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Abstract

We evaluate revisions to a Bayesian beta regression model proposed in Wieczorek and Hawala
(2011), for U.S. county poverty rates. For small areas, some of which have survey estimates of
poverty rates of O or 1, a zero-one inflated rate model extends the beta distribution to allow for
these extreme estimates. The addition of a model error term allows the model to produce shrinkage
estimates. We can estimate the model parameters and shrinkage estimates for the small areas via
Bayesian computation techniques. Using simulated draws from a “pseudo population” based on
American Community Survey (ACS) data, we compare the results to ACS-like direct estimates and
to the Census Bureau’s current small-area model for county poverty estimation.
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1. Introduction

The Small Area Income and Poverty Estimates (SAIPE) program at the U.S. Census Bureau
uses small area estimation techniques to create model-based estimates of selected poverty
and income statistics on an annual basis. The estimates are intended to be more timely
than direct estimates from the decennial census or five-year American Community Survey
(ACS), as well as more precise and stable than single-year ACS direct estimates for small
areas.

In this paper, we are concerned with estimating the number of related poor children
aged 5-17 in U.S. counties. Poverty status is determined by comparing the child’s fam-
ily income to thresholds that vary with family size and composition; these thresholds are
described further in U.S. Census Bureau (2012). These estimates are provided to the De-
partment of Education and used in the allocation of federal funding to local programs.

The existing county-level approach is based on a Fay-Herriot “log-level” model, i.e. a
model on the natural log of the number of related poor children in each area. The model
combines single-year ACS direct estimates with regression predictors from administrative
data records including Internal Revenue Service (IRS) tax data and Supplemental Nutrition
Assistance Program (SNAP) (formerly “food stamp”) data. The data inputs and this Fay-
Herriot model are described in more detail on the SAIPE website (U.S. Census Bureau,
2010 and 2011). The current SAIPE model is tractable and well-established, but it is worth
considering alternative models that may have advantages over the current approach.

In particular, some counties have ACS direct estimates of zero related children in
poverty. Since log(0) is undefined, these counties must be dropped from the estimation
procedure, with a resulting loss of information and efficiency. During four out of the five
years from 2005 to 2009, over 5% of counties had ACS direct estimates of zero related
children in poverty.

*This report is released to inform interested parties of ongoing research and to encourage discussion of
work in progress. Any views expressed on statistical, methodological, technical, or operational issues are those
of the authors and not necessarily those of the U.S. Census Bureau.
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Furthermore, Census Bureau staff have found other concerns with the log-level model,
including biased direct variance estimates on the log scale (Huang and Bell, 2009), and
have suggested modeling poverty rates rather than log poverty counts.

Wieczorek and Hawala (2011) proposed to account for both of these issues with a
zero-one inflated beta (ZOIB) regression model. The beta distribution allows us to model
poverty rates directly on a continuous range between 0 and 1 exclusive; and a multinomial
component allows us to account for cases where the ACS rate estimate is either O or 1. The
sampling model is equivalent to the inflated beta distributions of Ospina and Ferrari (2010).
The present paper extends the 2011 work by adding random effects to the linking model.
The ZOIB model details are discussed in section 2.

Hawala and Lahiri (2012) and Liu at al. (2007) compare the Fay-Herriot and beta-
logistic regression models on rates in (0,1). However, they do not account for direct es-
timates of exactly O or 1, unlike the ZOIB model presented here. Bauder, Luery, and
Szelepka (2012) do account for 0 and 1 estimates, with a related but distinct model that
they call a “three-part model” after Pfeffermann et al. (2008), whose two-part unit-level
model also combines Os with continuous responses in the data but is different from the
area-level approach pursued here.

The ZOIB hierarchical model is difficult to fit by classical/analytical methods but lends
itself well to Bayesian treatment by Markov Chain Monte Carlo (MCMC) methods. Fur-
thermore, posterior distributions allow for useful model-checking approaches. The compu-
tational details are discussed in section 3.

The models are evaluated via a simulation study, described in section 4. Finally, sec-
tion 5 presents the evaluation results. We conduct a simulation study, replicating the ACS
sampling process to form draws from a “pseudo population” based on real data. On each
sample, we evaluate the direct, Fay-Herriot, and ZOIB estimators of the poverty rate, and
compare their performance against the pseudo-population truth:

e We evaluate whether each model’s assumptions hold. Do the sampling distributions
and linking models assumed for each approach (Fay-Herriot or ZOIB) appear appro-
priate?

e Following the advice of Little (2006), we check whether the estimates from each
approach (direct, Fay-Herriot, and ZOIB) are calibrated to the true values from the
pseudo population. We compare biases, variances, and mean square errors (MSEs)
of the point estimates, as well as biases of their estimated MSEs. We also check
coverage rates for confidence or credible intervals (Cls).

2. Models

Section 2.1 reviews the Fay-Herriot-like model currently in use by the SAIPE program.
Section 2.2 describes the zero-one inflated beta (ZOIB) model where observed poverty
rates can be modeled by a modified beta regression which also allows for observed rates of
Oorl.

2.1 Fay-Herriot model

The SAIPE program is built around the model proposed by Fay and Herriot (1979). Both
the sampling and linking models use log counts. In the sampling model, the sample es-
timates of log counts of persons in poverty are normally distributed around the true log
counts. The linking model connects these true log counts to a regression on log-level aux-
iliary data. (Normality is not required to estimate a Fay-Herriot model in general using the
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empirical best linear unbiased predictor (EBLUP) approach. However, for purposes of this
paper, we do assume normality in order to compare a fully specified Fay-Herriot model to
the ZOIB model presented below. Also, the normal assumption is used when deriving the
log-bias correction factor for transforming estimates back from the log scale to the native
scale.)

Let Y; denote the true poverty count in county ¢, and let y; be the design consistent
survey estimate of Y;. Then the sampling and linking models are:

log(y;) ~ N(log(Y;), 07)
log(Y;) ~ N(log(2:)' Bruy: Oa(r))

Here, x; is a vector of area-level adminstrative data (log tax poverty rate, log tax nonfiler
rate, and log SNAP participation rate), By ) is a vector of regression coefficients, 022 is the
sampling variance in county ¢, and ag( FH) is the regression model error variance, assumed

to be constant across all areas. The o7 are treated as known but ai( FH) and B g have
to be estimated, the former using an iterative approach from the Fay-Herriot paper and
the latter using weighted least squares conditional on (}Z (FH)" (Note that these parameters
are estimated using frequentist methods, not the fully Bayesian approach described for the
ZOIB model below.)

The regression estimates and direct estimates are composed into a shrinkage estimator:

w; =07 /(0f + &z(FH))

log(V;) = i log(@:)' Bppry + (1 — ;) log(ys)
MSE(log(Y:)) = #i62 ) + @ Var(log(ai) Birm)

At this point, the estimates are converted from the log scale to the original count scale,
using a log-bias correction factor. Slud and Maiti (2006) give a second-order correction
for the log-bias in such scenarios, although we use a simpler first-order correction factor in
the SAIPE program and consequently in this paper as well. Next the point estimates and
their MSE estimates are adjusted for raking, and finally the counts are converted to rates
by treating the poverty universe population estimates as known. More thorough details are
given in the SAIPE documentation (U.S. Census Bureau, 2010).

In the simulations for the present paper, the raking step is omitted but the remainder
of the estimation procedure closely follows the SAIPE approach. In particular, although
we begin with estimates of the log counts, we convert to estimated native-scale counts and
then to rates in order to allow comparison to the ZOIB model estimates. This SAIPE-like
version of the Fay-Herriot model will be referred to as “the FH model” in the rest of this

paper.
2.2 Zero-one inflated beta model

Let Z; denote the true poverty rate in county ¢, and let z; be the design consistent survey
estimate of Z;. For z; we use

ACS estimated number in poverty

= ACS estimated number in poverty universe

The sampling model is a zero-one inflated beta distribution as given by Ospina and
Ferrari (2010), who show that the inflated beta distributions are three- or four-parameter
exponential family distributions of full rank. This sampling model can also be thought of
as a multinomial trial with three possible results: a 0, a 1, or a draw from a beta distribution.
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Let pgo)

let pz(l) be the probability of observing 1. Otherwise, with probability (1 — pgo) — pgl) ), the

county’s rate is drawn from the Beta(a;, b;) distribution.

be the probability that county ¢ has an observed direct estimate of 0, and similarly

©)
0

~ Beta(a;, b;) with probability (1 — p(o) - pgl)).

i

0 with probability p
zi=1+K1 with probability p

In order to incorporate covariate information into a beta regression model, we repa-
rameterize the beta family in terms of its mean and a parameter related to its variance:
i = ai/(ai + bz) and v; = a; + b;.

In Ospina and Ferrari’s (2010) notation, this sampling model is equivalent to

(1)
zj ~ BEINF (a = pf;o) +p§1),’y = ﬁ,ﬂ = [y @ = Vi)
p;  +p;

We assume that the ACS direct estimate is unbiased for the truth, so the target small
area value Z; is the expectation of the BEINF sampling distribution:

Zi = Bzilpipl” pY) = (1= ¥ = p{)pi + pY
In our fully Bayes approach, our estimator Z; is the posterior mean F(Z;|z;).

We use “BEINF” to refer to the zero-inflated beta distribution, i.e. the sampling distri-
bution used in this model. We use “ZOIB” to refer to the zero-one inflated beta hierarchical
model, i.e. the small area model proposed here with BEINF as the sampling distribution
and with the linking model as given below.

Our approximate estimates of ~; come from writing the variance of a (non-inflated)
beta distribution as the variance of a rate estimate scaled by an effective sample size:

X ~ Beta(a;,b;), Var(X|a;b;) = “fy - f’) = “Z(neﬁi’“"), ~i = neff; — 1

We approximate neff; via a variance function suggested by Hawala and Lahiri (2010):

Var(Nifi;) = pui(1 — p;)d; where d; = Z(Z Wine)?
h€i ceh

where w;p, is the survey weight of child ¢ in household A in county ¢, and V; is the total
population of the poverty universe in county ¢. This suggests a heuristic estimator of neff;:

— 2
wi(l— pi)d; =~ NEW so neff; ~ d—z

Much like the Fay-Herriot model, the ZOIB model currently treats sampling variance
component estimates v; = rje?fi — 1 as known. The p; are assigned a regression linking
model on their logits.

In the main linking model, the logit of the mean of the beta distribution follows a linear
model with a common model-error variance UZ( ZO1B) ACT0Ss all areas. (The addition of
the random effect is new relative to the model in Wieczorek and Hawala (2011).) 3,, is the
vector of regression coefficients for estimating logit ().

logit(p;) ~ N(zs' By, 03(2013))
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There are also linking models for the logits of pgo) and pgl), using Bg and 31 ; however,

they do not yet incorporate random effects and are strictly synthetic:

logit(p”) = &/Bo and logit(p!") = @i/ B:

In future work we intend to evaluate other linking models for these probabilities, including
a comparison with the Small Area Health Insurance Estimates (SAHIE) program model
described in Bauder, Luery, and Szelepka (2012).

We use an intercept term and the same three regressors as for the FH model (tax poverty
rate, tax non-filing rate, and SNAP participation rate) for 3,,. We add a fourth regressor,
the natural log of ACS sample size in poverty universe, for each of B¢ and B1. We ex-
pect that the coefficients of sample size will be negative, so that large samples have lower
probabilities of 0 and 1.

Let x; = (1, 1, 2, xi3) be the vector containing 1 and the three main regressors for
each of m small areas, : = 1,...,m. Let x;4 denote this vector augmented with the last
regressor. The combined zero-one inflated Bayesian beta regression model we consider is

(1)
© M
b; D;
logit ()| By Ug(ZOIB) ~ N(x;Bu, ‘75(2013))
logit(p\”)[Bo = X, Bo
logit(p{")|B1 = X}, B
Bu, Bo, B1 ~ N(0,1000°T)
oozorp) ~ Unif(0, 300)

where I denotes the identity matrix (of size 4 + 5 + 5 = 14 in this case). We place diffuse
normal priors on each regression coefficient and a diffuse uniform prior on the model error
variance, and we treat -; as known. (An alternate approach to try in the future will be to
model the conditional logit of Z; rather than of p;.)

3. Computational Approach

In our MCMC procedure we draw samples j = 1, ..., J from the posteriors of each param-
eter. Letting tildes denote these sampled posterior draws, we have

Z (01)

~(0 ~(1
Zz'j:pij W

[Lz’j +pij
J ~
Zi=J">"Zy
j=1

For each dataset, we use the R software (R Development Core Team, 2012) to call
the JAGS software (Plummer, 2003) to generate a MCMC sample from the joint posterior
distribution of all the Z;.

We run several chains at once (starting with several overdispersed initial values). This
way, we can evaluate the convergence for each parameter by checking whether its multiple
chains are converging to the same distribution, using the potential scale reduction factor R
(Gelman et al., 2004, p. 297).

ey
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4. Simulation study

This section summarizes the setup for a simulation study designed to evaluate the poverty
estimates from our ZOIB model and from the FH model. Subsection 4.1 explains how
the simulation study datasets were generated. Subsection 4.2 summarizes the experimental
design used for the following evaluations. The results are presented in Section 5.

4.1 Overview of pseudo population simulation study

In describing models for Census data, Little (2006) suggests that “the model assessment
component would be helped by building research pseudo-populations of records from ear-
lier censuses that form the basis for simulation assessments of different model procedures.”
These remarks are in the context of a discussion about “Calibrated Bayes,” i.e., assessing
Bayesian models by frequentist standards. We follow this advice by creating a pseudo pop-
ulation from which we simulate draws of replicate subsample datasets, which can be used
both for assessing model assumptions and for comparing the estimates from competing
models.

We used the 2010 single-year ACS data for the 100 largest counties as a pseudo popu-
lation. In other words, the sampled housing units and persons in county ¢ were treated as
a complete pseudo population for that county, and the poverty count and rate observed in
that ACS sample (among related children ages 5-17) were treated as the true count and rate
for that pseudo population. (In what follows, “true” will be used to denote these known
pseudo population counts and rates, not the unknown values in the real-world population.)

The pseudo population sizes of the 100 largest counties ranged from approximately
2,000 to 40,000 housing units. The actual population sizes of many small U.S. counties
fall into this range, so this seemed to be a reasonable pseudo population for the purpose of
testing small area models.

In each of the 100 counties, we drew R = 100 independent samples or replicates.
(Note that the term “replicates” here is unrelated to the “replicate weights” used by the
ACS-like weighting process within any one sample.) We followed a simplification of the
ACS methodology for sampling, weighting the results, setting replicate weights, and cal-
culating the poverty estimates and their estimated sampling variances. The ACS process is
documented by U.S. Census Bureau (2009), particularly in chapters 4, 11, and 12. Full de-
tails of this pseudo population sampling process will be available in a forthcoming technical
report by Wieczorek (2012). Across these 100 * 100 county-by-replicate combinations, the
resulting replicate sample sizes (number of sampled children in the poverty universe, not
of all persons) ranged from 4 to 404, with a median of 36 children sampled in a single
replicate for a single county.

We used SAS software (SAS Institute, 2008) to gather all the data, draw samples, con-
struct weights, and store the preliminary ACS-like direct estimates of child poverty counts,
log counts, rates, and their sampling variances, as well as the effective sample size esti-
mates neff; as given in section 2.2. At the same time we stored the true pseudo population
poverty counts and rates for each county.

The resulting dataset was processed further in R and JAGS to get the Empirical Bayes
estimates from the FH model and the posterior estimates from the ZOIB model. Finally, for
each of the 100 replicates or samples from each county, the FH and ZOIB model estimates
across all 100 counties were compared to each other and to the ACS-like direct estimates,
as described in the following sections.

The same set of predictor variables were used for each sample, based on the 2010
SAIPE auxiliary data for the selected 100 counties.
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We will use the term “MC estimate” to denote the Monte Carlo (MC) estimates of bias,
variance, MSE, and CI coverage that we get by aggregating the R = 100 replicate estimates
for each estimator and each county.

Let MSE (uppercase) denote our best estimate of the true mean squared error, from see-
ing the variation in point estimates across all 100 replicate samples; and let mse (lowercase)
denote each replicate’s “internal” estimate of its point estimate’s mean squared error, from
seeing only one replicate at a time. Looking at MSE tells us how good the point estimates
are; looking at the bias of mse tells us how good the mse estimates are.

Letting r index the replicates and i index the counties, our metrics of interest are:

. 5 1 5 >
Biasync(Zi) = — Z(Zir —Z;) = Zi — Z;

R T
o 1 ~ _
VarMC(ZZ> = E Z(er - Zz)2
. 1 .
MSEnc(Z) = & > (Zir — Z:)? )

~ 1 o A

Biasyc(mse(Z;)) = = (mse(Z;) — MSEnmc(Z:))
N 1 —~ low —~ high

Coveragenc(Z;) = = Z(I{(C’IW < Z;<CI;,” )}

T

where each Z;,., mse(Zir), and the CI endpoints are computed as appropriate depending
on the estimator (Direct, FH, or ZOIB). Again, the FH estimates are transformed from log
counts to rates so that all three sets of estimates are directly comparable.

e The Direct mse(Z-r) estimates are the sampling variances estimated using replicate
weights, just as in the ACS. (Since the point estimates are assumed to be unbiased,
the sampling variance and mse estimates are the same.) Under the FH model, the
mse(ZW) estimates are estimated as given in section 2.1. The ZOIB estimates of
mse(ZZr) are the posterior variances of the MCMC draws for each ZW

e Both the Direct and FH CIs are 90% confidence interval estimates calculated as Zir +
1.6454/ mse(Zir), while the ZOIB Cls are Bayesian equal-tail 90% credible intervals
formed by taking the 5 and 95" percentiles of the MCMC draws for each Zir.

Two other issues arose with the particular set of replicate samples drawn during this
analysis:

e For the Direct estimates, mse(Zir) is treated as undefined when there were no poor
children in that sample for that county. (This occurred at least once in 77 of the 100
counties. Only a quarter of the counties had more than 15 replicates with no poor
children; the county with the maximum had 56 no-poor-child replicates.) Therefore,
for each county’s Direct estimates, Biasyic(mse(Z;)) is estimated only from the
replicates with poor in the sample; the remaining replicates are dropped and the
denominator is reduced appropriately from R to the number of replicates actually
used.

e None of the counties happened to have a replicate sample in which all sampled chil-
dren were in poverty. Therefore, the data was unsuitable for the full ZOIB model.
Instead, a restricted version was used, by setting pgl) = ( for all 7. This could be
termed a zero-inflated beta (ZIB) model, but we continue to use the term “ZOIB” in
the evaluations below since they do not rely on this particular aspect of the model.
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4.2 Experimental Design

In summary: The pseudo population has 100 areas (counties). We create 100 replicate sub-
sample datasets, each containing a subsample from each of the hundred counties. Taking
each of the 100 replicate datasets one at a time, we estimate each county’s poverty rate and
its mse using all three estimators: Direct, FH, and ZOIB. Thus we have 100 replicates
100 counties * 2 estimates * 3 estimators, as well as 100 true poverty rates (one per county)
calculated directly from the pseudo population. Then:

e In Section 5.1 we look at the distribution of Direct estimates across replicates, within
each county, to check the sampling models; and we look at the distribution of true
values across counties (no replicates involved) to check the linking models.

e In Section 5.2 we aggregate the information across replicates to compute the 5 met-
rics (from Equation 2) for each county and each estimator (Direct, FH, ZOIB), lead-
ing to 100 counties * 3 estimators * 5 metrics.

5. Results

This section presents the results of the simulation study set up in Section 4. Subsection 5.1
describes our checks on the assumptions for the FH and ZOIB models. Section 5.2 evalu-
ates the calibration of all three estimators: Direct, FH, and ZOIB.

5.1 Internal checks

We used several checks for internal consistency to evaluate whether each model’s assump-
tions hold.

Firstly, are the sampling models appropriate, at least for the non-zero estimates? For the
FH model, are the sample log count estimates approximately Normal around the true log
poverty counts? For the ZOIB model, are the sample poverty rate estimates approximately
Beta-distributed around the true poverty rates?

Secondly, are the linking models appropriate? Are the true log counts (for the FH
model) or the logits of the true rates (for the ZOIB model) approximately Normal with
constant variance, around a regression line with the given predictor variables? (Note that
under the complicated structure of the ZOIB model, the true poverty rates are not really
the same as the mean of the Beta distribution. However, treating them as if they were is a
reasonable start for diagnostic model-checking purposes.)

The FH sampling-model check is straightforward. For each county, take all 100 sam-
ples; subtract off the true pseudo population log count; divide by the MC standard error
across the 100 samples; and see if these residuals look approximately N (0, 1). The ZOIB
sampling-model check is a bit more complicated. For data from a Beta distribution, neither
the residuals nor the standardized residuals are necessarily expected to look approximately
Normal. However, Espinheira et al. (2008) suggest that Beta residuals should be more
approximately Normal on the logit scale than on the rate scale; the logit scale is also more
appropriate for detecting outliers. Figure 1 illustrates this approach by comparing the sam-
ple densities for standardized log-count and logit-rate residuals to the standard Normal
density, for two example counties. (These are the best- and worst-fitting county, according
to p-values from Kolmogorov-Smirnov tests on the standardized log-count residuals, as de-
scribed below.) Both assumed sampling distributions are clearly appropriate for one county
but not for the other.

However, plotting every county’s distribution of residuals would be difficult to review
succinctly. Instead, we summarize the p-values from performing a Kolmogorov-Smirnov
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Figure 1: Two sample densities compared to N(0,1)
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Source: Simulated from U.S. Census Bureau, American Community Survey data, 2010

(KS) test of normality on each county’s across-samples set of residuals. For the FH model,
we test whether log-counts are approximately Normal. For the ZOIB model, we test
whether rates are approximately Beta, and also (following Espinheira et al. 2008) whether
logit-rates are approximately Normal. (We use the KS test, rather than Lilliefors test, in
order to allow comparisons to the Beta distribution as well as the Normal.)

For the Normal comparisons, we take each county’s samples’ log-count and logit-rate
estimates; subtract off the true values; divide by the MC estimates of the standard errors
of these residuals; and perform KS tests on these standardized residuals. (For each county,
the samples with a poverty estimate of O are removed before running the KS tests, since the
resulting log-counts and logit-rates would be undefined.)

For the Beta comparisons, we take each county’s samples’ rate estimates; find the MC
estimate of their variance; transform this and the true rate into parameters of the target Beta
distribution; and perform KS tests on the rates using these Beta parameters.

This leads to one hundred KS tests (one per county) each on the log-counts, logit-rates,
and rates. Using a critical level of a = 0.05, 31 of those hundred counties’ tests reject the
null of N (0, 1) for the standardized log-count residuals; 23 reject the null of N (0, 1) for the
standarized logit-rate residuals; and 38 reject the null of an appropriate Beta distribution
for the rates. In other words, most of the counties fail to reject the proposed sampling
distribution under each approach.

Since many of the p-values are near the critical level, Figure 2 illustrates how many
counties’ p-values fall into ranges of clearly rejecting the null (p < .01), clearly failing to
reject (p > .1), or in between. The differences in numbers failing to reject are not dramatic,
so there is no conclusive evidence whether the ZOIB or FH sampling models are more
appropriate.
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Figure 2: KS test p-values

Frequency of KS test p-values in several ranges,
on tests of standardized residuals for each sampling model
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Source: Simulated from U.S. Census Bureau, American Community Survey data, 2010

The FH and ZOIB linking model checks are simpler. We take the true log counts and
the logits of the true rates for each county, regress each variable against the three main X
predictors, and look for heteroscedasticity in the residuals. None of the true counts are 0 in
this pseudo population, so we do not have to omit any data in these linking-model checks.

See Figure 3 A and C for the plots of truth-data residuals vs fitted values, and Figure 3
B and D for QQ plots of these residuals.

The ZOIB model residuals show a nonlinear relationship with the fitted values, so per-
haps adding quadratic or interaction terms could improve the predictions. The FH model
residuals show no association between their mean and the fitted values; but their variance
does appear to increase with the fitted values, so perhaps the assumption of constant model
error is not satisfied. The QQ plots for both show some major deviations from normality in
the largest residuals.

5.2 External checks

We summarize (as a distribution across the 100 counties) the estimates of Biasyic(Z;) and
Biasyc(mse(Z;)) under each approach: Direct, FH, and ZOIB estimates. We also consider
the Variance, MSE, and CI coverage of the point estimates.

First, Figure 4A presents boxplots of BiasMc(Zi) for each county, grouped by estima-
tor. The average bias of the Direct estimates is negligible for most counties, as expected.
(This is also a good sign that the survey weighting process is being carried out correctly
for our sampling scheme.) The ZOIB estimates also tend to have a small average bias, al-
though some counties have a slightly larger bias than seen in any Direct estimate. The FH

estimates, however, tend to be biased upwards, overestimating the true poverty rates. Their
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Figure 3: Residuals vs fitted values, with LOESS curves (A,C)
and QQ plots of residuals (B,D)
for ZOIB (A,B) and FH (C,D) models
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bias is not very large for most counties, but there are a few extreme outliers, particularly
county 06075. (This county had the most negative residual in the linking model, leading
to overestimates in the regression; and it had a high number of replicate samples with no
poor children in sample, which occurred 55 times in this county. Thus it is not surprising
that the poor regression fit, combined with frequent lack of shrinkage toward the direct
estimate, leads to the most extreme Bias, Variance, and MSE, as well as the worst mse
underestimates.)

The lack of extreme average biases among ZOIB estimates suggests that the ZOIB
estimates tend to account for the information from Os much better than the FH model (which
just drops those counties from the model-fitting process entirely). Nugent and Hawala
(2012) are developing a left-censored FH model that may help the FH approach to better
account for these Os in the data.

Besides looking at the average bias of the point estimates, we also consider VarMc(Zi)
and MSEMC(Z), and how these vary across counties. These are shown in Figure 4B and
C (with a square-root transformation on each Variance or MSE so that the high outliers do
not compress the rest of the boxplots too much). We see that the Direct point estimates
tend to have the highest Variances; the FH point estimates tend to be less variable, except
for a few outlying counties; and the ZOIB point estimates tend to be least variable of all.
The clear reduction in Variance from Direct to FH in Figure 4B is as expected; however,
Figure 4C shows that the high FH average biases (seen in Figure 4A) contribute to many
counties with high MSEs of their FH point estimates. This appears to cancel out the FH
model’s benefit of reduced Variance compared to Direct estimates. The ZOIB model point
estimates, however, tend to have lower MSEs than either Direct or FH.

Next, we move on from point estimates and look at Biasyic(mse(Z;)) under each
model. These are shown in Figure 4D. Both the Direct and ZOIB estimates of mse have a
small negative average bias in every county. For the FH estimates of mse, most counties
have a small negative average bias, but a few do have a positive average bias, and there
is one extreme negative outlier. In other words, all three approaches tend to lead to un-
derestimates of mse in most counties, but only the FH model has a county with a severe
underestimate of mse. (However, as noted above, the Direct estimates here are based on

dropping the undefined mse(Z;) estimates for replicates where there were no poor in sam-
ple. Future work will address this by using an alternative estimator of mse(Zi) for such
replicates.)

Finally, we also check the coverage rates Coveragenic (ZAl) for 90% confidence or cred-
ible intervals (Cls): how often do each model’s Cls cover the true value of the poverty rate?
These are displayed in Figure 4E. In most counties, the Direct CIs have lower coverage
than nominal: the 3"¢ quartile of coverages is lower than the target of 0.90. On the other
hand, the FH and ZOIB ClIs for most counties have higher than nominal coverage. How-
ever, the FH counties with the lowest CI coverages (around 0.2 to 0.5) are much worse than
the lowest Direct or ZOIB coverages (around 0.6). The conservative over-coverage of the
ZOIB ClIs is probably safer than the under-coverage of the Direct Cls, and the outliers are
not as bad under ZOIB as under FH.

The lower-than-nominal Direct coverage makes sense: the point estimates are approx-
imately unbiased but the mse estimates tend to be low, so the Cls tend to be too narrow,
leading to lower coverage than expected. The higher-than-nominal coverage for FH is also
reasonable: these Cls are constructed using mse estimates, not variances, so the Cls will
be wider than necessary. Finally, the ZOIB CIs are equal-tail Bayesian credible intervals
constructed directly from the MCMC draws rather than by help of the point and mse esti-
mates, so the biases of the point and mse estimates cannot tell us directly why the ZOIB CI
coverage tends to be too high.
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6. Conclusion

The results of Subsections 5.1 and 5.2 suggest that, for this pseudo population, the ZOIB
sampling and linking models appear to be no less appropriate than their FH counterparts.
The ZOIB model also outperforms the FH model with regards to bias, MSE, and CI cover-
age.

While the Direct point and mse estimates show the least bias, the ZOIB results are
barely worse; and ZOIB point estimates have the lowest MSEs and best CI coverage of the
three estimators. Thus, ZOIB appears to outperform the FH model, at least on these samples
and this pseudo population. (Future work will continue these tests on a more sophisticated
pseudo population and with more replicates.) ZOIB’s ability to handle O estimates is also a
clear benefit over Direct estimation for such small areas.

However, it is important to note that the FH model performs far better on the real
SAIPE data than in this paper’s illustrations. Here, Os are more common and there are no
large reliable counties, thus preventing the FH model from borrowing strength as much as
it does on the full ACS dataset. The results here should not be taken to show that the FH
model is unreliable, only that the ZOIB model may be an improvement in certain ways.

7. Future Research

Subsection 5.1 suggests some directions for improvement to each of the linking models,
and perhaps the sampling models as well. Fixing the issues highlighted by those diag-

nostics may affect the results of subsection 5.2 as well. There is also a need to improve
(0)

the diagnostics themselves, particularly for checking whether the ZOIB p;
modeled well.

The present work ignores raking or benchmarking, which is part of current SAIPE
practice. Further work should assess the effect of benchmarking to state estimates as well
as the value of using alternative regressors.

Also, further work could incorporate spatial information (neighboring counties, etc.).
Spatial models are able to predict random effects even for counties with no sample, which

is not possible under the current non-spatial models.

and pgl) are

REFERENCES

Bauder, M., Luery, D., and Szelepka, S. (2012), “Small Area Estimation of Health Insurance Coverage in 2008
and 2009,” U.S. Census Bureau technical report,
http://www.census.gov/did/www/sahie/methods/20082009/files/sahie_20082009_technical_methodology.pdf

Espinheira, P.L., Ferrari, S.L.P., and Cribari-Neto, F. (2008), “On beta regression residuals,” Journal of Applied
Statistics, vol.35, no.4, pp.407-419.

Fay, R.E. and Herriot, R.A. (1979), “Estimates of income for small places: an application of James-Stein
procedures to census data,” Journal of the American Statistical Association, vol.74, pp.269-277.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004), Bayesian Data Analysis, Boca Raton: Chapman &
Hall.

Hawala, S., and Lahiri, P. (2010), “Variance Modeling in the U.S. Small Area Income and Poverty Estimates
Program for the American Community Survey,” Proceedings of the American Statistical Association, Sec-
tion on Bayesian Statistical Science, Section on Survey Research Methods, Alexandria, VA: American
Statistical Association.

Hawala, S., and Lahiri, P. (2012), “A Hierarchical Bayes Estimation of Poverty Rates,” Proceedings of the
American Statistical Association, Section on Survey Research Methods, Alexandria, VA: American Statis-
tical Association. Forthcoming.

Huang, E.T. and Bell, W.R. (2009), “A Simulation Study of the Distribution of Fays Successive Difference
Replication Variance Estimator,” Proceedings of the American Statistical Association, Survey Research
Methods Section, Alexandria, VA: American Statistical Association.

3909



Section on Survey Research Methods — JSM 2012

Little, R.J. (2006), “Calibrated Bayes: A Bayes/Frequentist Roadmap,” The American Statistician, vol.60, nr.3,
pp.213-223.

Liu, B., Lahiri, P., and Kalton, G. (2007), “Hierarchical Bayes Modeling of Survey-Weighted Small Area
Proportions,” Proceedings of the American Statistical Association, Section on Survey Research Methods,
Alexandria, VA: American Statistical Association.

Nugent, C., and Hawala, S. (2012), “Research and Development for Methods of Estimating Poverty for School-
Age Children,” Proceedings of the American Statistical Association, Section on Survey Research Methods,
Alexandria, VA: American Statistical Association. Forthcoming.

Ospina, R., and Ferrari, S.L.P. (2010), “Inflated beta distributions,” Statistical Papers, 51, 1, pp.111-126.

Pfeffermann, D., Terryn, B., and Moura, F.A.S. (2008), “Small area estimation under a two-part random effects
model with application to estimation of literacy in developing countries,” Survey Methodology, 34, (2),
pp-235-249.

Plummer, Martyn (2003), “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sam-
pling,” Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003),
March 2022, Vienna, Austria.

R Development Core Team (2012), “R: A Language and Environment for Statistical Computing,” http://www.R-
project.org, R Foundation for Statistical Computing, Vienna, Austria.

SAS Institute (2008), Version 9.2 of the SAS System for Unix. Cary, NC, USA: SAS Institute Inc.

Slud, E., and Maiti, T. (2006), “Mean-squared error estimation in transformed Fay-Herriot models,” Journal of
the Royal Statistical Society B, 68, Part 2, pp.239257.

U.S. Census Bureau (2009), “Design and Methodology: American Community Survey,” Washington, DC: U.S.
Government Printing Office.

U.S. Census Bureau (2010), “2006 - 2009 County-Level Estimation Details,” last modified December 8, 2010,
http://www.census.gov/did/www/saipe/methods/statecounty/20062009county.html

U.S. Census Bureau (2011), “Information about Data Inputs,” last modified November 29, 2011,
http://www.census.gov/did/www/saipe/data/model/info/index.html

U.S. Census Bureau (2012), “How the Census Bureau Measures Poverty,” last modified September 12, 2012,
http://www.census.gov/hhes/www/poverty/about/overview/measure.html

Wieczorek, J. (2012), “ACS-like subsampling from a pseudo population.” Forthcoming technical report,
http://www.census.gov/did/www/saipe/publications/techpubs.html

Wieczorek, J. and Hawala, S. (2011), “A Bayesian Zero-One Inflated Beta Model for Estimating Poverty in
U.S. Counties,” Proceedings of the American Statistical Association, Section on Survey Research Methods,
Alexandria, VA: American Statistical Association.

3910



