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Calibration Adjustment for Nonresponse in Cross-Classifie Data

Gretchen Falk

Abstract

In the interest of accurately estimating a parameter oféste generally a population total, calibra-
tion is a method that adjusts the sampling weights of eadta element such that the adjusted
estimates of the totals of auxiliary, or benchmark, vagatdqual the known population totals. Cal-
ibration has been used to adjust for frame undercoverageesponse, and sampling weights. To
treat nonresponse, under the quasi-randomization mosleirgions, the sample of respondents is
treated as an additional phase of sampling, where the pititiesiof response are estimated from a
set of model variables. Under this model and varying resppnsbability assumptions, we explore
a special case of the calibration method to treat doublysectasssified data that uses characteris-
tics of the classification structure as the benchmark andemadiables. The resulting calibration
estimator can be calculated no matter the minimum sampéeosier the classification groups and
without requiring the collapse of cells, which is its adwage over the poststratified estimator. The-
oretical behavior and empirical comparisons of variousresbrs are presented and discussed.

Key Words: Quasi-randomization, Benchmark, Poststratification

1. Introduction

When population-level information for a finite population is of interest, theeenaany
sampling designs and estimation methods that yield accurate and efficient estifr@to
which to choose. The unbiasedness and small variance of these estidegtensl on com-
plete information from a sample that is carefully chosen to be represenvétiie popu-
lation of interest. Nonresponse, particularly if systematic, can drasticaliyamdhe accu-
racy and efficiency of these estimators by introducing substantial rmomes bias. This
situation commonly arises when the information being collected is sensitive sfanice,
financial information.

There are several methods that produce estimators that accountnf@sponse and
the more familiar of these, including poststratification, involve separating theted el-
ements into mutually exclusive and homogeneous groups and adjusting,déitdly or
indirectly, the sampling weights in each group. The poststratified estimator is cagnmo
used, but as the population level estimate combines the group estimatesrétmnaadions
in which a poststratified estimate or its variance estimate or both cannot be doumaly
be unreliable. The poststratification estimator cannot be calculated if ang pb#tstratifi-
cation groups have a sample size of zero after the sample has been dassitigionally,
a variance estimate of the poststratification estimator cannot be calculated of dmg
groups have a sample size less than two. Therefore, in a situation wheopthiagon of
interest includes one or more small groups, especially in the cases of seall cample
size and low response rates, it becomes likely that the poststratification estwilhtot
be a plausible option.

One remedy for this problem is to collapse the groups until each containglentem-
bers for estimation. However, this process can begin to render morauliifiterpretation
or possibly meaningless interpretation of the components of the estimator. Awddlitjo
the collapse of cells can affect the homogeneity that is assumed to existhrgeag,
which can yield a less efficient poststratified estimator. We propose a kpas&of the
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calibration method that can be used as an alternative to poststratificatiamsbeatalim-
inates the need for collapsing cells. Section 2 will briefly summarize the dewelupof
the general calibration method and will present the definitions of the spasalproposed
here. Section 3 develops and evaluates the behavior of the theoretical mo&ections
4 and 5, empirical results and further research topics, respectiviljgernpresented and
discussed.

2. Calibration

As Sarndal (2007) expresses, calibration is a new name for an existing methaelght
adjustment. This method was not originally designed for the treatment of spmmse,
but instead to reduce sampling errors. Considering a sasmeésizeng drawn from
the populationJ of size N with known selection probabilities;, = 1/dj, the standard
unbiased estimate of the population paraméters the sum of the product of the usual
sampling weightsl;, and the value of the variable of interegtfor each selected element
k —
tAy = Z A Y- (1)
kesS

The calibration method, as presented by Deville addn8al (1992) among others,

instead uses adjusted expansion weightso yield the estimator

Lty,cal = Z WEYk- (2)

kesS

These calibration weights,, are subject the condition that is termed the calibration con-
straint. For this constraint, we assume that some set of auxiliary varepkgh known
totals denoted’'x are available. We then require the estimated totals of the auxiliary vari-
ables, using the calibration weights, to be equal to their known totals, anthéngalibra-
tion constraint is

Z wXp = Tx. 3

kesS
There is a practical advantage to satisfying this constraint in that it ge@snonsistency
of the estimates of certain benchmark variables over several diffaremtys conducted by
the same or even different organizations. A survey yielding estimatestafrcbenchmark
variables that equal known and accepted totals increases the publiciiveet reliability
of the remaining resulting estimates.

Deville and &rndal (1992), who first used the term calibration, also require ttmaéso

distance function be minimized so that the calibration weights do not largelytddxoan
the sampling weights. They show that the generalized-regression esti@&B() can be
expressed in the form of a calibration estimator with weights

wy, = di (1 + grxp N), (4)

wheregq;, are known positive weights unrelated to the sampling weightshaisdhe quan-
tity determined by solving the calibration constraint, which can be calculatectlgtiees

it is composed of known quantities. Deville andrB8dal (1992) then determine that the
weights achieved by using several different distance functions gnexstically equivalent
to the generalized-regression estimator. Using the variance expre$simngeneralized-
regression estimator, an estimate of the variance of the calibration estimatoe é@umnd.
The evaluation of this variance expression suggests that using the tafitwaightswy, is
advantageous to the sampling weigtitsn terms of estimator variance.
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Lundstbom and @rndal (1999) propose similarly estimated calibration weights to be
used to additionally adjust for unit nonresponse under a two-phase mbde in the sec-
ond phase, the respondent samflef sizeny is drawn from the samplg with known
response probabilitieg, = 1/aj. They assume that the adjustment term of the calibration
weights in (4) can be used to account for nonresponse bias if all r¢lessables are in-
cluded in the set of benchmark variables. Under this model, the adjustmeatdartipling
weights can be thought of as an estimate of the response weijghts

Following the introduction of this idea by Lundéim and @&rndal (1999), many modi-
fications were proposed — both to the general sample-level calibration dnatiolospecifi-
cally to the response-level calibration method — that have yielded more promisidgls
for the unknown response weights. For example, as an alternative to linear calibration
weights for nonresponse adjustment, Folsom and Singh (2000) peestads of calibra-
tion weights that includes the logistic function as a special case. They @sentrthe idea
to use a similar model to adjust for frame undercoverage.

As opposed to minimizing distance functions to determine the set of calibratiohtsgig
several authors have chosen to define calibration weights to be sontiefusicthe auxil-
iary variables,

Wy = dkf(xg)‘)v 5)

and to solve for them directly from the calibration constraint equation. Fnisexpression
of the calibration weights we can clearly see that, in the case of nonrespdpsstment,
the role of this function will be to estimate the response weights Chang and Kott
(2008) term these functions “back-link” functions since, in the contéxtanresponse
adjustment, these functions are of the form of the inverse or back tramesions of link
functions found in generalized linear models as discussed in McCullagNelddr (1989).
Fuller et al (1994) discuss using a functional form of the auxiliary \des to adjust for
nonresponse, but define the back-link function to be

FOEA) =14+ xEA, (6)

keeping the calibration weights in linear form. Alternatively, Folsom (19%84ppses back-
link functions that better reflect the response mechanism, including the logistiexpo-
nential functions. Nonlinear calibration weights are also proposed by(R@D6).

In all of the calibration estimation schemes proposed prior to the year 2860¢0e
set of auxiliary variables was being used — the variables with the knownlggagn totals
to which the adjusted weights were being fit. We will call these variables thehbsark
variables. Estavao andBidal (2000) propose using calibration weights that are estimated
using a linear back-link function

flzfy) =1+2z(~, ©)

which is dependent on another set of auxiliary variaklesThis second set of auxiliary
variables, that we will call model variables, is required in Estavao @mddal (2000) to be
of the same dimension as the benchmark variables. Kott (2006) also treadséhia which
linear calibration weights are estimated using model variables of the same dimassie
benchmark variables. Additionally, he introduces the idea of nonlinearaath weights
depending on these model variables, such as

f(zlny) = %, 8)

Chang and Kaott (2008), treating the general nonlinear calibration weight®nresponse
adjustment case, then relax the equal dimension restriction on the moddilesréand
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only require that the set of model variables be of smaller dimension than tiodrinark
variables. In general, if the number of model variables is less than the mwhbench-
mark variables, the calibration constraint cannot be exactly satisfied faravn control
totals. In a manner reminiscent of nonlinear regression, they propostiritate the re-
sponse weights and, therefore, the calibration weights by minimizing a digaidran of
the differences between the known benchmark totals and their estimated.value

The calibration estimator that we propose uses benchmark and modelesyriadith
associated differently with the cross-classification structure, and asaufsinctional form
of the model variables for the definition of the calibration weighis To define the bench-
mark and model variables, consider a double classification structure ih ehah element
selected to the sample is classified into a particular group based on two diwsaic-
teristics. Assumd row classifications and column classifications, resulting ih x J
cross-classification groups ard+ J marginal groups. To create the special case of cal-
ibration proposed here, vectors of membership indicator variables wi s our defi-
nitions of the auxiliary variables. These choices yield an estimator that mogtately
models nonresponse while comparing directly to the group-level reweighmtatigod used
in poststratification. Additionally, this special case of the calibration methodearsed
as an alternative to collapsing cross-classification cells for poststratificafie both are
reweighting methods that can be used to adjust for nonresponse, mtngyafthors dis-
cussed in this section and also Chang (2012) have presented this ide@agthe calibra-
tion estimator as an alternative for poststratification. This comparison hadisissed
with varying definitions of final sample and auxiliary variables — all of whichaifferent
than those presented here.

3. The Special-Case Calibration Model

3.1 Nonresponse Model

For the model developed here, we assume a with-replacement samplingesahe so will
need to modify the usual two-phase model. Consider the following desigthelfirst
phase, choose a with-replacement santplaf sizeng from the populatiori/ of size N

with probabilities of selectiom;, for every element € U. Under this designpy is the
probability that element is chosen on thg' draw orP(k; = k) = py forj = 1,..., ng.

SinceS is chosen with replacement, let the unadjusted expansion weights be

A — 1
% nspr,

as in thepwr-estimator discussed iréfhdal et al. (1992).

Here we should note that if the sample size is small relative to the populatiomsiiie a
the selection probabilities are small, it is unlikely that any individual will be ehasto the
sample more than once. Therefore, while we use the nice theoreticalfeemd a with-
replacement design, the realizations of with- and without-replacement sgrippinactice
will likely be the same.

In the second phase of this design, a respondent sample is selectetthéretements
chosen into the sample;, under a Poisson sampling design. We will assume that any
element selected into the samemore than once will choose to or not to respond to
each repeated draw independently. For instance, if eleinisrdelected twice, it would be
possible for element to provide the requested information on one draw and not the other.
Realistically, if any element is selected into the sampleore than once, that individual
would be given the survey once and the resulting information would beinsked analysis
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twice. Adjustments to the model for this more realistic assumption of dependpoinges
to multiple selections have been made, but will not be discussed here.

Again we should note that if the sample size is small relative to the population size
and the selection probabilities are small, then multiple selections of any indivtiol tizé
sampleS is unlikely. Therefore, the realizations of the independent and deperetponse
mechanisms in practice will be identical. The independent response meulasssmption
used here will allow us to develop needed theoretical properties.

Now, suppose that each eleménhas a probability of responsg and let/;, be an
indicator variable for whether the* element responds to the survey when selected on
the j** draw. It follows thatP (I, = 1) = ¢x. Note that sincdy,, j = 1,...,ng, are
independent, the respondent sampBlef sizeng is a with-replacement sample from the
populationUU with probability of selectiom,.q; per draw.

To estimate the parameter of interesf,= ZkeU Yk, define

R i 1
i1 Ik

1 <& 1
- ykj-[kj7 (9)

which is a mean of independent and identically distributed random variables.

Theorem 1. The estimatofy in (9) is unbiased under the model and its assumptions pre-
sented above.

The outline of the proof begins by using the usual conditional expectatapepy,

E(t,) = Es(Eg(i,|S))

1 < 1
- E5<ER(7Z Yiej Lk
s =5 Pk;dk;

s))-
Remark 1. Recall thatl; is an indicator variable for whether eleméntesponds when
chosen into the sample on th& draw. Therefore/y, is a Bernoulli random variable that
is independent and identically distributed with the following properties:
E(Iy;) = qx (10)

and

Var(Iy;) = qx(1 — i) (11)

Using property (10) in Remark 1,

BG) = Bs(23 )

ns S= Pk;

SinceWy,; = ﬁykj are independent and identically distributed random variables,
J

E(@/) = Z Yk
keU
= T,.

Since the expected value fgjis the population total of interest, the estimaipin 9)
is unbiased.
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Theorem 2. The estimatofy in (9) has variance

Var(i,) = - S g+ o (S —2) T 12)

keU keU

under the model and its assumptions presented in above.

The outline of this proof beings with the usual conditional variance ptpper
Var(t,) = Vars(Egr(fy|S)) + Es(Varg(iy|S)). (13)

From the proof of Theorem 1, we know the expression for the innantguaf the first
component, therefore,

nsl

VarS(ER(fy\S)) = VarS(l Zpk Yk )

We also know thatVy, = ﬁykj, j = 1,...,ng, are independent and identically
distributed random variables. Therefore, the first component ofi§13)

N 1 1 2
Vars (Er(iylS) = — >~ (—ue—1,) m
S 1eU Pk
1 1
;Z*yi—;(Zm—@Tj (14)
S keu Pk S Mkev

The second component of \(ég) in (13) uses property (11) in Remark 1 to yield

Eg(Varg(,]9)) = Es( : isj (i - 1) i yk)

S 4k, Py
SinceWy, = (qT — 1) yk are independent and identically distributed random
variables, the second componjent of (13) is
Es(Varp(f,|S)) = — Z (qTC - 1) (15)

Combining the two components — (14) and (15) — of(\f/@)yields the variance expres-
sionin (12).

Here it is interesting to note that the variance includes two components, bothiaf w
depend on the selection probabilities. However, only one of the compodepé&nds on
the response probabilities.

3.2 The Nonresponse Model with Unknown Response Probabilities

In Section 3.1 we assumed that the probabilities of respgnsere known, which is gener-
ally an unreasonable assumption. In order to use estimated probabilitiespohee, some
adjustments must be made to the model. Now, assume that the true respormdipesb

can be modeled as )

6
f (Z;}Fﬁo) , (16)

qk =
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wheref(n) is a monotonic and twice-differentiable function with first derivative dethate
f1(n), wherez;, denotes the model variables, and wh@ggs the true value of an unknown
response parametes,

In order to estimate the parameter of intefEst= » _, _;; yx, let the calibration estima-
tor be

>

nR
y,cal = dezf(zgﬁ)ykz
i=1
1 &1 .
= — Y —f(z}. By, Ik, (17)
ns;pkj =k, By i,

whereg estimates the response parameter by minimizing the optimization function

R(B) = (Tx - tx(ﬁ))T(Tx - tx(ﬁ))v (18)

whereTy are the known totals of the benchmark variables, which are denoted,tand
where

t(8) = Y dif(zh,B)xs,
=1

_ nls > pz F(zF BYxi, I, (19)

Note that if 3, is known, thenf(zfjﬁ) = f(z;fjﬁo) = . and this estimator simplifies
J

to the estimatot,, in (9) in Section 3.1.

3.2.1 The Two-Way Cross-Classification Definitions for Calibration Estimation

Recall the two-way cross-classification structure presented in Sectionr3oufF special
case of the calibration method to compare with poststratification, we will defirsetieh-
mark variablesx;, as aP-vector of indicator variables of cross-classification cell mem-
bership, whereP? = I x J. Therefore,T'x will be a P-vector of cross-classification cell
population totals.

We will define the model variablesg,,, to be a@Q-vector of indicator variables of the
marginal classifications for elemeht Therefore, eachk; will be a vector of dimension
@ < P with alintwo places. For ease of interpretation, defihne= I + J with one
indicator variable for each of thé levels and one indicator variable for each of the
levels. However, one should note that using/an J vector will result in singularity while
solving the estimating equation (18) since one degree of freedom is loth theefact that
both sets of marginal totals will equal the population total. Theref@rehould be defined
by I + J — 1 for calculation.

By defining the benchmark and model variables in this way, we are makingshen@-
tion that the probabilities of response are equal for all elemerslonging to the same
cross-classification group. Also, we are requiring knowledge of theseclassification
structure of the population with our definition @f,.

Now, if we let

1
O =~ > Uk (20)
Ny keU,
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be the mean of the variable of interest in §ié cross-classification group amdbe aP-
vector of the population mea#s, then another characteristic of two-way cross-classification
is that

ye = X160+ ¢
= 0,+¢ (21)

with the error term;, following the condition

> e@=0 (22)

keU,

3.2.2 The Consistency and Distribution@®f

In order to examine the behavior of the calibration estimator in (17) , we wilil tee
employ methods that requif@to be a consistent estimator 6, and3 — By = O(ﬁ)
to hold. The proofs for the following theorems are lengthy and not sh@se. h

Theorem 3. Under the model and its assumptions defined in Sectioni3,2(3) —
R+ (B) almost surely.

Assumption 1. 3, is the unique minimum of, (3).

Theorem 4. In any compact set which contaifg as an interior pointR,, . (3) — Roo(3)
uniformly in probability.

Theorem 5. In any neighborhood o8, defined as in Assumption [an — B, in proba-
bility.

Theorem 6. /ng(3 — B,) converges in distribution to a Normal distribution with mean
zero and constant variancé s.

After several lengthy derivations not shown here that make use ofaylerTSeries of
g(B) arounds,, we find thati, .q = 1/N£yycal can be approximated by

« . N 1
Hy,cal = My + (y‘x - “X)TPO + OP (7>’ (23)
ns
where

ﬂy = 7ty s (24)

Hx = ~Tx
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P =ty (Miattny) 111, (25)
VA
7Zf1 kﬁo Xzl (26)
kEU

This approximation is useful for the evaluation of the theoretical propesfidee cal-
ibration estimator because it only depends on the true response pargineted not its
estimated valug, which varies from sample to sample.

Theorem 7. The estimatoyi, .,; in (23), under the unknown response probability model
and its assumptions is unbiased to the ordé%).

The outline of this proof starts with the expected value of the useful appadion in
(23)

N N . 1
Bljiycat) = Blity) + (i~ B(i)) PO+ O( ). (27)
From Theorem 1 we know that
E (ty) =T,

thus

E(jry) = py- (28)
As ty is of the same form a@, but withy;,; substituted by, , it also follows that

E(fry) = iy (29)

Substituting the expected values into (27), yields

Biyea) =y + 05 ). (30)

Therefore i, ., is unbiased to the order (ﬁ(%
From this result we determine that calibration adjustment leads to an accstiatate
to the ordetO( ) in the presence in nonresponse.

Theorem 8. The estimatoyi, .,; in (23), under the unknown response probability model
and its assumptions, has variance

Vvar(ji, ca) = Var(ii,) — 072,80 + 011 - P)'S,(I-P)0 (31)

to the orderO( 3/2), where Vatfi,) is Var(ty) — found in Theorem Zisa P x P

identity matrix, and
Yk = Var(fiy). (32)

The proof is lengthy and not shown here.
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4. Results and Discussion

4.1 Introduction

In this section we look at some empirical results of the special-case calibragittrod pre-
sented in Section 3.2. To do so, we use four artificial populations, eaehl lngpon charac-
teristics of a set of data from the Quarterly Census of Employment ands/éagelucted
in the first quarter of 2005 by the Bureau of Labor Statistics. Each ofMhe 283, 725
businesses is classified by the state in which they are located — A, B, C,Bb—eland
by the type of industry to which they belong — 1, 2, 3, 4, or 5. The variablaterest
is total quarterly wages. Each of the four populations is based on thenpts given
in Table 1 withF;; representing the percentage of the population that belongs tig'the
cross-classification group.

Table 1. Population Parameters

1 2 3 4 5
Nip = 5986 Niy = 5548 Niz = 7712 Niy = 3969 Nis = 1299
Fip =211 Fis = 1.96 Fi3 = 2.72 Fiy =140 Fi5 = 0.46
011 = 2,991,523 | 615 = 3,854,097 | 013 =5,812,704 | 614 = 17,760,295 | 65 = 4,158, 368
Ny = 18,782 | Ny = 31,572 Nos = 22,012 Nay = 4982 Nas = 4504
Fy = 6.62 Fyy =111 Fys = 17.76 foa =176 Fys = 1.59
051 = 1,048,093 | a9 = 1,228,337 | O3 = 4,630,796 | 64 = 5,122,252 | 65 = 730,731
Nip = 13,518 | Nsp = 13,099 Na3 = 17,837 Nay = 5610 Nas = 3001
Fy1 = 4.76 Fiy = 4.62 Fi3 = 6.29 Fiy =1.98 Fy5 = 1.06
031 = 1,293,414 | O35 = 1,706,660 | O35 = 4,112,411 | O34 = 7,687,645 | O35 = 1,761,251
Ny =30,428 | Ny = 36,017 Nys = 32,541 Nyg = 10,963 Nys = 5399
Fy =107 Fyp = 12.7 Fy3 =115 Fyy = 3.86 Fy5 = 1.90
O4 = 708,971 | 640 = 758,204 | O43=2,104,408 | 644 = 4,273,129 | 645 = 640,548
Nap = 2225 Nsy = 2020 Ns3 = 3110 Ny = 1076 Nss = 515
Fy = 0.78 Fsy = 0.71 Fy3 =1.10 Fy; = 0.38 Fys =0.18
051 = 7,418,207 | 652 = 10,368,820 | f55 = 21,441,100 | 654 = 44,797,328 | 055 = 11,421,101

Each of the four populations was created such that the individual vafuesal quar-
terly wage,y;, for the members in each cross-classification group follow a Normal dis-
tribution with the means in Table 1 and varying values of standard deviatioe. sé&ts
of standard deviations used to create Populations 1 through 4, regheactiere constant
for all groups, varying and proportional to the mean in each grougstaahfor each state
but varying for each industry group, and simply varying for each grdspecifically, the
standard deviation used for all cross-classification groups to creatéafop 1 is propor-
tional to the smallest group meép;, = 640, 548 and, therefore, small relative to the larger
group means. These four populations yielded the following totals of theeglyawages:
Ty1 = 8,366,800, T, » = 8,363,461, T, 3 = 8,356,790, andT}, 4, = 9,061, 540, all in
hundred of thousands of dollars.

Once the populations were created, a set of 10,000 samples was takesaith pop-
ulation for each three sample sizesrs = 500, ng = 2000, andng = 5000 — using
simple random sampling. Next, a respondent sample was selected frorsa@aple using
each of four different true response parameters, yielding aveesgemse rates of approx-
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imately 30%, 50%, 70%, and 80%, in the inverse response fungtipn= 1 + exp(—n).
Using each sample in each of these several sets of 10,000 respoad®ies, the
calibration estimator in (17) and the poststratification estimator

- N,
ty,p:ZﬁZyi

geG 9 i€Ry

were calculated.

From each set of 10,000 estimates, the bias, variance, standard devisemsquared
error, and root mean squared error were calculated. Using thesétmsa estimator effi-
ciencies were found using both mean squared error and variance t@msyecial-case
calibration and poststratification. Additionally, a tally was kept for each mathtite num-
ber of samples that did not iteratively converge, as in calibration, or thdt or should
not be estimated, as in poststratification. The cases where the poststratifieate could
not be calculated were not included in the determination of the bias and e&rian

4.2 The Comparison of Calibration and Poststratification

Because of the real potential that many of the samples when beginning vith500 and
ng = 2000 would have at least one cross-classification group with no respondiingdn
uals, the poststratified estimator was only calculated for the casenghen5000. Table 2
shows the relative efficiencies of the special-case calibration estimator postsratified
estimator with respect to both mean squared error and variance.

Table 2. Relative Efficiencies of Special-Case Calibration to Poststratification

Pop1 Pop 2 Pop 3 Pop 4
30% | eprsp =0.0002 | eprsp =0.092 | eprsp = 0.094 | eprsp = 0.061
evar = 0.002 evar = 0.637 | eygr = 0.667 | eyqr = 0.474
50% | epse =0.003 |ensp=0.746 | eprsp = 0.735 | eprsp = 0.621
evar = 0.004 evar = 0.826 | eyqr = 0.820 | eyqr = 0.704
70% | eprsp = 0.00004 | eprsp = 0.018 | eprsp = 0.017 | eprsp = 0.011
evar = 0.003 evar = 0426 | eyqr = 0.420 | eyqr = 0.360
80% | eprsp = 0.0001 | epsrsp = 0.068 | epsrsp = 0.067 | epsrsp = 0.044
evar = 0.0001 evar = 0.079 | eyer = 0.078 | eyqr = 0.052

As we can see from Table 2, the calibration estimator has a higher variadca a

much higher bias than the poststratified estimator in Population 1. Recall thaiaRop

1 was created using the same error variance in all cross-classificatiopsgrin fact, the
standard deviation used was proportional to the smallest group fhhgan 640, 548 and,
therefore, relatively small compared to the larger group means. Therédfe values of the
total quarterly wageyy, for businesses in the same cross-classification group with a larger
mean are generally homogeneous. On the other hand, when the staedat@d of the
variable of interest is proportional to the size of the mean in each grouptlaecefore,
is larger for these groups with larger means, then all of the cross-otasisifi groups are
less homogeneous with respect to total quarterly wage. The poststratificagithod is
most effective when the poststratification groups are as homogeneqassible, which
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explains the better performance poststratification shows over speceakalisration in
Population 1. In fact, over the different populations, the calibration estinpeidorms
fairly consistently and so the changes in the relative efficiencies that evinstable 2
depend largely on the performance of the poststratification estimator.

The major disadvantage of poststratification is that an estimate cannot hecedod
if any cross-classification cell has no responding elements. Also, tienearcannot be
estimated if any cross-classification cell has fewer than two respondEantshermore,
Sarndal et al. (1992) state that, to ensure estimator stability, each groujd dieve a
moderate sample size of 20 or more responding elements. If any of thectass#gication
groups have smaller sample sizes, then one or more of the component estifrthies o
poststratification estimator are subject to small sample mean estimation instabilityngesu
from limited information. Table 3 gives the percentage of samples out of tled 6,000
for which a poststratified estimate and variance estimate could not be calcatatddr
which the poststratified estimate should not be considered stable.

Table 3: Percentage of Samples

ng = H00 | ng = 2000 | ng = 5000
estimate| 99.6% 40.4% 2.2%
30% | variance| 100% 86.5% 13%
stability 100% 100% 100%
estimate| 93.5% 25.4% 1.1%
50% | variance| 100% 65.7% 6.2%
stability 100% 100% 100%
estimate] 67% 3.8% 0.02%
70% | variance| 97.4% 16.7% 0.2%
stability 100% 100% 100%
estimate| 72.6% 6.4% 0.1%
80% | variance| 98.2% 24.9% 0.7%
stability 100% 100% 100%

From Table 2 we see that generally, purely based on efficiency, thstadication
estimator should be used. However, for surveys with small sample sizgzaaticularly
those with low response rates, Table 3 shows that the special-case tealil@stimator
is the preferable option since it can be calculated. Additionally, the calibrastima-
tor holds the advantage in cases when the poststratified estimator is notecedssthble
in that the weight adjustments for individuals in a small cross-classificatiounpgio not
depend only on the limited information from those selected individuals. Reeah as-
sume a model in which the response probabilities depend on marginalotagsgication
groups membership. So, the calibration method is using pooled marginal infonrt@ade-
termine nonresponse adjustments, thus eliminating the small sample estimation instability
and resulting in a reliable estimator.

Therefore, the special case calibration estimator is particularly advaniagethe case
when one or more of the cross-classification groups are composednaligoertion of the
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population. In Table 1 we can see that the group corresponding to Statd EBdustry
5 contains 0.18% of the overall population. When selecting a simple randoplesathe
expected sample sizes in that group before nonresponse are 1, 9,iadididuals for

our three sample sizes, respectively. Therefore, in this type of situstiepoststratified
estimator will never be considered reliable. So, while poststratification mant iesa

more efficient estimator, it will generally not be trusted and, thereforteysed without the
collapse of cross-classification cells.

We should note that while poststratification is advantageous with respedicierefy
in many cases, the bias of the special-case calibration estimator is notamakis In
fact, over the several cases of response and over the four popslati@ bias ranges in
absolute value from 119,450 to 1,927,660 while the parameter totals of int@ngstfrom
8,363,461 to 9,061,540, all in hundreds of thousands of dollars. Readlthbse cases
include a sample size of 500 with a response rate of 30%. Thereforepéo@lscase
calibration estimator performs well and should be considered stable witreocollapse of
cross-classification cells.

5. Further Research

We have evaluated the behavior of the special case of calibration usingdwaross-
classification structure characteristics as auxiliary variables as an éitertwapoststratifi-
cation. There are questions that remain that should be treated in futaezaies

5.1 Incorrect Assumptions

It is possible that we have incorrectly assumed that the response pitdsbdepend on
the marginal cross-classification group information when, in fact, thegraepn full cross-
classification information. The evaluation of the effects of this incorrespiorse mecha-
nism assumption on the bias and variance of the proposed estimator wouddfbe u

Another possibility in practice is to not know the true functional form of trepoamse
probabilities and to, therefore, assume incorrectly. It would be useéxdmine the effects
of using the incorrect functional form in the calibration estimator.

5.2 The Choice of Classification Variables

A major question in practical application of this cross-classified calibration adeist
Which of many potential variables should we choose to create the crassfickation struc-
ture? Generally, since we assume the same response probability foreésemnt in the
same cross-classification group, we would want two variables thatatephe individuals
in the population into classes that are homogeneous in response tendencies

Also recall that the variance of the calibration estimator in (31) contains twoaster
that mostly depend on the cross-classification structure being usecfdieea method to
choose the auxiliary variables to be used should be developed suchehvatignce of the
calibration estimator is minimized.

5.3 Extending the Cross-Classification Dimension

In the work proposed here, we have limited the cross-classification gteutottwo classi-
fication categories, however, in practical application it is common to have tharetwo
variables of classification that are of interest. For example, in Section 4xplered the
calibration method for the cross-classification of businesses by statedarsdrintype, but
adding business size might provide more accurate information.
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The way in which the benchmark and model variables are currently deditoad for
extension to higher dimensions of classification because of the potentialreagecthe
dimensions ok andz; with additional indicator variables. Consider Arx B x C'triple
classification structure. Now, using the same definitions of benchmark adel rariables
as above, the dimension of the benchmark variablés4s A x B x C' and the dimension
of the model variables i = A + B + C — 2. Alternatively, different definitions of the
model variable can be introduced. As opposed to using indicator varifblés marginal
classifications of all three classification categories, the model variabldd owtead be
defined as the marginal classifications of two of the three categories, gedia A +
B —1, for example. The cases in which different definitions of the model vagaiievide
the most benefit need to be explored. Introducing different possipp®nse mechanisms
depending on the varying definitions of the model variables, howeverledsds to the need
to evaluate the effect of incorrectly assuming a particular response nisgha

However, in cases in which the dimensionsxqf andz, are large in comparison to
the sample size, the estimation@imay become unstable or even impossible. In this case
or in cases where the marginal double classification structures significhfiidy across
the third classification categories, a stratified model may provide a better estiftat
parameter of interest.

One advantage of a stratification model is that many assumptions about trenstig
between thed strata can be made. For example, the response parameter can be assumed
different in each stratum, yielding independent response parametgks, Alternatively,
the response mechanism can be assumed to be the same for all the straitag iedd
parameter3, used in each of thél stratum total estimators. A third possible model is
a combination of the two previously described extremes, where subgofupe strata,
denotedh* = 1,..., H* with H* < H, share the same response mechanism, yielding
H* different response parametef;,.. A few disadvantages of a stratified model are that
population marginal double classification structures may need be knoveadbr stratum
and that it could prove to be computationally intensiv8jfneeds to be calculated for all
strata.

Inthe casein whicbflh is estimated separately for each stratum, the overall total estima-
tor is the sum of independent components, meaning that the bias and asymmpécies
of this estimator should reflect the bias and asymptotic properties of its comigoria
the case in whictB, . is estimated separately féf* subgroups of théf strata, the overall
estimator is the sum of independent sums of dependent components. Foralhe case
in which a commorg is estimated for alH strata, the components of the overall estimator
are completely dependent. For the two cases in which there is dependenezih the
stratum estimators, the bias and asymptotic properties of the overall estimatoeedll
to be explored. This stratified estimator should also be studied to determine d@it&inc
cases, there are theoretical efficiency advantages over the estimatppusely expanded
classification dimensions.

6. Conclusions

In this paper we have begun the exploration of calibration as a method oéspmmse
adjustment in the treatment of two-way cross-classified data. We havenifeedrthat the
calibration estimator is unbiased and accurate in the case of known regpaisbilities
and asymptotically when the response probabilities must be estimated.

Additionally, from the empirical results we were able to conclude that post&taéion
is generally a more efficient method to adjust for nonresponse in the tasess-classified
data. However, there were many cases, especially when selecting aampliésand sub-
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ject to a low response rate, in which the poststratified estimator could notitadatad
without making adjustments that may inhibit interpretation. Additionally, in evese ca
the poststratified estimator would not be considered reliable. Therefa@eattbration
method using cross-classification structure characteristics as auxiliaaples is a rea-
sonable alternative that can be considered stable and maintains the interposver of
the cross-classification variables.

Additional analysis of this special case of the calibration method, as is destirss
Section 5, should be conducted to further evaluate this method. Howaxesr,tge conclu-
sions resulting from this research, the calibration method is a viable optioofoesponse
adjustment for cross-classified data.
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