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Abstract 
The new WTADJX procedure in SUDAAN 11 does instrumental-variable calibration 

weighting using a flexible nonlinear weight-adjustment function.  We will review the 

theory behind this procedure and explore some of its uses.   
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1. Introduction  

 
Brewer (2000) proposed using instrumental variables in a calibration-weighted estimator 

for a finite-population total as a way of integrating the prediction form of model-based 

sampling theory with randomization consistency.  We will explore more practical uses of 

instrumental-variable calibration such as, 1, adjusting for nonresponse when the variables 

governing the response/nonresponse mechanism are not always the same as the 

calibration variables, and, 2, creating nearly optimal weights under probability sampling 

theory that never fall below unity and (if desired) are bounded from above.  

 

Section 2 briefly reviews calibration weighting and the generalized exponential form of 

Folsom and Singh (2000). Section 3 discusses the hows and whys of instrumental-

variable calibration as implemented with the new WTADJX procedure in SUDAAN 11 

(RTI 2012).  Two examples flesh this out in Section 4.  Section 5 offers some concluding 

remarks.  

 

2. Calibration Weighting  

 

 

2.1 Linear calibration weighting 
In the absence of nonresponse, calibration is a weight-adjustment method that creates a 

set of weights, {wk} with two important properties. 

1.  They are asymptotically close to the original design weights:  dk  = 1/k   (i.e., 

as the sample size grows arbitrarily large, wk converges to dk)  and therefore 

nearly unbiased under probability-sampling theory.  

2.  They satisfy a set of calibration equations (one for each components of zk):    

                                                 (1)k k kS U
w  z z
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When estimating a total T = U yk  with t = S wk yk or a mean Uy T/N with ˆ
Uy 

Swkyk/Swk, calibration weighting will tend to reduce mean squared error when yk is 

correlated with components of zk (but a real survey has many yk’s). 

 

One way to compute calibration weights is linearly with the following formula: 
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Observe that as the sample size grows arbitrarily large, g
T
zk (which means g) converges 

to 0. 

This is the weighting scheme implied by the generalized regression (GREG) estimator 

since                                    
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where 1( )T
j j j k k kS Sd d y  b z z z is a survey-weighted estimated linear-regression 

coefficient.  

 

Linear calibration weighting can be easily adapted to handle unit nonresponse by simply 

replacing the  sample S with respondent sample R and redefining the GREG estimator 

and g as: 

                                     1 T
GREG k k k k kR R

t w y d y    g z  

where   
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depending on whether the respondent sample is calibrated to the population ( )jU z  or 

to the original sample ( )j jS d z .  Either way, the estimate is also nearly unbiased under 

the quasi-sample-design that treats response as a second phase of random sampling as 

long as each unit’s probability of response has the form: 

                                                 

1
, (2)

1
k T

k

p 
 γ z

 

and g is a consistent estimator for γ. Put another way:  
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                                      GREGt  k kR
w  z 1ˆ .k k kR

d p  z
  

Notice that with nonresponse neither  

                           
( )

T
j j jU R

d z z nor  ( )
T

j j j jS R
d d z z

 

converges to 0
T
, and so neither does g

T
.   This, at the time surprising, use of calibration 

weighting was proposed by Fuller et al. (1994).  

2.2  Nonlinear calibration weighting 
The problem with the probability-of-response function in equation (2) is that it can fall 

below unity and even be negative.  A useful nonlinear form of calibration weighting  

finds a g (through repeated linearization, i.e., Newton’s method) such that  

                          

( ) or
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 where                 
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g z
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,                                       (4) 

and  ( ) ( )( ) .A u u c c     The inclusion of A in equation (4) makes taking the 

derivative of ( )T
k g z easier.  

The weight adjustment ( )T
k g z is centered at c (i.e., α(0) = 1) with a lower bound   0 

and an upper bound  u > c> , which can be infinite.   The user sets these centering and 

bounding parameters. Equation (4) is a generalization of both raking, where 0,  

1,c u   
(and the components of zk are binary) and the implicit estimation of a 

logistic-regression response model, where 1, 2, .c u    

When c = 1, equation (4) is the generalized-raking adjustment introduced by Deville and 

Särndal (1992) so that the range of ( )T
k g z  

could be bounded (and the components of zk 

continuous).  Centering at 1 was a requirement of calibration weighting in that landmark 

paper (α'(0) = 1 was required as well), but setting  c > 1 with 1  is more sensible when 

adjusting for unit nonresponse.   

Folsom and Singh (2000) proposed using the following generalized exponential form:  

                                          

( ) ( )exp( )
( ) , (5)

( ) ( )exp( )

T
T k k k k k k k k

k k T
k k k k k k
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  

g z
g z

g z

 

which allows separate weights functions for each k but finds a common g chosen to 

satisfy one of the two versions of the calibration equation (the population or original-

sample version).  This form of calibration weighting has been incorporated into the 

SUDAAN procedure WTADJUST (RTI, 2008).  See Kott and Liao (2012) for a more 
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rigorous treatment of this version of nonlinear calibration weighting.  Kott (2009) 

provides good background on calibration weighting per se.  

Although WTADJUST allows ( )T
k k g z to be k-specific, when adjusting for 

nonresponse (or coverage), it is sensible to select a single value for the ck and a very 

limited number of k and ku values.  When each of the three has a single value, it is not 

hard to see that the choice of c become irrelevant (again, see Kott and Liao, 2012). 

3.  Instrumental Variables  

3.1  Nonresponse 
Now suppose unit response followed a model of the form:   

1 ( ) ( )exp( )
( ) ,

( ) ( )exp( )

T
T k k k k k k

k k k T
k k k k k k k k

u c c A
p

u c u c A

      
    

γ x
γ x

γ x
          (6) 

where some components of the model vector xk need not coincide with the components on 

the benchmark  z-vector. In other words, replace equation (2) by  

                         

( ) or
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such that g again estimates γ.   

Mathematically, finding a g that satisfies either the first or second line of (7) can often be 

done as long as the number of calibration (benchmark) variables in zk is at least as great 

of the number of model variables in xk.. A routine to do that is available in SUDAAN 11 

(RTI 2012): WTADJX. It applies most simply when the numbers of model and 

calibration variables coincide so that one of the two sets of calibration equations in (7) 

holds. Otherwise, there are more unknowns than equations, and the vector equations in 

(7) cannot hold exactly.  See Chang and Kott (2008) for a discussion of minimizing the 

difference between, say, ( ) andT
k k k kR d  g x z  kU z as a means for estimating γ. 

The components of xk that are not components of zk are called instrumental variables. 

The name derives from the linear-calibration form, where  

                                                                                  

                                                                                   

 

 

In the linear prediction model:  E(yk|zk, xk) = zk.  In that context, the components of  zk
   are the model variables.  (In econometrics, instrumental variables not in zk are often 

assumed to be independent of the model error while the components they replace are 

not.)    
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In establishment surveys, it often makes sense to calibrate to a size variable − call it qk − 

because the main survey variable is nearly linear in the size variable.  Response, by 

contrast, may be better modeled as a logistic function of the log of the size variable, so 

that a one percent increase in the size variable results in a c percent change in the odds of 

response. Thus, log(qk) is an instrument used in place of  qk.  

 

Deville (2000) noted that it is possible for a selection model variable to be known only 

for respondents. That is, for nonresponse to not be missing at random.  

 

Better known is that Brewer (2000) proposed using instrumental-variable calibration as a 

way of integrating the prediction form of model-based sampling theory with 

randomization consistency.  We will not follow up that idea here.  

  

3.2.   Nearly pseudo-optimal calibration 
Instrumental-variable calibration can be profitably used in the absence of nonresponse 

and coverage errors.  A linear estimator often better (i.e., more efficient) than the GREG 

also calibrates on zk but sets xk = (dk −1)zk.  This produces the nearly unbiased linear 

estimator with the smallest asymptotic mean squared error under Poisson sampling and 

similarly under stratified simple random sampling with large stratum samples sizes.  As a 

result, it has been called  the “optimal estimator” under Poisson sampling (Rao, 1994)  

and  the “pseudo-optimal estimator” more broadly (Banker, 2002).  

With WTADJX centered at 1, we can bound the weights and retain the asymptotic 

properties of the optimal estimator by setting xk = (dk −1)zk. In particular, when  dk > 1, 

we can set k = 1/ dk to assure that all wk are at least unity.  If some dk = 1, we can simply 

set wk = 1 and remove k from U and S before applying equation (4) See Kott (2011a).  

Alternatively, we can simply set k at any value less than 1 for elements with dk = 1 

since xk will be 0 forcing wk to be 1 as well.       

We have some freedom in setting the uk as long as they are each greater than 1 and the 

calibration equation ( )S k k U kw  z z can be satisfied.  Sometimes, rather than 

bounding the weight adjustment, a user may want to bound the weight itself by creating 

an upper bound of the form uk = U/dk.  Often with establishment surveys, it is desirable to 

set an upper bound in of the the form uk = U/(dkqk) so that wkqk is bounded.  

4.  Two Examples 

As has been noted, the WTADJX procedure in SUDAAN 11 can perform instrumental-

variable calibration.  SUDAAN 11 is also be able to compute (asymptotic) standard 

errors properly for means, totals, and ratios computed with weights adjusted by one round 

of WTADJX or WTADJUST calibration (Witt, 2010). When the adjustment is for 

nonresponse (or coverage error), this assumes that the underlying selection model has 

been specified correctly, that is, the model in equation (6) holds and that response is 

independent across primary sampling units. When the logistic response model is correct. 

SUDAAN will also compute standard errors properly when the LOGISTIC procedure 

(RLOGIST in the SAS-callable version of SUDAAN used here) is used to adjust the 

weights.  
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4.1 An example with no nonresponse or coverage error 

We created a stratified simple random sample of 364 fictional hospital emergency 

departments using the public-use data set of the Drug Abuse Warning Network (US 

Department of Health and Human Services, 2011) as a starting point.   The sample can be 

found in SUDAAN 11 Examples (WTADJX examples) on the SUDAAN website 

(http://www.rti.org/sudaan/).  Much of the SAS-callable SUDAAN code discussed in this 

Section can be found there as well.  

 

Each hospital on the frame has attached to it a size variable – the number of emergency-

department visits in a previous year, which we call “frame visits.”  There are also 

indicators on the frame of  each hospital’s census region, whether it is publicly owned, 

and whether it is in a metropolitan area.  Our goal is the estimate the total number of 

drug-related emergency-department visits in the survey year both across the US and 

within each census region.  

 

In addition to computing the estimates directly with their probability weights, we “raked” 

the weights − using WTADJUST with a center of 1, a lower bound of 0, and no upper 

bound − so that the following calibration-weighted totals equaled the corresponding 

frame counts:  the number of hospitals in each region, the number of public hospitals, and 

the number of hospitals in a metropolitan area. That is to say, the vector zk had six 

components, four regional indicator dummies, an indicator dummy for public ownership,  

and an indicator dummy for a metropolitan location.  

 

As can be seen in Table 1, raking did not improve the coefficients of variation (CVs) in 

any of the regions (computed using SUDAAN 11 as are all the estimates in this section). 

If anything, the CVs became slightly higher. That is because a hospital’s annual number 

of drug-related emergency-department visits is not nearly a linear function of its region, 

ownership status, and urbanicity.    

 

A variant of raking for establishment surveys introduced by Hidiroglou and Patak (2006) 

is more applicable in this setting. Size raking calibrates the weights so that the weighted-

total of the size variable (qk) within each region equals the actual number on the frame, 

with analogous equalities holding for public and metropolitan hospitals.  This variant on 

raking should decrease the standard errors of estimates for drug-related emergency-

department visits as the US and regional levels if these survey variables are roughly 

linear functions of the calibration variables.   

 

Size raking was done in WTADJX by letting the region, public, and metropolitan 

indicator dummies remain the MODEL variables (with /NOINT since there was no 

intercept), while each of those indicator dummies times frame visits made up the 

calibration variables or CALVARS. Here, the “model” refers to the weight-adjustment 

model, ( )T
k g x exp( ),T

kg x used in WTADJX, where xk  is the vector of the six 

indicator dummies, while the  vector of calibration variables becomes zk = qkxk. There is 

no response (or coverage) model. 

 

Employing size raking decreased CVs noticeably.  Better still, as can be see in Table 1, 

were two variants of nearly-quasi-optimal (NQO) calibration weighting.  In one, the same 

CALVARS were used as in size raking but the MODEL variables were these calibration 

variables times dk – 1.  In the other, an intercept was added.  Mathematically, the vector 

of calibration variables was (1, zk
T
)

T
 for the latter version with zk defined as in size raking, 
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while the vector of model variables was (dk – 1)(1, zk
T
)

T
.  (Ironically, in running 

WTADJX,  /NOINT is still used since dk – 1 appears in the MODEL statement in place of 

an intercept).    

 

Table 1:  Comparing Direct Estimation to Raking and Nearly Quasi-Optimal Calibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 An example with nonresponse 

We then used the same data set as in the previous example, but generated unit 

nonresponse as a logistic function of the log of drug-related emergency-department visits. 

Assuming first that response was a function of the log of the frame visits, we employed 

SUDAAN to estimate survey-variable totals applying first RLOGIST and WTADJUST.  

We then applied WTADJX, again letting the log of frame visits be the MODEL variable, 

but now frame visits became the calibration variable (in CALVARS). 

 

These following estimated CVs were computed 

 

Using  RLOGIST                                                                  CV = 7.33 

Using  WTADJUST                                                             CV = 8.30 

Using  WTADJX  

   calibrating to the frame visits in the original sample     CV = 6.39 

    calibrating to the frame visits in the population        
     

CV = 3.40  

 

It may come as a bit of a surprise that adjusting for nonresponse using RLOGIST was 

estimated to be more efficient than adjusting with WTADJUST.  Given, the nature of the 

data, however, it should be no surprise that using WTADJX and calibrating on frame 

visits rather than the log of those visits appeared more efficient than using either 

RLOGIST or WTADJUST even though the same variable (log of frame visits) was used 

to model response by all three.  Moreover, calibrating to frame totals rather than full-

sample totals  increased the estimated efficiency even more.  

WTADJX can be also used to test whether there is a significant difference between 

estimates derived under different assumed response models. In this case, the estimated 

bias (roughly 1.2%) from incorrectly assuming response was a logistic function of the log 

  REGION             Direct     Raking         Size            NQO         NQO  

                                                   Raking                        Intercept 

Estimates 

  All        5376256    5371840    5526307    5519244    5531364 

  East          732957      732749      785407      787582      787026 

  South      1750451    1746077    1836788    1832655    1833783 

  Midwest    1369023    1369140    1425517    1426593    1433667 

  West       1523825    1523874    1478595    1472415    1476887 

                              

Coefficients of Variation 

  All                 6.47           6.48            2.16          1.91          1.87 

  East                5.67           5.71            3.32          3.27          3.28 

  South             13.92         13.94            3.49          2.02          1.95 

  Midwest             7.55           7.55            3.23          3.22          3.26 

  West             14.58         14.58            5.77          5.69          5.61 
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of the frame variable rather than the log of the survey variable was significant at the .08 

level.   

It would be a mistake to conclude that bias is not an issue here because it statistical 

significance did not each the magic .05 level.  When testing for possible bias we need to 

be concerned with Type 2 error (failing to recognize a bias when it exists) than Type 1 

error (finding a bias when none exists) here.  As a result, statistical significance at the .08 

level should be viewed as problematic.    

Even when we don’t know the true response model, the test we used  duplicating each 

record, assigning the first version to a domain governed  by one assumed response model 

and the second to a domain governed by a different assumed model while keeping both in 

the same PSU, treating the sample as if it were drawn with replacement, and then testing 

the difference between domain estimates  can be applied to determine whether different 

response models lead to significantly different estimates.  A test like this was proposed 

by Fuller (1984) for determining whether sampling weights matter in a linear regression. 

 

5. Concluding Remarks 

Although calibrating to the population is more efficient than calibrating to the full 

sample, it is better to calibrate in two steps.  That allows one to use nearly pseudo-

optimal calibration in the second step and make up for any inefficiency from 

instrumental-variable calibration to adjust for nonresponse.   

 

Kott (2011b) points out that instrumental-variable calibration can aid in replication when 

a bounded version of WTADJUST or WTADJX calibration is used.  Empirical research 

on this use of WTADJX is underway. 
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