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Abstract 
The National Crime Victimization Survey (NCVS) has provided annual estimates of the 
number of victimizations for several types of crime since 1972, with an almost exclusive 
focus on national rates. Most of the programs to prevent or reduce crime are implemented 
locally, however. To respond to a resulting interest in subnational statistics, the Bureau of 
Justice Statistics (BJS) has been recently supporting research on a variety of approaches 
to produce subnational estimates. In this paper, we report on the potential application of 
model-based small area estimation methods based on the NCVS and auxiliary data, 
particularly the FBI’s Uniform Crime Reports, using empirical best linear unbiased 
estimation (EBLUP). We compare a time-series model introduced by Rao and Yu to a 
new variant, termed here the dynamic model. We will also indicate how the small area 
approach might be integrated with other approaches that BJS is currently considering, 
including possible expansion of the NCVS sample size to augment the survey’s capacity 
to produce direct estimates for some or all states. 
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1. Introduction 
 
Since 1972, the National Crime Survey (NCS) and its 1992 successor, the National Crime 
Victimization Survey (NCVS), have provided annual estimates of the frequency and 
consequences of crime as reported by the victims of crime. The NCVS is based on a 
national household sample interviewed by the Census Bureau under the protection of 
census confidentiality, on behalf of the Bureau of Justice Statistics. With a relatively 
small number of exceptions, the emphasis has been on publishing national estimates 
rather than subnational estimates for governmental units such as states. Microdata files 
available from the survey have limited geographic information; for example, they have 
never included state identifiers. In part, the limited NCVS sample size has reinforced this 
emphasis on national estimates. 
  
Since 1930, the FBI has been the other major source of U.S. crime statistics through its 
Uniform Crime Report (UCR) Program (Barnett-Ryan, 2007). Law enforcement agencies 
report counts of crimes by type, which are then published both in disaggregated form and 
summarized to higher geographic levels, including state and national levels. More 
recently, some jurisdictions now participate in the NIBRS system, which records detailed 
information for each reported incident. Jurisdictions participating in NIBRS submit to the 
UCR by aggregating NIBRS data.  
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By its very nature, the UCR can only reflect crimes reported to the police, a shortcoming 
that the NCVS addresses. Among other limitations of the UCR are: incomplete coverage, 
irregular reporting by participating agencies, and possible differences in local 
interpretations of the UCR’s categories of crimes. Although now more than 18,000 law 
enforcement agencies participate in the system, covering approximately 97.4% of the 
population in 2010 (FBI, http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-
u.s/2010/crime-in-the-u.s.-2010 /aboutucrmain, downloaded 9 May 2012), undercoverage 
has been a serious issue until recently. Additionally, some agencies, although 
participating, may submit only partial reports during the year, creating additional 
problems of missing data (Maltz, 2007). To prepare national and state estimates, the FBI 
imputes for missing data, but it does not release the imputations at the level of the 
individual law enforcement agency. Although the overall design of the UCR includes the 
intent to classify crimes according to standard definitions, variation in state statutes and 
practice may affect classification of crimes by law enforcement personnel. 
 
A previous paper (Li, Diallo, and Fay, 2012) outlined an initial analysis of the potential to 
develop small area estimates (e.g., Rao, 2003) based on the NCVS, particularly for states. 
The next section summarizes the findings from that paper. In short, however, we 
concluded that evidence from both the UCR and the NCVS favored building on the 
strong correlations across time in the crime rates by state. A specific approach proposed 
by Rao and Yu (1992, 1994) appeared to be the best candidate.  
 
The third section of this paper describes Rao-Yu model further. Rao and Yu (1992, 1994) 
provided a method-of-moments estimator for their model; Rao (2003) presents this 
estimation approach for the model but cautions about the challenges of implementing it in 
practice. After encountering similar difficulties, we found that estimating the model 
through maximum likelihood is far more promising. The section also proposes a variant 
of this model, termed here the dynamic model, which offers distinct advantages over the 
Rao-Yu model in some situations. 
 
The fourth section reports an empirical comparison of the Rao-Yu and dynamic models. 
Although we have chosen not to report on our ongoing work with the confidential NCVS 
data in this paper, instead we compare the fits of the Rao-Yu and dynamic models to the 
state-level UCR data, which is readily available on the FBI’s web site. We find better 
results with the dynamic model, even though the improvements over the Rao-Yu model 
are comparatively modest, considering the large size of the underlying UCR data sets. 
The empirical findings do not rule out the potential usefulness of the Rao-Yu model to 
other applications, but they do establish the dynamic model as a promising competitor to 
the Rao-Yu model. 
 
A fifth section presents our results on MSE estimation for the dynamic model, and it is 
followed by one presenting a small simulation study. The concluding section summarizes 
the findings and identifies future directions. 
 

2. A Data-Driven Approach to the Small Area Strategy 
 
A previous paper (Li, Diallo, and Fay, 2012) reported efforts to identify auxiliary data 
useful for state-level small area estimation based on the NCVS. In spite of differences 
between the UCR and NCVS measurement of crime, which have been extensively 
studied (e.g., Lynch and Addington, 2007), the considerable overlap between UCR and 
NCVS concepts led us to select the UCR as the most obvious initial source for auxiliary 
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data. With the exception of simple assault, the major categories of violent crime 
measured by the NCVS—rape and sexual assault, robbery, and aggravated assault—have 
corresponding statistics reported in the UCR. Similarly, the major types of property crime 
in the NCVS—automobile theft, burglary, and theft—can be aligned with corresponding 
measures in the UCR. 
 
At the state level, the various major UCR components of crime rates present quite 
different, rather than generally similar, patterns of geographic distribution (Li, Diallo, and 
Fay, 2012). For example, several states that are relatively high in the incidence of robbery 
are low on forcible rape. On the other hand, for any given type of crime, the relative 
ranking of the states appears quite stable over time. Fig. 1 illustrates this temporal 
stability. 
 

 
Figure. 1: Comparison of UCR state-level rates for components of violent crime for 
1998-2000 and for 2008-2010. The District of Columbia is omitted from the comparisons 
because of high rates for robbery and murder. A line with slope 1 through the origin is 
shown, and the extent to which states fall generally below the line is consistent with the 
national drop in crime during this period. (From Li, Diallo, and Fay, 2012). 
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Although the UCR might be an imperfect proxy for the expected values of the state crime 
rates as measured by the NCVS, the strong stability across time in the UCR suggests that 
small area models for the NCVS should be able to incorporate time-series information. 
Li, Diallo, and Fay (2012) provided additional graphical evidence of temporal stability in 
the UCR. 
 
The sample design of the NCVS is also a consideration in developing the modeling 
strategy. The NCVS has a multi-stage, rotating panel design. Sampled housing units are 
included for 7 interviews, spaced 6 months apart. With few exceptions, all persons age 12 
and over are eligible for self-response about personal crime, including violent crime (that 
is, simple or aggravated assault, robbery, and rape and sexual assault). A household 
respondent reports for property crime (theft, motor vehicle theft, and burglary). The 
sample size of the NCVS has varied somewhat, going through a period of slow decline 
until a recent increase. In 2010, 40,974 households and 73,283 persons responded 
(Truman, 2011). The panel design and the use of the same first-stage sample of primary 
sampling units during the decade between sample redesigns produce sampling 
covariances between years that must be taken into account. 
 
For our small area research, we worked with the Census Bureau’s internal files to model 
the sampling variances and covariances for each type of crime. Although we will not use 
the results in the rest of the paper, we will briefly describe here the model to indicate the 
role of covariance across time in our small area estimation effort. We estimated design-
based variance-covariance matrices for the each type of crime for 1997-2004 and 2006-
2010 for self-representing (SR) and non-self-representing (NSR) areas separately. 
(Because of the sample redesign, the variance estimation codes changed between 2004 
and 2005, leading us to consider two time periods rather than a single long one. We also 
excluded 2005 in computing average correlations because of additional changes in the 
assignment of variance estimation codes between 2005 and 2006.) We derived averaged 
correlation coefficients for 1-year time lags, 2-year time lags, etc., again separately for 
SR and NSR. The correlations between years are appreciably higher in NSR areas due to 
the first-stage selection of NSR counties, a selection that remains fixed between redesigns 
each decade. (Similar calculations can be performed for the national estimates with the 
public use files for the NCVS. The internal files allowed us to distinguish between SR 
and NSR areas.) For each state, we estimated the expected sample size and the expected 
proportion of the population that would fall in SR areas, using the public model of the 
design described by Fay and Li (2012). We then combined the estimated variances for the 
national rates for each year, the proportion SR, the averaged correlations for SR and NSR 
areas, and the expected sample size to produce a modeled variance-covariance matrix for 
each state. 
 

3. Statistical Methods 
 
In his summary of the field of small area estimation, Rao (2003) broadly distinguished 
between area-level models and unit-level models. In area-level models, the unit of 
analysis is the set of individual areas for which estimates are desired. In unit-level 
models, modeling occurs at the level of measurement, such as the individual, and small 
area estimates are produced by aggregating the available direct observations with the 
predicted values under the model for the unobserved units. Some researchers have 
developed various area-level models that feature time series aspects to incorporate survey 
information across time, an approach seemingly appropriate to the NCVS application. 
For one such approach, Rao and Yu (1992, 1994) proposed an extension to the Fay-
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Herriot model (1979). Both models assume the standard relationship between a sample 
estimate, ity , for area i and time t, and its expected population value, itθ ,   
 
 it it ity eθ= +  (3.1) 

 
for i=1,…,m,  t=1,…,T, where the normally distributed error terms T

iTii eee ),...,( 1= are 

assumed to have mean zero and covariance i∑ , which is assumed known. The error 
terms are assumed independent between areas. Rao and Yu proposed the following model 
for the underlying population: 
 
 T

it it i ituθ ν= + +x β  (3.2) 
 
with 
 , 1it i t itu uρ ε−= +  (3.3) 

            
where 
 

 T
itpitit xx ),...,( 1=x is the vector of auxiliary variables for area i at time t, 

 β  is a vector of regression coefficients,  
 ),0(~ 2

νσν Ni  for i=1,…,m are iid random effects, representing time-independent 
differences among areas, and  
 2~ (0, )it Nε σ are iid random variables, which induce variability in the series itu  
t=1,…T. 

 
Rao and Yu considered the case of  | | 1ρ <  and assumed stationarity for the series in 
(3.3). In turn, this assumption implies for all i and t: 
 
 2 2( ) / (1 )itVar u σ ρ= −  (3.4) 

 
When 1ρ = , (3.3) represents a random walk, but only by dropping the stationarity 
assumption (3.4). Thus, there is a discontinuity in the model at 1ρ = . 
 
Assuming first that ,, 22

vσσ  and ρ are known, the best linear unbiased predictor (BLUP) 
for area i at time T is 
  
 2 2 2 2 1( ) ( ) ( )T T

iT iT v T T i v T i iθ σ σ σ σ −= + + + + −x β 1 γ Σ Γ J y X β% % %  (3.5) 
where  
 
Γ  is a T ×  T  matrix with elements )1/( 2|| ρρ −− ji , 

TJ  is a T ×  T  matrix with elements = 1, 
2 2 ( )i i v T iCovσ σ= + + =V Σ Γ J y , 

)()( yVV Covdiag ii == , 
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1 1 1( )T T− − −=β X V X X V y% is the generalized least-squares estimator of β , and 

Tγ is the T th column of Γ . 
 
Under this approach, the small area estimates are given by the empirical best linear 
unbiased predictor (EBLUP), based on estimating 2 2, , andvσ σ ρ  in (3.4). Rao (2003, pp. 
159) summarized the previous efforts of Rao and Yu (1994) to estimate the parameters, 
building on earlier work in econometrics. When ρ  is known, they reported satisfactory 
behavior using a method of moments approach to derive closed form estimates for 

2 2andvσ σ . They discussed a method of moments estimator for ρ  from the same 
literature, but they found its performance to be poor—in fact extremely so in the presence 
of sampling error. They suggested instead trying to obtain an estimate of ρ  from an 
external source. We similarly encountered poor performance of their suggested estimator 
of ρ  in our initial attempts to use it. 
 
We appeared to confront several challenges in using the Rao-Yu model for NCVS state 
estimates. Although our earlier paper suggested the UCR as a possible source for ρ , we 
preferred to be able to estimate this parameter from the NCVS data. We observed that 
when ρ is high in the Rao-Yu model, such as ρ  > .8, separating the estimation for 

2 2andvσ σ in the presence of sampling error becomes increasingly challenging compared 
to moderate ρ , such as ρ  = .4. We were also concerned about the stability of the method 
of moments approach when Var( ite ) varied widely from state to state.  
 
These concerns motivated an alternative model, which we term the dynamic model, 
drawing a parallel to some models in mathematical biology (e.g., Murray, 2002). The 
dynamic model is based on the same sampling model (3.1), but in place of (3.2) and 
(3.3), we considered instead    
  

 

, 1

1 * *

*
1
* *

0

for 1
i t

T t
it it i it

i

it it

u

u

u u t

θ ρ ν

ρ ε
−

−= + +

=

= + >

x β

 (3.6) 

              
 

where * 2
*~ (0, )i N νν σ for i=1,…,m are iid random effects for areas at time t = 1, and itε  

and 2σ  are the same as in (3.3). In the new model, 
   
 , 1 , 1( )T T

it it i t i t itθ ρ θ ε− −= + − +x β x β  (3.7) 
 
which shows that the role of ρ  is somewhat different in (3.6) than in (3.3). Unlike the 
Rao-Yu model, which assumes stationarity (3.4) for | | 1ρ < , the dynamic model does not 
assume stationarity, does not constrain ρ  to be less than 1, and avoids a discontinuity at 

1ρ = . In fact values greater than 1 can reflect systematically increasing divergence, a 
phenomenon called “Matthew effects” in some literatures.  
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When 2 2
*, vσ σ and ρ are known, the BLUP for this model is 

  
 2 2 1

, * * , *( ) ( )T T
iT iT T u v T v i i iVθ σ σ −= + + −x β γ γ y X β% % %  (3.8) 

where  
 

*uΓ  is a T ×  T  symmetric matrix with elements: 
 

*(1, )
1

( ) (2 ' 2)
*( , )

' 1

0

for 1

u j
i

j i i
u i j

i
i jρ ρ

−
− −

=

Γ =

Γ = < ≤∑
 

*vΓ  is a T ×  T  symmetric matrix with elements ( 2)i jρ + − , 
2 2

* * * ( )i i u v v iCovσ σ= + + Γ =V Σ Γ y , 
)()( yVV Covdiag ii == , 

yVXXVXβ 111 )(~ −−−= TT is the generalized least-squares estimator of β , 

, *T uγ is the T th column of *uΓ , and 

, *T vγ is the T th column of *vΓ . 
 
Rao (2003, section 6.2.4) describes how to implement maximum likelihood estimation 
(MLE) and restricted maximum likelihood estimation (REML) for the general area-level 
mixed model. His description is generally sufficient to describe an iterative Newton-
Ralphson algorithm to obtain the EBLUP for the dynamic model for either estimation 
method. A complicating issue is that the parameters �= (��∗�, ��, �)  are subject to the 
constraints ��∗� ≥ 0  and  �� ≥ 0, but the Newton-Ralphson algorithm can be modified to 
respect these constraints. We have implemented both the MLE and REML versions in R. 
 
The Rao-Yu model is equivalent to the dynamic model when (1) 2

vσ = 0 in (3.2) for the 

Rao-Yu model, (2) 1ρ < , (3) the series (3.3) is stationary, and (4) 2 2 2
* / (1 )vσ σ ρ= − in 

the dynamic model. When 2
vσ > 0 in (3.2) for the Rao-Yu model, however, the two 

models are not in general equivalent.  
 
In fact, the Rao-Yu model has been previously fitted by another researcher through MLE 
(J.N.K. Rao, personal communication). The use of Newton-Ralphson in this case requires 
a bit more care because the parameters �= (���, ��, �)  require a third constraint 
|�|   < 1, but we have successfully implemented an algorithm for the MLE of the Rao-Yu 
model in R. 
 

4. Comparison of the Rao-Yu and Dynamic Models 
 
Because neither the Rao-Yu model nor the dynamic model is a special case of the other, 
we created a superordinate model with random effect terms from both, so that each model 
was a special case of the superordinate model. We applied the superordinate model to the 
UCR data to assess the relative performance of the Rao-Yu and dynamic models to the 
overall fit. 
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The superordinate model is of the form  
 

 

1 * *

*
1
*

, 1

0

for 1

T t
it it i i it

i

it i t it

v u

u

u u t

θ ρ ν

ρ ε

−

−

= + + +

=

= + >

x β

 (4.1) 

 
where  2~ (0, )i N νν σ  and  * 2

*~ (0, )i N νν σ for i=1,…,m are each mutually independent 
sets of iid random effects for areas. Model (4.1) holds if either (3.2) or (3.6) holds, but 
(4.1) allows for an optimum combination of the two sets of random effects. For high ρ , 
the parameters of the superordinate model are unstable, particularly because of the 
identifiability problem at 1ρ = . 
 
Even though the UCR data are aggregate totals, we attributed Poisson variance to the 
observed counts. We computed the log-likelihood for the maximum-likelihood estimates 
for the Rao-Yu and dynamic models separately. For each of the UCR types of crime, the 
log-likelihood for the dynamic model consistently exceeds the log-likelihood for the Rao-
Yu model.  
 
We used the increase in the log-likelihood from either separate model to the 
superordinate model as a measure of the increased improvement in fit due to including 
the features of the other model. Large increases indicate that the initially omitted model 
represents an improvement, whereas no increase or small increases indicate that the 
initial model is adequate. We carried out the analysis for all of the states with DC 
included, and without DC. The results are presented in Table 1.  
 

Table 1: Comparison of Improvements in the Log-Likelihood of the Superordinate 
Model Relative to the Dynamic or Rao-Yu Models, UCR 1997-2010 

 
 Dynamic model Rao-Yu model 
States and DC ρ̂  ( )loglkhd∆  ρ̂  ( )loglklhd∆  
  Aggravated assault .950 0.85 .990a 30.99 
  Robbery .976 17.13 .990a 46.33 
  Forcible rape .968 0.00 .981   1.69 
  Larceny  .926 0.00 .979 26.66 
  Burglary .971 6.39 .987 10.12 
  Motor vehicle theft .949 0.00 .976   9.07 
States without DC     
  Aggravated assault .954 1.14 .989 19.89 
  Robbery .944 0.99 .990a 40.13 
  Forcible rape .969 0.00 .982   1.73 
  Larceny  .929 0.00 .979 23.76 
  Burglary .974 4.07 .988   6.83 
  Motor vehicle theft .937 0.00 .969 10.72 
Note: a The algorithm constrained rho for the Rao-Yu model to a maximum of .990 in each 
iteration.  
 
The superordinate model appreciably improves the log-likelihood for the dynamic model 
only for robbery and burglary when DC is included, and only for burglary when DC is 
omitted. In other words, almost all of the fit of the superordinate model can be attributed 
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to the dynamic model. On the other hand, the superordinate model improves the Rao-Yu 
model by significant amounts. (Without the effect of the boundary constraints on the 
parameters, twice these differences in log-likelihoods could be interpreted as likelihood-
ratio chi-square statistics on one degree of freedom, but their behavior in the presence of 
boundary constraints is less straight-forward.) 
 
To put these results in perspective, however, these differences in log-likelihood are 
relatively modest compared to the scale of the UCR. The results establish a basis to apply 
the dynamic model to the NCVS, but do not suggest particularly adverse consequences if 
the Rao-Yu model had been employed instead. Although we have identified some 
potentially attractive features of the dynamic model, the practical differences with the 
Rao-Yu model may be more subtle than substantial. Because of their appreciable 
sampling variances, we do not expect the NCVS data by themselves to provide a firm 
basis to select one model over the other. 
  

5. Mean Square Error (MSE) Estimation for the Dynamic Model 
 
The Rao-Yu model and the dynamic model are closely related instances of the much 
wider class of general mixed models. In chapter 6 of his book, Rao (2003) traces 
connections between the theory for the general mixed model and many small area 
applications. In general, MSE estimates depend on the values of parameters that typically 
must be estimated. For example, the parameters of the dynamic model are �= (��∗�, ��,
�). Rao’s development of the MSE progresses from (1) the MSE of the best linear 
unbiased estimator (BLUP) when the true values of the parameters are known but the 
fixed and random effects are estimated, to (2) the MSE of the empirical BLUP (EBLUP) 
when the parameters are estimated (e.g., by REML) but assumed known, to (3) 
estimation of the MSE for the EBLUP without prior knowledge of the parameters. In this 
section, we follow this general outline for the dynamic model. 
 
Following Rao’s notation, a general linear mixed model for the sample data may be 
written 

�= ��+��+� 
 
where � and Z are known �  × � and �  × ℎ  matrices of full rank, v and e are 
independently distributed with means 0 and covariance matrices G and R depending on 
variance parameters �. The variance of y is thus Var(y) = V = V(δ) = �+ ����. The 
theory for the general linear mixed model is developed for any linear estimate of the form 
 

�= ���+ ���. 
 
For the dynamic model, n =  �  × �, where T  is the number of years and m   is the 
number of areas. Because the covariance matrices G and R each have block diagonal form 
when arranged by area, most expressions can be stated for each area � separately. The 
random effects for each area can be expressed as vi  = (���∗ +���∗ ,���∗ + ���∗ , … ,���∗ +
 ���∗ )�, with ��= ��,  and 
  

��=  ��(�) = ��∗���∗(�) +����∗(�). 
 
The general expression for the BLUP is 
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���= ����+����=  ����+ ����������−����. 
 
The BLUP from (3.8) can be written in this form as:  
 

����= �����+ �����= ������+ ������������(��−����) 
 
where ���= (0, … ,0,1) with 1 in the Tth position. The other quantities are defined as in 
equation (3.8).  
 
5.1 MSE of the BLUP 
Assuming that the variance components,  �= (��∗�,��,�), are known, the MSE of the 
BLUP is:  
 
 ��������(�)�= ����(�) + ����(�)   (5.1) 
where  

����(�) = ������−����������������
= ��(���)��∗� + � ��(���)���

���
��

−���∗���,�∗ + ����,�∗���������∗���,�∗ + ����,�∗� 
 
with ��∗ and ��∗ being respectively the Tth column of the matrices ��∗ and ��∗, and 
 

����(�) = ����� ���������
�

���
�
��
�� 

where  
���= ���� −������ 

���= ������������= ���∗���,�∗ + ����,�∗������ 
Thus,  
 

����(�) = ������ ���������
�

���
�
��
���

+���∗���,�∗ + ����,�∗����������� ���������
�

���
�
��
���������∗���,�∗

+����,�∗�−����∗���,�∗ +����,�∗����������� ���������
�

���
�
��
��� 

 
The term ����(�) accounts for the variability in the estimation of �.  
 
5.2 MSE of the EBLUP 
The EBLUP obtained from (3.8) after estimating the variance components has a second-
order approximation to the MSE equal to:  
 
 ��������(��)�= ����(�) + ����(�) + ����(�) (5.2) 
 
Where ����(�) ��� ����(�) are defined above and  
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����(�) = ��[(����
�

��)���
�����
���

�
��(��)] 

With  
������= ℐ��(�) 

 
The information matrix ℐ(�), which is a 3x3 matrix, is defined as:  
 
 ℐ��(�) = �

��������(�)����(�)�  where �(�) = ��
��� (5.3) 

 
Moreover, for the dynamic model, the elements of the information matrix are 
 

ℐ��(�) = 1
2� ��(����

���
���∗�)�

�

���
= 1

2� ��(������∗)�
�

���
 

 

ℐ��(�) = 1
2� ��(����

���
���)�

�

���
= 1

2� ��(������∗)�
�

���
 

 

ℐ��(�) = 1
2� ��(����

���
��)�

�

���
= 1

2� ��(����(��∗���∗� + ����∗� ))�
�

���
 

with  

��∗� = ���∗
���∗�    ���   ��∗� = ���∗

��� 

 

ℐ��(�) = 1
2� ��[�����

���
���∗�����

�����
����]

�

���
= 1

2� ��[(������∗)(������∗)]
�

���
 

 

ℐ��(�) = 1
2� ��[�����

���
���∗�����

�����
���]

�

���
= 1

2� ��[(������∗)(��∗���∗� + ����∗� )]
�

���
 

 

ℐ��(�) = 1
2� ��[�����

���
�������

�����
���]

�

���
= 1

2� ��[(������∗)(��∗���∗� + ����∗� )]
�

���
 

 
and  

�����
���∗� = ��,�∗� ����−������,�∗ + ����,�∗��������∗���� 

 
�����
���= ��,�∗� ����−���∗���,�∗ + ����,�∗��������∗���� 

 
�����
�� = ���∗���,�∗� + ����,�∗� ������−���∗���,�∗ + ����,�∗������(��∗���∗� + ����∗� )���� 

 
with    ��,�∗� = ���,�∗

���∗2    ���   ��,�∗� = ���,�∗
��2 . 

 
5.3 Estimating the MSE of the EBLUP 
The MSE in (5.2) assumes that all the variance components and the autocorrelation 
coefficient are known, in reality those quantities are unknown and need to be estimated.  
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The estimator of ��������(��)� depends on the method used to estimate the parameters. If 
REML is used for estimating the parameters, then the estimator of ��������(��)� is equal 
to:  
 
 ��������(��)�= ��������+ ��������+ 2��������. (5.4) 
 
For calculating the information matrix involved in the calculation of ��������, one will 
use the REML version of (5.3) which is equal to:  
 
 ℐ������(�) = �

������(�)��(�)� (5.5) 
 
where  �= �−1 −�−1�(�′�−��)�′�−�.  
 
The REML method estimates the variance components and the autocorrelation coefficient 
without being affected by the fixed effects. This means that the REML estimates are 
invariant to the values of the fixed effects. Also, REML implicitly takes into account the 
degrees of freedom for the fixed effects. In general, the degrees of freedom can play an 
important role in the estimation of the parameters when the rank of the matrix X is large 
compared to the data. The MLE method does not have those two properties (e.g., 
McCulloch et al., 2008).  
 
When MLE is used to estimate the parameters of the model, then the estimator of the 
mean square error is equal to (5.4) where the term  ��������∇����(��) is subtracted. This 
gives:  
 
 �����������(��)�= ��������+ ��������+ 2��������−��������∇��������. (5.6) 
 
In the expression (5.6), the information matrix is the same as in (5.3),  
 
∇����(�) = ������(�)

���∗�
, �����(�)

��� ,�����(�)
�� ��  and  ����(�) = �

�� (ℐ��(�)����������[ℐ���(�) �ℐ�(�)
�� ])  

 
where ℐ�(�)  is the information matrix associated with the fixed effects �. Given 
that  ℐ�(�) = ∑ ������������� , we get:  
 

���(�) = − 1
2��ℐ��(�)������������� ���������

�

���
�
��
�� �������

�

���
���
�����

�������. 
 

6. Simulations using the Dynamic Model 
 
In this section, we conducted simulation study to further assess the dynamic model. We 
used annual rape and robbery rates from UCR as auxiliary variables. We used ��=
0.001�, ��∗� = (3�)�, and �= 0.90. The sampling covariance matrix was diagonal and 
defined as  ��= Adji ∗  ��∗� ∗ I�, where ����   varies from 0.1 (for the largest state 
California) to 10 (for the smallest state Wyoming) by an equal increment of 0.198. In 
total 5,000 populations were simulated and for each population two dependent variables 
corresponding to T=7 and T=14 were generated using model (3.6).  
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Table 2 shows the average of the relative bias for estimating the parameters of the model. 
The estimation of �  is very precise with relative bias smaller than 1% in absolute value. 
Also the estimation of the variance components is more precise when using 14 years of 
data rather than 7 years.  
 

Table 2: Relative bias (%) of the parameters using the dynamic model with REML 
 

Length of the series �  ��∗�   �� 
T=7 0.03 -4.68 3.22 
T=14 -0.51 1.25 2.75 
 
In table 3, the states are ordered by population size according the 2010 U.S. census. Table 
3 gives the gain in efficiency associated with the small area estimates. The efficiency is 
defined as the ratio of the 2010 variance estimate to the mse estimate for a given state. As 
expected, the smaller states have more gain in efficiency than the larger states and also 
using more data improves the efficient of the small area estimates. 
 

Table 3: 2010 Efficiency obtained from using the dynamic model with REML 
  

State 
Efficiency    

(T=7)  
Efficiency 
(T=14) State 

Efficiency 
(T=7) 

Efficiency 
(T=14) 

Wyoming 17.08 19.95 Louisiana 10.23 11.59 
District of Columbia 9.03 12.80 South Carolina 9.93 11.24 
Vermont 16.82 19.51 Alabama 9.65 10.89 
North Dakota 16.02 18.77 Colorado 9.06 10.33 
Alaska 14.13 17.27 Minnesota 8.97 10.14 
South Dakota 15.05 17.81 Wisconsin 8.79 9.85 
Delaware 15.35 17.92 Maryland 8.39 9.43 
Montana 15.11 17.60 Missouri 8.19 9.13 
Rhode Island 15.19 17.58 Tennessee 7.83 8.74 
New Hampshire 14.74 17.11 Arizona 7.51 8.35 
Maine 14.48 16.78 Indiana 7.24 8.02 
Hawaii 14.41 16.61 Massachusetts 6.93 7.65 
Idaho 13.81 16.03 Washington 6.56 7.24 
Nebraska 13.51 15.65 Virginia 6.31 6.90 
West Virginia 13.66 15.67 New Jersey 5.92 6.48 
West Mexico 12.88 14.97 North Carolina 5.63 6.11 
Nevada 12.84 14.84 Georgia 5.26 5.70 
Utah 12.53 14.48 Michigan 4.81 5.23 
Kansas 12.20 14.08 Ohio 4.50 4.85 
Arkansas 11.82 13.64 Pennsylvania 4.11 4.41 
Mississippi 11.88 13.60 Illinois 3.67 3.94 
Iowa 11.55 13.21 Florida 3.21 3.45 
Connecticut 11.40 12.98 New York 2.69 2.92 
Oklahoma 10.93 12.51 Texas 2.09 2.32 
Oregon 10.70 12.20 California 1.17 1.55 
Kentucky 10.46 11.88    

 
7. Discussion 

 
We have introduced the dynamic model as an alternative to the Rao-Yu model for 
applications in which the new model appears to summarize the data more successfully 
than either an assumption of stationarity or an underlying random walk. But we do not 
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intend to displace the Rao-Yu model by this new approach, and we can report that 
maximum likelihood estimation substantially improves upon the estimation approach 
described by Rao (2003) for the Rao-Yu model. In practice, the dynamic and Rao-Yu 
models may often produce quite similar small area estimates. 
 
We noted the general arguments to prefer REML estimation over MLE. In the NCVS 
application, involving relatively few fixed effects, the differences between the two may 
be small. Furthermore, the performance of either approach is affected by the boundary 
conditions on the parameters. A limited simulation suggested a slight advantage to 
REML in this application, but more such work is required before stating a firm 
conclusion. We also plan to examine further whether the estimated MSEs can be used to 
choose between the two estimation methods; in particular, if the estimated MSEs for 
MLE are consistently better than for REML (which we have observed in our application), 
does this support the conclusion that MLE is preferable? A more extensive set of 
simulation experiments may be the most effective method to investigate this question. 
 
Our NCVS work thus far has focused on estimating each type of crime separately. 
However, totals for violent crime and property crime are of considerable interest. In our 
application, we have observed that differences between modeling the totals and the sum 
of their modeled components are large enough to be of substantive importance. Rao 
(2003) reviewed a number of small area applications involving multivariate formulations. 
The general theory for BLUP covers all linear combinations of the fixed and random 
effects, so that producing EBLUPs for the components of violent or property crime 
modeled simultaneously leads to the EBLUP for their sums. We plan to pursue such an 
extension.  
 

Acknowledgements 
 
The findings and views expressed in this paper are solely those of the authors. They do 
not necessarily reflect those of the Bureau of Justice Statistics, of the Census Bureau, or 
of Westat. 
 
We want to thank Dr. Michael Planty of BJS for his consultation and significant 
contributions at different stages of this research. We also thank the Bureau of Justice 
Statistics for support of this work. 
 

References 
 
Barnett-Ryan, C. (2007), “Introduction to the Uniform Crime Reporting Program,” in 

Lynch, J.P. and Addington, L.A. (eds.) (2007), Understanding Crime Statistics: 
Revisiting the Divergence of the NCVS and UCR, pp. 55-89. 

Datta, G.S. and Lahiri, P. (2000), A Unified Measure of Uncertainty of Estimated Best 
Linear Predictors in Small Area Estimation Problems, Statistica Sinica, 10, 613-627.  

Fay, R.E., and Herriot, R.A. (1979), “Estimates of Income for Small Places: An 
Application of James-Stein Procedures to Census Data,” Journal of the American 
Statistical Association, 74, 269-277. 

Fay, R.E. and Li, J. (2012) “Rethinking the NCVS: Subnational Goals through Direct 
Estimation,” presented at the 2012 Federal Committee on Statistical Methodology 
Conference, Washington, DC, Jan. 10-12, 2012, available at http://www.fcsm.gov/ 
12papers/Fay_2012FCSM_I-B.pdf. 

Section on Survey Research Methods – JSM 2012

3755



 

 

Li, J., Diallo, M.S., and Fay, R.E., (2012) “Rethinking the NCVS: Small Area 
Approaches to Estimating Crime,” presented at the 2012 Federal Committee on 
Statistical Methodology Conference, Washington, DC, Jan. 10-12, 2012, available at 
http://www.fcsm.gov/12papers/Li_2012FCSM_I-B.pdf. 

Lynch, J.P. and Addington, L.A. (eds) (2007a), Understanding Crime Statistics: 
Revisiting the Divergence of the NCVS and UCR, Cambridge University Press, New 
York, NY. 

Maltz, M.D. (2007), “Missing UCR Data and Divergence of the NCVS and UCR 
Trends,” in Lynch, J.P. and Addington, L.A. (eds.) (2007), Understanding Crime 
Statistics: Revisiting the Divergence of the NCVS and UCR, pp. 269-294. 

McCulloch, C.E, Searle, S. R., and Neuhaus, J.M. (2008), Generalized, Linear, and 
Mixed Models, John Wiley & Sons, Hoboken, NJ.  

Murray, J.D. (2002), Mathematical Biology: I. An Introduction, Springer-Verlag, New 
York. 

Prasad, N.G.N., and Rao, J.N.K. (1990), The Estimation of Mean Squared Error of 
Small-Area Estimators, Journal of the American Statistical Association, 85, 163-171.  

Rao, J.N.K. (2003), Small Area Estimation, John Wiley & Sons, Hoboken, NJ.  
Rao, J.N.K. and Yu, M. (1992), “Small Area Estimation Combining Time Series and 

Cross-Sectional Data,” Proceedings of the Survey Research Methods Section, 
American Statistical Association, pp. 1-9. 

______ (1994), “Small Area Estimation by Combining Time Series and Cross-Sectional 
Data,” Canadian Journal of Statistics, 22, 511-528. 

Truman, J.L. (2011), “Criminal Victimization, 2010,” Report NCJ 235508, U.S. Bureau 
of Justice Statistics, September, 2011. 

 
 

Section on Survey Research Methods – JSM 2012

3756


