
the simulations used to study the question under consideration.  Section 4 presents the results of 
the simulations for one of the questions under study.  Finally, Section 5 provides some 
concluding remarks and some topics that could be considered in future research.   

 
2.  Background 

 
Let θ be a population parameter. Let ߠ෠ be the estimator of θ. Let ܸሺߠ෠ሻ be the variance of ߠ෠, and 
෠ܸ ሺߠ෠ሻ be the estimator of this variance. When some data that one intended to observe are missing, 
then one must decide what to do about the missing data when estimating θ and the variance of the 
estimator.    
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2.1 Multiple Imputation Variance Estimation 
 

In MI (Rubin 1978, 1987, 1996), one fills in the missing data from random imputations under a 
(Bayesian) model.  The data are completed multiple times, yielding multiple completed data sets.  
For filled-in data set m, let the estimate of θ be θ෠௠.  Suppose there are M imputed data sets and 
estimates. The MI estimator of θ is the average of the M estimates: ൫1 ൗܯ ൯∑ θ෠௠.

ெ
௠ୀଵ  The variance 

of this estimator can be estimated by ෠ܸ ൌ ܷ ൅ ൫1 ൅ 1
ൗܯ ൯ܤ, where U is the average within 

analysis variance and B is the variance between estimates (Rubin 1987).  In formulas, ܷ ൌ
	൫1 ൗܯ ൯∑ ෠ܸሺθ෠௠ሻ

ெ
௠ୀଵ 	, where ෠ܸ ሺθ෠௠ሻ is the estimated variance for the analysis using the m-th data 

set, and, for a scalar parameter, ܤ ൌ ቀ1 ሺܯ െ 1ሻൗ ቁ∑ ሺθ෠௠ െ ൫1 ൗܯ ൯∑ θ෠௠ሻ
ெ
௠ୀଵ

ଶ
.ெ

௠ୀଵ  

 
2.2 Imputation Models 
 
If the unweighted model for the data is ௜ܻ ൌ ௜ݔ

ᇱߚ ൅ ݁௜, ݁௜~௜௜ௗܰሺ0,  ଶሻ and an r subscript indicatesߪ
respondents and an m subscript indicates missing values, then a typical MI scheme (see, e.g., Kim 
2004, Schenker and Welsh 1988, Rubin and Schenker 1986, Rubin 1987) is as follows. Assuming 
a non-informative, flat prior distribution on β (݌ሺߚሻ ∝ 1) and that only some values of y are 
missing:  

 
1. For each replication, m=1, …, M, draw the error variance as ߪ௠ଶ ௗ௙߯/ܧ~௜௜ௗܵܵ	௥ݕ|

ଶ  where 
SSE is the sum of squared errors from the regression of y on x for the cases with y 
observed and df as degrees of freedom. The degrees of freedom are influenced by the 
choice of the prior distribution on ߪଶ.  

 
2. For each replication, m=1, …, M, draw regression coefficients as 

,௥ݕ|௠ߚ ௠ଶߪ 	~௜௜ௗܰሺߚመ௥, ሺܺ௥ᇱܺ௥ሻିଵߪ௠ଶ ሻ where ߚመ௥ ൌ 	 ሺܺ௥ᇱܺ௥ሻିଵܺ௥ᇱݕ௥ is the least-squares 
estimate of the regression coefficients using the cases with y observed and where ܺ௥ and 
  .௥ are the design matrix and response vector, respectively, for respondentsݕ
 

3. For each replication, m=1, …, M, and unit with missing yi, draw imputations 
independently of one another:  ݕ௜

௠~	ܰሺݔ௜ߚ௠, ௠ଶߪ  ) .  
 

Alternatively, for a weighted model, let ܦగ ൌ ݀݅ܽ݃ሺߨଵ, ⋯,ଶߨ ,  ௜ be the inclusionߨ ௥ሻ and letߨ
probability of the ith respondent.  After nonresponse adjustments, ߨ௜ might be replaced by the 
inverse of the survey final weights.  Then 

 
1. For each replication, m=1, …, M, draw the error variance as ߪ௠ଶ ௗ௙߯/ܧ~௜௜ௗܵܵ	௥ݕ|

ଶ  where 
SSE is the sum of squared errors from the weighted regression of y on x for the cases with 
y observed and df as degrees of freedom. The degrees of freedom are influenced by the 
choice of the prior distribution on ߪଶ.  

 
2. For each replication, m=1, …, M, draw regression coefficients as 

,௥ݕ|௠ߚ ௠ଶߪ 	~௜௜ௗܰሺߚመ௥, ሺܺ௥ᇱܦగିଵܺ௥ሻିଵߪ௠ଶ ሻ where ߚመ௥ ൌ 	 ሺܺ௥ᇱܦగିଵܺ௥ሻିଵܺ௥ᇱܦగିଵݕ௥ is the 
weighted least-squares estimate of the regression coefficients using the cases with y 
observed and where ܺ௥ and ݕ௥ are the design matrix and response vector, respectively, 
for respondents.  
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3. For each replication, m=1, …, M, and unit with missing yi, draw imputations 
independently of one another:  ݕ௜

௠~	ܰሺݔ௜ߚ௠, ௠ଶߪ  ) .  
 

If the prior distribution is uniform on the (β, log σ) scale (Gelman et al. 2004, chapter 14; 
,ߚሺ݌ ଶሻߪ ∝  ଶ) , then df = r-p, where p is the dimension of X.  If the prior distribution on σ2 isିߪ
proportional to ሺߪଶሻିଶ (Kim 2004, Meng and Zaslavsky 2002), then df=r-p+2.    

 
2.3 Calibration 

 
Calibration estimation, or calibration weighting, is a method used to incorporate axillary 
information based on known marginal totals into analysis of survey data from a finite population.  
It is used with the aim of achieving two goals. The first goal is to increase the efficiency of 
estimates, which can be done when the axillary information is highly predictive of the variable of 
interest.  The second is to ensure that the estimates meet the marginal totals and thus produce 
consistent estimates across surveys and for known population quantities.  Calibration 
encompasses many familiar weighting adjustments and estimators such as raking, 
poststratification, and generalized regression estimators.  The basic theory of calibration can be 
found in Deville & Särndal (1992) and Deville et al. (1993).  The basic framework for calibration 
estimation is to minimize the distance between base weights and new calibration weights while 
meeting the marginal totals.  The choice of distance function and specification of control totals 
(i.e., the margins of which variables and interactions among variables) are what make the 
methods different versions of calibration estimation.  Developments in the literature on survey 
weight calibration are not reviewed here; see Kim and Park (2010), Särndal (2007), Gelman 
(2007), and Zhang (2000).  
 
2.4 Multiple Imputation with Calibration and the Use of Survey Weights 

 
Using a superpopulation argument Kim et. al.(2006) showed that the Rubin’s MI  variance 
estimator is biased if the weights under informative sampling or weighting adjustments (such as 
cell based nonresponse adjustments where there is differential nonresponse across cells) are not 
used in the imputation model. They show that this bias in the variance estimator is a function of 
both B, the variance between estimates, and the survey weights.  In the bias formula (either of 
formulas 5.5 or 5.8 in Kim et al. 2006), if the between imputation variance B goes to zero, then 
the bias of the MI variance estimator goes to zero as well.  That is, if the between imputation 
variance B is zero, then the amount of bias in the MI variance estimator also should be zero.    
 
The interpretation of the bias formula from Kim et al. (2006) in the previous paragraph has an 
implication for the potential of calibration estimation to reduce bias in the MI formula.   If the 
outcome variable that is being analyzed is highly correlated with auxiliary variables used in 
calibration, then all estimates of the parameter of interest should be nearly the same across sets of 
imputations.   In that situation, the value of B should be small and the variance of the MI variance 
estimator should be small as well.  If the variables that are used in the calibration are reasonably 
well correlated with the desired outcome variable, then B will be reduced in comparison to what it 
would have been without calibration.  The more similar calibration to the same control totals for 
each set of imputation can make the estimates, the smaller the value of B should be, thus reducing 
the bias in the MI variance estimator.  The simulation in the next section examines this idea.  
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3.  Simulation 
 
The following simulation was used to evaluate the potential bias in the MI variance estimators 
when survey weights are not used in the imputation model, under informative sampling. This 
simulation evaluated the following three imputation models specifications: 
 

1. Without sample weights (NW) 
2. With sampling weights as predictors (WP) 
3. Weighted model (WM) 

 
This simulation was run in R (R Development Core Team, 2008) and are similar in nature to but 
different in detail from those presented in Kim (2004).  All of the simulations are based on a 
common finite population with N = 100,000 members.   The simulation design used was a 3 x 2 x 
2 factorial design with the following three factors:  

 
1. Factor A, method of imputation –  NW, WP, WM 
2. Factor B, response rate – 0.8, 0.6  
3. Factor C, sample size – 200, 400 
 

For each factor combination, 50,000 simulations (L) were performed.  
 

3.1 Finite Population 
 

A common finite population was used for all three simulations.  The finite population was 
generated by taking 100,000 independent draws out of a normal distribution with µ = 10 and 
variance of σ2 = 25/3 (X).  

 

௜ܻ ൌ 2 ൅ 4 ௜ܺ ൅ ݁௜  
 
where ݁௜ 	are drawn independently from a standard normal distribution.  This model specification 
causes X and Y to be highly correlated (i.e ρ ≈ 0.99). This follows the basic setup of (Kim 2004).  

 
Additionally, three variables were generated to be used for creating strata, raking and the sample 
design as follows: 

 

௜ܷ
ఘ ൌ ௜ܻ ൅ ߳௜ 

 
where ߳௜ was drawn independently from a normal distribution with µ = 10 and σ2 in a manner 
such that the correlation(Y, ௜ܷ

ఘ) = ρ for ρ = 0.8.  Specifically the variance of Y is v= 16(25/3)+1, 
the variance of U is v+ σ2, and the covariance of Y and U is also v.  The correlation of Y and U 

then is ݒ ඥݒሺݒ ൅ ⁄ଶሻߪ , and one can solve for ρ.  
 
3.2 Sampling 
 
Stratified simple random sampling was used to create an informative sampling scheme. Four 
strata were created based on the quartiles of ௜ܷ

଴.଼, each stratum with 25,000 units. Sample was 
allocated between strata with the upper quartile receiving 50% of the sample, 30% of the sample 
in the next quartile, 15% in the next, and finally 5% in the bottom quartile.  As Kott (1995) notes, 
this can be viewed as either unequal sampling rates or unequal response rates across four 
nonresponse adjustment cells where the inverse response rate is used to adjust the weights. Under 
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the latter setting, the nonresponse adjustment cells would be optimal since the cells would be 
good predictors of Y and the propensity to respond thus reducing both nonresponse bias and 
variance (e.g., Little and Vartivarian 2005 and West 2009).  
 
3.3 Missing Data Mechanisms 

 
Missing values of Y for each sample were generated by taking a simple random sample of size 
one minus response rate times the sample size. This is a uniform response mechanism that insures 
constant sample size for each simulate.  This is the missing completely at random (MCAR) 
response mechanism, which also was used by Kim (2004).   

 
3.4 Imputation Algorithms  

 
For this simulation, two imputation models were compared: the standard linear-model framework 
studied by Schenker and Welsh (1988) and the SOUP modification to this model, which appears 
in Kim (2004) and is based on Meng (1994) and Meng and Zaslavsky (2004).   

 
For this simulation, simple random without replacement sampling was used to ensure that the 
sampling was non-informative.  Imputation is performed assuming a classic linear model 
framework:  

 
௜ݕ ൌ റ௜ݔߚ ൅ ݁௜ 

   
݁௜	~	ܰሺ0,  .ଶሻߪ

 
The standard Bayesian approach to a classical linear unweighted model based only on the 
respondents is to assume that             

,ݕ௥|ሺߚ ,መ௥ߚܰሺ	~	ଶሻߪ ෠ܸఉೝߪ
ଶሻ, 

where 
 

መ௥ߚ ൌ ሺܺ௥ᇱܺ௥ሻିଵܺ௥ᇱݕ௥
෠ܸఉೝ ൌ ሺܺ௥ᇱܺ௥ሻିଵ.

 

 
Additionally, 

 
,ଶሺ݂݀߯ݒ݊ܫ	~	௥ݕ|ଶߪ  ௥ଶሻݏ

   
௥ଶݏ ൌ ሺݎ െ 2ሻିଵݕ௥ᇱሾܫ െ ܺ௥ሺܺ௥ᇱܺ௥ሻିଵܺ௥ᇱሿݕ௥. 

 
For more details on the Bayesian approach to classical linear models see chapter 14 of Gelman et 
al. (2004).   
 
For the classical weighted model, ߚመ௥, ෠ܸఉೝ,	 and ݏ௥ଶ are replaced by the following formulas:  
 

መ௥,గߚ ൌ ሺܺ௥ᇱܦగିଵܺ௥ሻିଵܺ௥ᇱܦగିଵݕ௥
෠ܸఉೝ,ഏ ൌ ሺܺ௥ᇱܦగିଵܺ௥ሻିଵ

௥,గଶݏ ൌ ሺݎ െ 2ሻିଵݕ௥ᇱሾܦగିଵ െ ௥ݕగିଵሿܦగିଵܺ௥ሻିଵܺ௥ᇱܦగିଵܺ௥ሺܺ௥ᇱܦ

 

 
These estimates were used in the WM. 
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To make this model and procedure operational in a MI context the following algorithm is used 
independently for each replicate k = 1,…, M: 

 
1. Draw  

 
ሺ௞ሻߪ
ଶ ,ଶሺ݂݀߯ݒ݊ܫ	~	௥ݕ|  ௥ଶሻݏ

 
2. Draw 

	 
,ݕሺ௞ሻ|൫ߚ ሺ௞ሻߪ

ଶ ൯	~	ܰሺߚመ௥, ෠ܸఉೝߪሺ௞ሻ
ଶ ሻ 

 
3. Then for each missing yj, draw   

 

௝݁ሺ௞ሻ|൫ߚሺ௞ሻ, ሺ௞ሻߪ
ଶ ൯	~	ܰሺ0, ሺ௞ሻߪ

ଶ ሻ 
 

4. Finally, impute for  yj for the kth implicate as 
 

௝ሺ௞ሻݕ ൌ റ௝ݔሺ௞ሻߚ ൅ ௝݁ሺ௞ሻ. 
 
The difference between the methods proposed by Schenker and Welsh (1988) and Kim (2004), 
from now on called the SW method and the SOUP method, respectively, lie in the choice the df 
used in the prior distribution on	ߪଶ.  The SW method uses df = r-p, where r is the number of 
respondents and p is the number of parameters that are being estimated in the model. In this case, 
p = 2.  The SOUP method uses df = r-p-2.   
 
3.5 Imputation Models  
 
Three models were evaluated in this simulation—one that does not incorporate any design 
information and two that incorporate the design weights differently.  
 

1. Without sample weights (NW) 
 

௜ݕ ൌ ଴ߚ ൅ ௜ݔଵߚ ൅ ݁௜ 
   

݁௜	~	ܰሺ0,  .ଶሻߪ
 
 

2. With sampling weights as predictors (WP) 
 

௜ݕ ൌ ଴ߚ ൅ ௜ݔଵߚ 	൅ ௜ݓଶߚ ൅ ݁௜ 
   

݁௜	~	ܰሺ0,  ,ଶሻߪ
 

where wi is the weight for the ith unit.  In this case, ݓ௜ ൌ
ଵ

గ೔
 , the inverse of the 

inclusion probability. 
 

3. Weighted model (WM) 
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௜ݕ ൌ గ,଴ߚ ൅ ௜ݔగ,ଵߚ ൅ ݁௜ 

   
݁௜	~	ܰሺ0,  .ଶሻߪ

 
3.6 Calibration Method 

 
For the NW model, three estimators of the mean were calculated.to evaluate the effect of post-
imputation raking schemes on the bias and coverage properties of MI variance estimators:    
  

1. NW model without raking (NW), 
2. NW model raking to the ௜ܷ

଴.଼ variable and the marginal total ∑ ௜ܷ
଴.଼ (NW-RT) 

3. NW model raking to stratum totals (NW-RST).  
 
Estimators 2 through 4 are typical weighting adjustments used in practice to incorporate design 
information into the weighting process to reduce variance.  Raking was performed using the calib 
function from the sampling package in R (Tillé & Matei 2008). 
 
3.7 Variances and Degrees of Freedom 
 
The within variance for each imputed data set was calculated using the traditional jackknife 
method. The between variance and the combined variance were calculated using the method 
described in Section 2.1.  For CI calculation, a t-distribution was assumed, with df calculated 
using the method proposed by Barnard and Rubin (1999)—a method of calculating degrees of 
freedom for MI analyses that is robust for small sample sizes.   

 
3.8 Evaluation Criterion  

 
Three evaluation criterion were used to evaluate the bias of the variance estimate and coverage 
properties of each variance estimator.  One was the relative bias 

 
ாಽሺ௏෡ሻି௏௔௥ಽሺఏ෡ሻ

௏௔௥ಽሺఏ෡ሻ
, 

 
where ܧ௅൫ ෠ܸ൯ is the Monte Carlo mean of the variance estimator for ߠ෠	over L simulations and 
 ෠ሻ is the estimated Monte Carlo variance over L simulations. The second evaluationߠ௅ሺݎܸܽ
criterion was the CI coverage of the finite population value of ߠ for the 95% t-distribution based 
CI over the L simulations using the estimated variance.  The final evaluation criterion was mean 
lengths of the 95% t-distribution based CI over the L simulations. 
 
4.  Results 
 
Results are presented in Table 1.  Methods are summarized by coverage rate of nominal 95% CIs, 
relative bias of variance estimates, and mean length of CIs.   Coverage should be 95% or above 
for a CI procedure to be judged valid, and coverage rates closer to 95% and still above 95% are 
desirable.  Relative bias should be small for the point estimate of variance to be considered high 
quality.  Other things being equal, the mean length of CIs should be small.  If a method has short 
CIs but fails to achieve 95% or greater coverage, then it is inferior to a method with wider CIs but 
adequate coverage.    
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The Monte Carlo simulation variance of these estimates was on the order of O(n-1).  Each draw 
was taken from the same finite population and the three methods applied to each sample data set.  
The estimators should be positively correlated between simulations.  As a result, when 
considering the difference between coverage rate, bias, and mean length of CI estimates for 
different methods, the standard error of the difference should be smaller than the Monte Carlo 
standard error for the individual estimation methods.  Thus, the variance of the difference 
between Monte Carlo estimates might be slightly lower than the variance of individual Monte 
Carlo simulation estimates.  Overall, this means that small differences like those found in 
coverage, relative bias, and mean length of CI are likely not due to simulation error alone. 
 
Using the approximate simulation variance, we see that the WM produces consistently large 
coverage rates (over 99%).  When compared to the other three models the WM model, produces 
larger coverage rates, which are statistically significant at the 95% confidence level. Since the 
variance estimates are positively biased and mean length of intervals is large, the WM is 
acceptable from a CI coverage perspective, but it is not very desirable due to the imprecise 
inferential statements it generates.   The other three methods that have been implemented produce 
coverage rates close to the desired 95%.  Although, none of these methods consistently 
outperforms the others in terms of coverage rates and relative biases.   Additionally, there does 
not seem to be any appreciable effect caused by raking back to design variable totals except for 
statistically significant reductions in the mean length of the CIs. 
 
Table 1: Actual Coverage Rates (CR) of Nominal 95% Confidence Intervals, Relative Bias 
(RB) of Variance Estimators, and Mean Length (ML) of 95% Confidence Intervals based 
on L=50,000 replicates.  n is the sample size, r/n is the response rate. 
 

 
 

N 

 
 

r/n 
 

Measure 

Model 

Weighted 
model 
(WM) 

Weights as 
predictors 

(WP) 

Not weighted 
w/o raking 

(NW) 

Not 
weighted, 

rake to totals 
(NW-RT) 

Not weighted, 
rake to 
stratum 

(NW-RST) 

200 

80% 
CR 99.9% 95.0% 94.9% 95.1% 95.1% 
RB 2.041 0.033 0.028 0.027 0.034 
ML 5.521 2.544 2.525 2.318 2.452 

60% 
CR 100.0% 94.8% 95.1% 95.2% 95.3% 
RB 3.223 0.015 0.039 0.042 0.044 
ML 7.67 2.550 2.557 2.333 2.466 

400 

80% 
CR 99.5% 95.0% 95.1% 95.1% 95.1% 
RB 1.165 0.014 0.029 0.017 0.019 
ML 2.947 1.782 1.784 1.626 1.715 

60% 
CR 99.9% 95.1% 95.0% 95.0% 95.1% 
RB 1.967 0.019 0.019 0.017 0.016 
ML 3.870 1.788 1.790 1.634 1.724 

 
5.  Discussion 
 
MI is a popular method for dealing with missing data in statistical analyses that produces both 
point estimates and variance estimates for parameters.  It has been noted that MI variance 
estimators can be biased when survey weights are not used.  In this paper we explore the 
possibility of using post stratification, a form of calibration weighting, in combination with MI to 
reduce bias in MI variance estimation when survey weights are not used in the imputation model.   
Three methods were evaluated in a simulation.   
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Using a WM produced undesirable results (i.e. coverage rates greater than 99%).  This is because 
design consistent covariance estimates were not used in the model thus not reflecting the variance 
reduction induced by the stratification.  Both using the NW model and using the WP model 
produce comparable results across sample sizes and response rates.  This might be caused by the 
fact that X and Y are so highly correlated.  Thus, design information may not be needed at all in 
the imputation model. Finally, raking only had the effect of lowering the mean lengths of CIs.  
This implies that calibration could have minimal effects on coverage rates and bias.  
 
This simulation, however, is both optimal and unrealistic.  The scenario used in simulations here 
assumes that X and Y are correlated almost perfectly and the missingness mechanism is MCAR, 
both of which are not seen in practice.  The simulation was chosen here to be comparable to 
methods employed in Kim (2004).   
 
Future work can explore a number of extensions.  First, it would be useful to explore missing at 
random (MAR) mechanisms, such as when response rates vary by strata or by domain.  Second, it 
would be interesting to implement simulations with covariates that are not as correlated as the X 
and Y in this simulation.    Third, it would be important to examine nonlinear relationships among 
variables.  Fourth, it would be desirable to study properties in higher dimension examples. 
Finally, as noted above the weighted model does not use design consistent estimates of the 
variance-covariance matrix as seen in Binder (1983), chapter 6 Fuller (2009), and chapter 5 
section 10 of Särndal et al (1992). This would be of interest. 
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