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Abstract
In the interest of accurately estimating a parameter of interest, generally a population total, calibra-
tion is a method that adjusts the sampling weights of each selected element such that the adjusted
estimates of the totals of auxiliary, or benchmark, variables equal the known population totals. Cal-
ibration has been used to adjust for frame undercoverage, nonresponse, and sampling weights. To
treat nonresponse, under the quasi-randomization model assumptions, the sample of respondents is
treated as an additional phase of sampling, where the probabilities of response are estimated from a
set of model variables. Under this model and varying response probability assumptions, we explore
a special case of the calibration method to treat doubly cross-classified data that uses characteris-
tics of the classification structure as the benchmark and model variables. The resulting calibration
estimator can be calculated no matter the minimum sample size over the classification groups and
without requiring the collapse of cells, which is its advantage over the poststratified estimator. The-
oretical behavior and empirical comparisons of various estimators are presented and discussed.
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1. Introduction

When population-level information for a finite population is of interest, there are many
sampling designs and estimation methods that yield accurate and efficient estimators from
which to choose. The unbiasedness and small variance of these estimatorsdepend on com-
plete information from a sample that is carefully chosen to be representativeof the popu-
lation of interest. Nonresponse, particularly if systematic, can drastically worsen the accu-
racy and efficiency of these estimators by introducing substantial nonresponse bias. This
situation commonly arises when the information being collected is sensitive, for instance,
financial information.

There are several methods that produce estimators that account for nonresponse and
the more familiar of these, including poststratification, involve separating the selected el-
ements into mutually exclusive and homogeneous groups and adjusting, eitherdirectly or
indirectly, the sampling weights in each group. The poststratified estimator is commonly
used, but as the population level estimate combines the group estimates, there are situations
in which a poststratified estimate or its variance estimate or both cannot be foundor may
be unreliable. The poststratification estimator cannot be calculated if any of the poststratifi-
cation groups have a sample size of zero after the sample has been classified. Additionally,
a variance estimate of the poststratification estimator cannot be calculated if anyof the
groups have a sample size less than two. Therefore, in a situation when the population of
interest includes one or more small groups, especially in the cases of small overall sample
size and low response rates, it becomes likely that the poststratification estimator will not
be a plausible option.

One remedy for this problem is to collapse the groups until each contains enough mem-
bers for estimation. However, this process can begin to render more difficult interpretation
or possibly meaningless interpretation of the components of the estimator. Additionally,
the collapse of cells can affect the homogeneity that is assumed to exist in each group,
which can yield a less efficient poststratified estimator. We propose a special case of the
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calibration method that can be used as an alternative to poststratification because it elim-
inates the need for collapsing cells. Section 2 will briefly summarize the development of
the general calibration method and will present the definitions of the specialcase proposed
here. Section 3 develops and evaluates the behavior of the theoretical model. In Sections
4 and 5, empirical results and further research topics, respectively, will be presented and
discussed.

2. Calibration

As S̈arndal (2007) expresses, calibration is a new name for an existing methodof weight
adjustment. This method was not originally designed for the treatment of nonresponse,
but instead to reduce sampling errors. Considering a sampleS of sizenS drawn from
the populationU of sizeN with known selection probabilitiesπk = 1/dk, the standard
unbiased estimate of the population parameterTy is the sum of the product of the usual
sampling weightsdk and the value of the variable of interestyk for each selected element
k —

t̂y =
∑

k∈S

dkyk. (1)

The calibration method, as presented by Deville and Särndal (1992) among others,
instead uses adjusted expansion weightswk to yield the estimator

t̂y,cal =
∑

k∈S

wkyk. (2)

These calibration weightswk are subject the condition that is termed the calibration con-
straint. For this constraint, we assume that some set of auxiliary variablesxk with known
totals denotedTx are available. We then require the estimated totals of the auxiliary vari-
ables, using the calibration weights, to be equal to their known totals, and thusthe calibra-
tion constraint is

∑

k∈S

wkxk = Tx. (3)

There is a practical advantage to satisfying this constraint in that it guarantees consistency
of the estimates of certain benchmark variables over several different surveys conducted by
the same or even different organizations. A survey yielding estimates of certain benchmark
variables that equal known and accepted totals increases the publicly perceived reliability
of the remaining resulting estimates.

Deville and S̈arndal (1992), who first used the term calibration, also require that some
distance function be minimized so that the calibration weights do not largely deviate from
the sampling weights. They show that the generalized-regression estimator (GREG) can be
expressed in the form of a calibration estimator with weights

wk = dk(1 + qkx
T
k λ), (4)

whereqk are known positive weights unrelated to the sampling weights andλ is the quan-
tity determined by solving the calibration constraint, which can be calculated directly as
it is composed of known quantities. Deville and Särndal (1992) then determine that the
weights achieved by using several different distance functions are asymptotically equivalent
to the generalized-regression estimator. Using the variance expression of the generalized-
regression estimator, an estimate of the variance of the calibration estimator canbe found.
The evaluation of this variance expression suggests that using the calibration weightswk is
advantageous to the sampling weightsdk in terms of estimator variance.
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Lundstr̈om and S̈arndal (1999) propose similarly estimated calibration weights to be
used to additionally adjust for unit nonresponse under a two-phase modelwhere in the sec-
ond phase, the respondent sampleR of sizenR is drawn from the sampleS with known
response probabilitiesqk = 1/ak. They assume that the adjustment term of the calibration
weights in (4) can be used to account for nonresponse bias if all relevant variables are in-
cluded in the set of benchmark variables. Under this model, the adjustment to the sampling
weights can be thought of as an estimate of the response weightsak.

Following the introduction of this idea by Lundström and S̈arndal (1999), many modi-
fications were proposed — both to the general sample-level calibration method and specifi-
cally to the response-level calibration method — that have yielded more promisingmodels
for the unknown response weightsak. For example, as an alternative to linear calibration
weights for nonresponse adjustment, Folsom and Singh (2000) presenta class of calibra-
tion weights that includes the logistic function as a special case. They also present the idea
to use a similar model to adjust for frame undercoverage.

As opposed to minimizing distance functions to determine the set of calibration weights,
several authors have chosen to define calibration weights to be some function of the auxil-
iary variables,

wk = dkf(x
T
k λ), (5)

and to solve for them directly from the calibration constraint equation. Fromthis expression
of the calibration weights we can clearly see that, in the case of nonresponse adjustment,
the role of this function will be to estimate the response weightsak. Chang and Kott
(2008) term these functions “back-link” functions since, in the context of nonresponse
adjustment, these functions are of the form of the inverse or back transformations of link
functions found in generalized linear models as discussed in McCullagh andNelder (1989).
Fuller et al (1994) discuss using a functional form of the auxiliary variables to adjust for
nonresponse, but define the back-link function to be

f(xT
k λ) = 1 + x

T
kλ, (6)

keeping the calibration weights in linear form. Alternatively, Folsom (1991) proposes back-
link functions that better reflect the response mechanism, including the logisticand expo-
nential functions. Nonlinear calibration weights are also proposed by Kott(2006).

In all of the calibration estimation schemes proposed prior to the year 2000, only one
set of auxiliary variables was being used – the variables with the known population totals
to which the adjusted weights were being fit. We will call these variables the benchmark
variables. Estavao and Särndal (2000) propose using calibration weights that are estimated
using a linear back-link function

f(zTk γ) = 1 + z
T
k γ, (7)

which is dependent on another set of auxiliary variableszk. This second set of auxiliary
variables, that we will call model variables, is required in Estavao and Särndal (2000) to be
of the same dimension as the benchmark variables. Kott (2006) also treats thecase in which
linear calibration weights are estimated using model variables of the same dimension as the
benchmark variables. Additionally, he introduces the idea of nonlinear calibration weights
depending on these model variables, such as

f(zTk γ) = ez
T
k γ . (8)

Chang and Kott (2008), treating the general nonlinear calibration weightsfor nonresponse
adjustment case, then relax the equal dimension restriction on the model variables and
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only require that the set of model variables be of smaller dimension than the benchmark
variables. In general, if the number of model variables is less than the number of bench-
mark variables, the calibration constraint cannot be exactly satisfied for all known control
totals. In a manner reminiscent of nonlinear regression, they propose to estimate the re-
sponse weights and, therefore, the calibration weights by minimizing a quadratic form of
the differences between the known benchmark totals and their estimated values.

The calibration estimator that we propose uses benchmark and model variables, both
associated differently with the cross-classification structure, and also uses a functional form
of the model variables for the definition of the calibration weightswk. To define the bench-
mark and model variables, consider a double classification structure in which each element
selected to the sample is classified into a particular group based on two chosencharac-
teristics. AssumeI row classifications andJ column classifications, resulting inI × J
cross-classification groups andI + J marginal groups. To create the special case of cal-
ibration proposed here, vectors of membership indicator variables will serve as our defi-
nitions of the auxiliary variables. These choices yield an estimator that most accurately
models nonresponse while comparing directly to the group-level reweightingmethod used
in poststratification. Additionally, this special case of the calibration method canbe used
as an alternative to collapsing cross-classification cells for poststratification. As both are
reweighting methods that can be used to adjust for nonresponse, many ofthe authors dis-
cussed in this section and also Chang (2012) have presented this idea of using the calibra-
tion estimator as an alternative for poststratification. This comparison has been discussed
with varying definitions of final sample and auxiliary variables — all of which are different
than those presented here.

3. The Special-Case Calibration Model

3.1 Nonresponse Model

For the model developed here, we assume a with-replacement sampling scheme and so will
need to modify the usual two-phase model. Consider the following design: Inthe first
phase, choose a with-replacement sampleS of sizenS from the populationU of sizeN
with probabilities of selectionpk for every elementk ∈ U . Under this design,pk is the
probability that elementk is chosen on thejth draw orP (kj = k) = pk for j = 1, . . . , nS .
SinceS is chosen with replacement, let the unadjusted expansion weights be

dkj =
1

nSpkj

as in thepwr-estimator discussed in Särndal et al. (1992).
Here we should note that if the sample size is small relative to the population size and if

the selection probabilities are small, it is unlikely that any individual will be chosen into the
sample more than once. Therefore, while we use the nice theoretical properties of a with-
replacement design, the realizations of with- and without-replacement sampling in practice
will likely be the same.

In the second phase of this design, a respondent sample is selected fromthe elements
chosen into the sample,S, under a Poisson sampling design. We will assume that any
element selected into the sampleS more than once will choose to or not to respond to
each repeated draw independently. For instance, if elementk is selected twice, it would be
possible for elementk to provide the requested information on one draw and not the other.
Realistically, if any element is selected into the sampleS more than once, that individual
would be given the survey once and the resulting information would be usedin the analysis
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twice. Adjustments to the model for this more realistic assumption of dependent responses
to multiple selections have been made, but will not be discussed here.

Again we should note that if the sample size is small relative to the population size
and the selection probabilities are small, then multiple selections of any individualto the
sampleS is unlikely. Therefore, the realizations of the independent and dependent response
mechanisms in practice will be identical. The independent response mechanism assumption
used here will allow us to develop needed theoretical properties.

Now, suppose that each elementk has a probability of responseqk and letIkj be an
indicator variable for whether thekth element responds to the survey when selected on
the jth draw. It follows thatP (Ikj = 1) = qk. Note that sinceIkj , j = 1, . . . , nS , are
independent, the respondent sampleR of sizenR is a with-replacement sample from the
populationU with probability of selectionpkqk per draw.

To estimate the parameter of interest,Ty =
∑

k∈U yk, define

t̂y =

nR
∑

i=1

dki
1

qki
yki

=
1

nS

nS
∑

j=1

1

pkjqkj
ykjIkj , (9)

which is a mean of independent and identically distributed random variables.

Theorem 1. The estimator̂ty in (9) is unbiased under the model and its assumptions pre-
sented above.

The outline of the proof begins by using the usual conditional expectation property,

E(t̂y) = ES(ER(t̂y|S))

= ES

(

ER

( 1

nS

nS
∑

j=1

1

pkjqkj
ykjIkj

∣

∣

∣
S
))

.

Remark 1. Recall thatIkj is an indicator variable for whether elementk responds when
chosen into the sample on thejth draw. Therefore,Ikj is a Bernoulli random variable that
is independent and identically distributed with the following properties:

E(Ikj ) = qk (10)

and
Var(Ikj ) = qk(1− qk). (11)

Using property (10) in Remark 1,

E(t̂y) = ES

( 1

nS

nS
∑

j=1

1

pkj
ykj

)

.

SinceWkj =
1

pkj
ykj are independent and identically distributed random variables,

E(t̂y) =
∑

k∈U

yk

= Ty.

Since the expected value oft̂y is the population total of interest, the estimatort̂y in (9)
is unbiased.
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Theorem 2. The estimator̂ty in (9) has variance

Var(t̂y) =
1

nS

∑

k∈U

1

pkqk
y2k +

1

nS

(

∑

k∈U

pk − 2
)

T 2

y (12)

under the model and its assumptions presented in above.

The outline of this proof beings with the usual conditional variance property

Var(t̂y) = VarS(ER(t̂y|S)) + ES(VarR(t̂y|S)). (13)

From the proof of Theorem 1, we know the expression for the inner quantity of the first
component, therefore,

VarS(ER(t̂y|S)) = VarS
( 1

nS

nS
∑

j=1

1

pkj
ykj

)

.

We also know thatWkj = 1

pkj
ykj , j = 1, . . . , nS , are independent and identically

distributed random variables. Therefore, the first component of (13)is

VarS(ER(t̂y|S)) =
1

nS

∑

k∈U

( 1

pk
yk − Ty

)2

pk

=
1

nS

∑

k∈U

1

pk
y2k −

1

nS

(

∑

k∈U

pk − 2
)

T 2

y . (14)

The second component of Var(t̂y) in (13) uses property (11) in Remark 1 to yield

ES(VarR(t̂y|S)) = ES

( 1

n2

S

nS
∑

j=1

( 1

qkj
− 1

) 1

p2kj
y2kj

)

.

SinceWkj =
(

1

qkj
− 1

)

1

p2kj

y2kj are independent and identically distributed random

variables, the second component of (13) is

ES(VarR(t̂y|S)) =
1

nS

∑

k∈U

( 1

qk
− 1

) 1

pk
y2k. (15)

Combining the two components – (14) and (15) – of Var(t̂y) yields the variance expres-
sion in (12).

Here it is interesting to note that the variance includes two components, both of which
depend on the selection probabilities. However, only one of the componentsdepends on
the response probabilities.

3.2 The Nonresponse Model with Unknown Response Probabilities

In Section 3.1 we assumed that the probabilities of responseqk were known, which is gener-
ally an unreasonable assumption. In order to use estimated probabilities of response, some
adjustments must be made to the model. Now, assume that the true response probabilities
can be modeled as

qk =
1

f(zTk β0)
, (16)
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wheref(η) is a monotonic and twice-differentiable function with first derivative denoted as
f1(η), wherezk denotes the model variables, and whereβ0 is the true value of an unknown
response parameter,β.

In order to estimate the parameter of interestTy =
∑

k∈U yk, let the calibration estima-
tor be

t̂y,cal =

nR
∑

i=1

dkif(z
T
ki
β̂)yki

=
1

nS

nS
∑

j=1

1

pkj
f(zTkj β̂)ykjIkj , (17)

whereβ̂ estimates the response parameter by minimizing the optimization function

R(β) = (Tx − t̂x(β))
T (Tx − t̂x(β)), (18)

whereTx are the known totals of the benchmark variables, which are denoted byxk, and
where

t̂x(β) =

nR
∑

i=1

dkif(z
T
ki
β)xki

=
1

nS

nS
∑

j=1

1

pkj
f(zTkjβ)xkjIkj . (19)

Note that ifβ0 is known, thenf(zTkj β̂) = f(zTkjβ0) =
1

qkj
and this estimator simplifies

to the estimator̂ty in (9) in Section 3.1.

3.2.1 The Two-Way Cross-Classification Definitions for Calibration Estimation

Recall the two-way cross-classification structure presented in Section 3. For our special
case of the calibration method to compare with poststratification, we will define thebench-
mark variables,xk, as aP -vector of indicator variables of cross-classification cell mem-
bership, whereP = I × J . Therefore,Tx will be aP -vector of cross-classification cell
population totals.

We will define the model variables,zk, to be aQ-vector of indicator variables of the
marginal classifications for elementk. Therefore, eachzk will be a vector of dimension
Q ≤ P with a 1 in two places. For ease of interpretation, defineQ = I + J with one
indicator variable for each of theI levels and one indicator variable for each of theJ
levels. However, one should note that using anI + J vector will result in singularity while
solving the estimating equation (18) since one degree of freedom is lost dueto the fact that
both sets of marginal totals will equal the population total. Therefore,Q should be defined
by I + J − 1 for calculation.

By defining the benchmark and model variables in this way, we are making the assump-
tion that the probabilities of response are equal for all elementsk belonging to the same
cross-classification group. Also, we are requiring knowledge of the cross-classification
structure of the population with our definition ofTx.

Now, if we let

θg =
1

Ng

∑

k∈Ug

yk (20)
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be the mean of the variable of interest in thegth cross-classification group andθ be aP -
vector of the population meansθg, then another characteristic of two-way cross-classification
is that

yk = x
T
k θ + ǫk

= θg + ǫk (21)

with the error termǫk following the condition
∑

k∈Ug

ǫk = 0. (22)

3.2.2 The Consistency and Distribution ofβ̂

In order to examine the behavior of the calibration estimator in (17) , we will need to

employ methods that requirêβ to be a consistent estimator ofβ0 andβ̂ − β0 = O
(

1√
nS

)

to hold. The proofs for the following theorems are lengthy and not shown here.

Theorem 3. Under the model and its assumptions defined in Section 3.2,RnS (β) →
R∞(β) almost surely.

Assumption 1. β0 is the unique minimum ofR∞(β).

Theorem 4. In any compact set which containsβ0 as an interior point,RnS (β) → R∞(β)
uniformly in probability.

Theorem 5. In any neighborhood ofβ0 defined as in Assumption 1,̂βnS
→ β0 in proba-

bility.

Theorem 6.
√
nS(β̂ − β0) converges in distribution to a Normal distribution with mean

zero and constant varianceVβ.

After several lengthy derivations not shown here that make use of the Taylor Series of
g(β̂) aroundβ0, we find thatµ̂y,cal = 1/Nt̂y,cal can be approximated by

µ̂y,cal = µ̂y + (µ
x
− µ̂

x
)TPθ +Op

( 1

nS

)

, (23)

where

µ̂y =
1

N
t̂y, (24)

µ
x

=
1

N
Tx

=
1

N

∑

k∈U

xk

=
1

NnS

nS
∑

j=1

1

pkj
f(zTkj β̂)xkjIkj ,

µ̂
x

=
1

NnS

nS
∑

j=1

1

pkj
f(zTkjβ0)xkjIkj ,
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P = µ
xz
(µT

xz
µ
xz
)−1µT

xz
, (25)

µ
xz

=
1

N

∑

k∈U

f1(z
T
k β0)

f(zTk β0)
xkz

T
k . (26)

This approximation is useful for the evaluation of the theoretical propertiesof the cal-
ibration estimator because it only depends on the true response parameterβ0 and not its
estimated valuêβ, which varies from sample to sample.

Theorem 7. The estimator̂µy,cal in (23), under the unknown response probability model
and its assumptions is unbiased to the orderO( 1

nS
).

The outline of this proof starts with the expected value of the useful approximation in
(23)

E(µ̂y,cal) = E(µ̂y) + (µ
x
− E(µ̂

x
))TPθ +O

( 1

nS

)

. (27)

From Theorem 1 we know that
E(t̂y) = Ty

thus

E(µ̂y) = µy. (28)

As t̂x is of the same form aŝty but withykj substituted byxkj , it also follows that

E(µ̂
x
) = µ

x
. (29)

Substituting the expected values into (27), yields

E(µ̂y,cal) = µy +O
( 1

nS

)

. (30)

Therefore,̂µy,cal is unbiased to the order ofO
(

1

nS

)

.

From this result we determine that calibration adjustment leads to an accurate estimate

to the orderO
(

1

nS

)

in the presence in nonresponse.

Theorem 8. The estimator̂µy,cal in (23), under the unknown response probability model
and its assumptions, has variance

Var(µ̂y,cal) = Var(µ̂y)− θT
Σxθ + θT (I−P)TΣx(I−P)θ (31)

to the orderO
(

1

n
3/2
S

)

, where Var(µ̂y) is 1

N2 Var(t̂y) — found in Theorem 2,I is aP × P

identity matrix, and
Σx = Var(µ̂

x
). (32)

The proof is lengthy and not shown here.
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4. Results and Discussion

4.1 Introduction

In this section we look at some empirical results of the special-case calibrationmethod pre-
sented in Section 3.2. To do so, we use four artificial populations, each based upon charac-
teristics of a set of data from the Quarterly Census of Employment and Wages conducted
in the first quarter of 2005 by the Bureau of Labor Statistics. Each of theN = 283, 725
businesses is classified by the state in which they are located — A, B, C, D, orE — and
by the type of industry to which they belong — 1, 2, 3, 4, or 5. The variable of interest
is total quarterly wages. Each of the four populations is based on the parameters given
in Table 1 withFij representing the percentage of the population that belongs to theijth

cross-classification group.

Table 1: Population Parameters
1 2 3 4 5

N11 = 5986 N12 = 5548 N13 = 7712 N14 = 3969 N15 = 1299

A F11 = 2.11 F12 = 1.96 F13 = 2.72 F14 = 1.40 F15 = 0.46

θ11 = 2, 991, 523 θ12 = 3, 854, 097 θ13 = 5, 812, 704 θ14 = 17, 760, 295 θ15 = 4, 158, 368

N21 = 18, 782 N22 = 31, 572 N23 = 22, 012 N24 = 4982 N25 = 4504

B F21 = 6.62 F22 = 11.1 F23 = 7.76 f24 = 1.76 F25 = 1.59

θ21 = 1, 048, 093 θ22 = 1, 228, 337 θ23 = 4, 630, 796 θ24 = 5, 122, 252 θ25 = 730, 731

N31 = 13, 518 N32 = 13, 099 N33 = 17, 837 N34 = 5610 N35 = 3001

C F31 = 4.76 F32 = 4.62 F33 = 6.29 F34 = 1.98 F35 = 1.06

θ31 = 1, 293, 414 θ32 = 1, 706, 660 θ33 = 4, 112, 411 θ34 = 7, 687, 645 θ35 = 1, 761, 251

N41 = 30, 428 N42 = 36, 017 N43 = 32, 541 N44 = 10, 963 N45 = 5399

D F41 = 10.7 F42 = 12.7 F43 = 11.5 F44 = 3.86 F45 = 1.90

θ41 = 708, 971 θ42 = 758, 204 θ43 = 2, 104, 408 θ44 = 4, 273, 129 θ45 = 640, 548

N51 = 2225 N52 = 2020 N53 = 3110 N54 = 1076 N55 = 515

E F51 = 0.78 F52 = 0.71 F53 = 1.10 F54 = 0.38 F55 = 0.18

θ51 = 7, 418, 207 θ52 = 10, 368, 820 θ53 = 21, 441, 100 θ54 = 44, 797, 328 θ55 = 11, 421, 101

Each of the four populations was created such that the individual valuesof total quar-
terly wage,yk, for the members in each cross-classification group follow a Normal dis-
tribution with the means in Table 1 and varying values of standard deviation. The sets
of standard deviations used to create Populations 1 through 4, respectively, were constant
for all groups, varying and proportional to the mean in each group, constant for each state
but varying for each industry group, and simply varying for each group. Specifically, the
standard deviation used for all cross-classification groups to create Population 1 is propor-
tional to the smallest group meanθ45 = 640, 548 and, therefore, small relative to the larger
group means. These four populations yielded the following totals of the quarterly wages:
Ty,1 = 8, 366, 800, Ty,2 = 8, 363, 461, Ty,3 = 8, 356, 790, andTy,4 = 9, 061, 540, all in
hundred of thousands of dollars.

Once the populations were created, a set of 10,000 samples was taken from each pop-
ulation for each three sample sizes —nS = 500, nS = 2000, andnS = 5000 — using
simple random sampling. Next, a respondent sample was selected from eachsample using
each of four different true response parameters, yielding average response rates of approx-
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imately 30%, 50%, 70%, and 80%, in the inverse response functionf(η) = 1 + exp(−η).
Using each sample in each of these several sets of 10,000 respondent samples, the

calibration estimator in (17) and the poststratification estimator

t̂y,p =
∑

g∈G

Ng

nRg

∑

i∈Rg

yi

were calculated.
From each set of 10,000 estimates, the bias, variance, standard deviation, mean squared

error, and root mean squared error were calculated. Using these quantities, estimator effi-
ciencies were found using both mean squared error and variance to compare special-case
calibration and poststratification. Additionally, a tally was kept for each methodof the num-
ber of samples that did not iteratively converge, as in calibration, or that could or should
not be estimated, as in poststratification. The cases where the poststratified estimate could
not be calculated were not included in the determination of the bias and variance.

4.2 The Comparison of Calibration and Poststratification

Because of the real potential that many of the samples when beginning withnS = 500 and
nS = 2000 would have at least one cross-classification group with no responding individ-
uals, the poststratified estimator was only calculated for the case whennS = 5000. Table 2
shows the relative efficiencies of the special-case calibration estimator to thepoststratified
estimator with respect to both mean squared error and variance.

Table 2: Relative Efficiencies of Special-Case Calibration to Poststratification

Pop 1 Pop 2 Pop 3 Pop 4

30% eMSE = 0.0002 eMSE = 0.092 eMSE = 0.094 eMSE = 0.061

eV ar = 0.002 eV ar = 0.637 eV ar = 0.667 eV ar = 0.474

50% eMSE = 0.003 eMSE = 0.746 eMSE = 0.735 eMSE = 0.621

eV ar = 0.004 eV ar = 0.826 eV ar = 0.820 eV ar = 0.704

70% eMSE = 0.00004 eMSE = 0.018 eMSE = 0.017 eMSE = 0.011

eV ar = 0.003 eV ar = 0.426 eV ar = 0.420 eV ar = 0.360

80% eMSE = 0.0001 eMSE = 0.068 eMSE = 0.067 eMSE = 0.044

eV ar = 0.0001 eV ar = 0.079 eV ar = 0.078 eV ar = 0.052

As we can see from Table 2, the calibration estimator has a higher variance and a
much higher bias than the poststratified estimator in Population 1. Recall that Population
1 was created using the same error variance in all cross-classification groups. In fact, the
standard deviation used was proportional to the smallest group meanθ45 = 640, 548 and,
therefore, relatively small compared to the larger group means. Therefore, the values of the
total quarterly wage,yk, for businesses in the same cross-classification group with a larger
mean are generally homogeneous. On the other hand, when the standard deviation of the
variable of interest is proportional to the size of the mean in each group and, therefore,
is larger for these groups with larger means, then all of the cross-classification groups are
less homogeneous with respect to total quarterly wage. The poststratification method is
most effective when the poststratification groups are as homogeneous aspossible, which
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explains the better performance poststratification shows over special-case calibration in
Population 1. In fact, over the different populations, the calibration estimator performs
fairly consistently and so the changes in the relative efficiencies that we see in Table 2
depend largely on the performance of the poststratification estimator.

The major disadvantage of poststratification is that an estimate cannot be produced
if any cross-classification cell has no responding elements. Also, the variance cannot be
estimated if any cross-classification cell has fewer than two respondents.Furthermore,
Särndal et al. (1992) state that, to ensure estimator stability, each group should have a
moderate sample size of 20 or more responding elements. If any of the cross-classification
groups have smaller sample sizes, then one or more of the component estimates of the
poststratification estimator are subject to small sample mean estimation instability, resulting
from limited information. Table 3 gives the percentage of samples out of the set of 10,000
for which a poststratified estimate and variance estimate could not be calculatedand for
which the poststratified estimate should not be considered stable.

Table 3: Percentage of Samples

nS = 500 nS = 2000 nS = 5000

estimate 99.6% 40.4% 2.2%

30% variance 100% 86.5% 13%

stability 100% 100% 100%

estimate 93.5% 25.4% 1.1%

50% variance 100% 65.7% 6.2%

stability 100% 100% 100%

estimate 67% 3.8% 0.02%

70% variance 97.4% 16.7% 0.2%

stability 100% 100% 100%

estimate 72.6% 6.4% 0.1%

80% variance 98.2% 24.9% 0.7%

stability 100% 100% 100%

From Table 2 we see that generally, purely based on efficiency, the poststratification
estimator should be used. However, for surveys with small sample sizes andparticularly
those with low response rates, Table 3 shows that the special-case calibration estimator
is the preferable option since it can be calculated. Additionally, the calibrationestima-
tor holds the advantage in cases when the poststratified estimator is not considered stable
in that the weight adjustments for individuals in a small cross-classification group do not
depend only on the limited information from those selected individuals. Recall that we as-
sume a model in which the response probabilities depend on marginal cross-classification
groups membership. So, the calibration method is using pooled marginal information to de-
termine nonresponse adjustments, thus eliminating the small sample estimation instability
and resulting in a reliable estimator.

Therefore, the special case calibration estimator is particularly advantageous in the case
when one or more of the cross-classification groups are composed of a small portion of the
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population. In Table 1 we can see that the group corresponding to State E and Industry
5 contains 0.18% of the overall population. When selecting a simple random sample, the
expected sample sizes in that group before nonresponse are 1, 4, and9 individuals for
our three sample sizes, respectively. Therefore, in this type of situation,the poststratified
estimator will never be considered reliable. So, while poststratification may result in a
more efficient estimator, it will generally not be trusted and, therefore, not used without the
collapse of cross-classification cells.

We should note that while poststratification is advantageous with respect to efficiency
in many cases, the bias of the special-case calibration estimator is not unreasonable. In
fact, over the several cases of response and over the four populations, the bias ranges in
absolute value from 119,450 to 1,927,660 while the parameter totals of interestrange from
8,363,461 to 9,061,540, all in hundreds of thousands of dollars. Recall that these cases
include a sample size of 500 with a response rate of 30%. Therefore, the special-case
calibration estimator performs well and should be considered stable without the collapse of
cross-classification cells.

5. Further Research

We have evaluated the behavior of the special case of calibration using two-way cross-
classification structure characteristics as auxiliary variables as an alternative to poststratifi-
cation. There are questions that remain that should be treated in future research.

5.1 Incorrect Assumptions

It is possible that we have incorrectly assumed that the response probabilities depend on
the marginal cross-classification group information when, in fact, they depend on full cross-
classification information. The evaluation of the effects of this incorrect response mecha-
nism assumption on the bias and variance of the proposed estimator would be useful.

Another possibility in practice is to not know the true functional form of the response
probabilities and to, therefore, assume incorrectly. It would be useful toexamine the effects
of using the incorrect functional form in the calibration estimator.

5.2 The Choice of Classification Variables

A major question in practical application of this cross-classified calibration method is:
Which of many potential variables should we choose to create the cross-classification struc-
ture? Generally, since we assume the same response probability for everyelement in the
same cross-classification group, we would want two variables that separate the individuals
in the population into classes that are homogeneous in response tendencies.

Also recall that the variance of the calibration estimator in (31) contains two terms
that mostly depend on the cross-classification structure being used. Therefore, a method to
choose the auxiliary variables to be used should be developed such that the variance of the
calibration estimator is minimized.

5.3 Extending the Cross-Classification Dimension

In the work proposed here, we have limited the cross-classification structure to two classi-
fication categories, however, in practical application it is common to have morethan two
variables of classification that are of interest. For example, in Section 4, we explored the
calibration method for the cross-classification of businesses by state and industry type, but
adding business size might provide more accurate information.
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The way in which the benchmark and model variables are currently definedallow for
extension to higher dimensions of classification because of the potential to increase the
dimensions ofxk andzk with additional indicator variables. Consider anA×B×C triple
classification structure. Now, using the same definitions of benchmark and model variables
as above, the dimension of the benchmark variables isP = A×B ×C and the dimension
of the model variables isQ = A + B + C − 2. Alternatively, different definitions of the
model variable can be introduced. As opposed to using indicator variablesfor the marginal
classifications of all three classification categories, the model variables could instead be
defined as the marginal classifications of two of the three categories, yielding Q = A +
B−1, for example. The cases in which different definitions of the model variables provide
the most benefit need to be explored. Introducing different possible response mechanisms
depending on the varying definitions of the model variables, however, also leads to the need
to evaluate the effect of incorrectly assuming a particular response mechanism.

However, in cases in which the dimensions ofxk andzk are large in comparison to
the sample size, the estimation ofβ̂ may become unstable or even impossible. In this case
or in cases where the marginal double classification structures significantlydiffer across
the third classification categories, a stratified model may provide a better estimateof the
parameter of interest.

One advantage of a stratification model is that many assumptions about the relationship
between theH strata can be made. For example, the response parameter can be assumed
different in each stratum, yieldingH independent response parameters,βh. Alternatively,
the response mechanism can be assumed to be the same for all the strata, yielding one
parameter,β, used in each of theH stratum total estimators. A third possible model is
a combination of the two previously described extremes, where subgroupsof the strata,
denotedh∗ = 1, . . . , H∗ with H∗ ≤ H, share the same response mechanism, yielding
H∗ different response parameters,βh∗ . A few disadvantages of a stratified model are that
population marginal double classification structures may need be known foreach stratum
and that it could prove to be computationally intensive ifβh needs to be calculated for all
strata.

In the case in whicĥβh is estimated separately for each stratum, the overall total estima-
tor is the sum of independent components, meaning that the bias and asymptoticproperties
of this estimator should reflect the bias and asymptotic properties of its components. In
the case in whicĥβh∗ is estimated separately forH∗ subgroups of theH strata, the overall
estimator is the sum of independent sums of dependent components. Finally,for the case
in which a common̂β is estimated for allH strata, the components of the overall estimator
are completely dependent. For the two cases in which there is dependence between the
stratum estimators, the bias and asymptotic properties of the overall estimator willneed
to be explored. This stratified estimator should also be studied to determine if, in certain
cases, there are theoretical efficiency advantages over the estimator using purely expanded
classification dimensions.

6. Conclusions

In this paper we have begun the exploration of calibration as a method of nonresponse
adjustment in the treatment of two-way cross-classified data. We have determined that the
calibration estimator is unbiased and accurate in the case of known response probabilities
and asymptotically when the response probabilities must be estimated.

Additionally, from the empirical results we were able to conclude that poststratification
is generally a more efficient method to adjust for nonresponse in the case of cross-classified
data. However, there were many cases, especially when selecting a small sample and sub-
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ject to a low response rate, in which the poststratified estimator could not be calculated
without making adjustments that may inhibit interpretation. Additionally, in every case
the poststratified estimator would not be considered reliable. Therefore, the calibration
method using cross-classification structure characteristics as auxiliary variables is a rea-
sonable alternative that can be considered stable and maintains the interpretive power of
the cross-classification variables.

Additional analysis of this special case of the calibration method, as is discussed in
Section 5, should be conducted to further evaluate this method. However, given the conclu-
sions resulting from this research, the calibration method is a viable option fornonresponse
adjustment for cross-classified data.
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