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Abstract
Motivated by the problems of ‘quality filtering’ of estimated counts in American

Community Survey (ACS) tables, and of reporting small-domain coverage results
from the Census Coverage Measurement (CCM) program, this paper studies meth-
ods for placing confidence bounds on proportions for cells and tables, estimated
from complex surveys, in which the estimated counts are zeroes. While coefficients
of variation are generally used in measuring the quality of estimated counts, they do
not make sense for assessing validity of very small estimated counts. The problem
is formulated here in terms of (upper) confidence bounds for unknown proportions.
We discuss methods of creating confidence bounds from small-area models includ-
ing logistic, beta-binomial, and variance-stabilized (arcsin square root transformed)
linear models. The model-based confidence bounds are compared with single-cell
bounds derived from arcsin-square-root transformed binomial intervals with survey
weights embodied in the ‘effective sample size’. The comparison is illustrated on
county-level data about Housing-Unit Erroneous Enumeration status from the 2010
CCM.

Key Words: arcsin square root transformation, confidence bound, parametric
bootstrap, prediction interval, beta-binomial regression, transformed Fay-Herriot
model

1. Introduction

Within the same year, the Census Bureau encountered two similar problems relating
to the estimation of proportions in small domains. The first one was to provide
bounding intervals of small estimated proportions in American Community Survey
(ACS) tabulations. The second was to construct a measure of uncertainty for county
and place level estimates of Erroneous Enumeration (EE) rates among Housing
Units in the Census Coverage Measurement (CCM) program.

These problems have three salient common features that define a generic problem
in survey estimation. First, they require interval estimates corresponding to sur-
vey point estimates with values near zero. This requires special treatment because
the straightforward design-based variance estimators of small proportions yield in-
terval estimators unrealistically close to zero. The second common feature is the
possibility of using small-area estimation techniques, both for point and interval es-
timators, because potentially useful covariates are available. These covariates may
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be the categorical demographic variables (geography, race, age, etc.) defining a fine
cross-classification, as in the tables of the ACS, or may arise from a combination of
demographic variables and extensive paradata features of a well-documented frame,
as in the CCM example. The third common feature is the availability of a strong
synthetic predictor: as often occurs in small-domain survey problems, a local-area
proportion can be roughly estimated by the corresponding proportion over an appro-
priately chosen higher level of aggregation, as when county rates are approximated
by the analogous state-wide rates. As in other small-area survey problems, a recur-
ring theme is the balancing of an aggregated, possibly biased data source versus a
smaller, highly variable one.

This paper will discuss general methods for using small-area techniques for one-
sided interval estimation of small survey proportions, and for comparing these meth-
ods to ‘cell-based’ or direct interval estimates that do not borrow strength across
small domains or cells. The ACS application was discussed in Slud (2012) and is
still under investigation. In this paper, methods and results will apply to the CCM
EE rates for housing units.

The paper is organized as follows. In Section 2, the data structure, notation,
models and methods are defined. Section 3 presents the necessary complication of
effective sample sizes which are to be used as sample sizes either in small-area models
or in transformed-scale confidence intervals. Section 4 provides background on the
CCM program to which the techniques of the paper are applied. Section 5 describes
the choice of covariates entering the small-area regression-type models. Finally, in
Section 6 we compare and interpret the numerical results on the CCM data and
give a preliminary assessment at the level of the larger counties of the relative
value of cell-based versus small area one-sided upper-bounding interval estimates.
Conclusions and remaining research questions are summarized in Section 7.

2. Setting, Models, and Methods

The setting is a data structure in which m small domains or ‘areas’ i = 1, . . . ,m are
equipped with survey-weighted (ratio) estimators ˆ̄yi ≡ Ŷi/N̂i, where Ni denotes
a (generally unknown) domain population size, and where the survey-estimated
proportion ˆ̄yi is defined equal to the further expressions

ˆ̄yi =
Ŷi

N̂i

=
yi
ni

=
y∗i
n∗i

(1)

Here Ŷi and N̂i are the area y-indicator total and population-total estimates,
respectively. The denominator ni is the actual number of people or units sampled
in area i, while yi is a derived rather than an observed quantity, interpreted as the
(estimated) count of y-indicators of 1 among the sample. The denominator n∗i
is a so-called effective sample size related to ni/DEFFi where DEFF denotes the
‘design effect’, the ratio of design-based sample variance of yi = ni ˆ̄yi to what it
would be under a simple random sampling design. Alternative methods for defining
the effective sample size n∗i are discussed in Section 3 below. Then y∗i is interpreted
as a sample count associated with the effective sample size n∗i and is defined by
(1). The terms used in (1) are set so that the three ratios are exactly equal.

Despite the use of the terms y∗i and n∗i as counts and sample sizes, these quanti-
ties defined in Sec. 3.2 and in (1) are generally not integer values. Nevertheless, we
maximize the same likelihoods defined for the models (4) – (6) to generate parame-
ter estimates. However, when models (5) and (6) are used in generating parametric
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bootstrap samples, we use ‘stochastic rounding’ which means that samples with
non-integer sample size n∗i are drawn from the next-larger integer sample size with
probability equal to the fractional part of n∗i , and otherwise from the next-smaller
integer sample size.

We compare four methods of construction of upper confidence bounds (UCBs)
for survey-based estimates of small proportions ȳi, building on a similar comparison
of the first three which was undertaken by Slud (2012). The first, called a Cell-based
method, is a direct method not based on a model with shared parameter across areas
i. The other methods are based on small area estimation models, which take three
different forms but share the feature that the unknown survey proportions have a
generalized linear regression form in terms of covariates xi, with error or dispersion
measured by a single additional unknown parameter. Each of the three models also
involves a nonlinear transformation from regression scores xtri β to the probability
scale.

2.1 Cell-Based Method

The Cell-based method assumes a simple binomial model for the untransformed
data, with an effective sample size of n∗i and a rate πi = ȳi for area i. The arc-
sin square-root transformation is a variance-stabilizing transformation for binomial
proportions, which means that for binomial or simple random sampled data, the
variance of this transformation of the sample mean approximately, via the Delta
Method, does not depend on the underlying rate πi. That is, when n∗i is moder-
ately large,

y∗i ∼ Binom(n∗i , ȳi) =⇒ arcsin(
√
y∗i /n

∗
i )

D
≈ N (arcsin

√
ȳi,

1

4n∗i
). (2)

Based only on data y∗i from area i, a standard one-sided confidence interval
for πi = ȳi is then derived from the level 1− α confidence statement

arcsin(
√
y∗i /n

∗
i ) − arcsin(

√
ȳi) ≥ −zα/

√
4n∗i

which is immediately transformed back to the probability scale to give

UCB.celli = min
{

1, sin2
(

arcsin(
√
y∗i /n

∗
i ) + zα /

√
4n∗i

)}
(3)

Although this method is simple to describe, correct for large samples, and leads to
bounds not so inflated near πi = 0 as several of the otherwise good one-sided inter-
vals compared by Liu and Kott (2009), it is known to have quite anticonservative
(i.e., smaller than nominal) coverage for underlying proportions ȳi = πi ≤ 0.25.
A simple modification which widens the interval and gives it conservative cover-
age is to replace y∗i /n

∗
i in (3) by (y∗i + 1)/(n∗i + 2). A compromise method which

we study further in a forthcoming technical report is to replace y∗i /n
∗
i in (3) by

(y∗i + 1/2)/(n∗i + 1).

2.2 Small Area Models and Estimators

We next consider methods of constructing UCBs based on small area models.
Throughout, we assume that area-level covariates xi are available and can be
treated as known design constants. For each model, we specify jointly a form for
both the area-level target ȳi and the observation y∗i /n

∗
i , and in each case the target
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is expressed in terms of a linear combination ηi ≡ xtri β of components of xi and
a further unmodelled area-level random effect. First, we consider a transformed
Fay-Herriot model based on the classic model of Fay and Herriot (1979).

FHtr :

{
arcsin(

√
y∗i /n

∗
i ) = arcsin(

√
ȳi) + ei, ei ∼ N (0, 1/(4n∗i ))

arcsin(
√
ȳi) = xtri β + ui , ui ∼ N (0, σ2u)

(4)

The point of the transformation within this model is the same as in the cell-based
transformed sample mean in Section 2.1.

The other small-area models both treat y∗i as binomial with n∗i trials and
success-probability ȳi, with the mean of the latter expressed in terms of the logistic
distribution function h(x) = ex/(1 + ex). One of these models is the random-
intercept logistic, discussed by Jiang and Lahiri (2006).

GLMM :

{
y∗i ∼ Binom(n∗i , ȳi)

ȳi = h(xtri β + vi) , vi ∼ N(0, σ2v)
(5)

The final model is the beta-binomial employing a logit link specifically
studied in Prentice (1986).

BBIN :

 y∗i ∼ Binom(n∗i , ȳi)

ȳi ∼ Beta
(
h(xtri β) · τ, (1− h(xtri β)) · τ

) (6)

Within all three small area models, the regression coefficients β are unknown and
are estimated jointly by maximum likelihood with the respective random-area-effect
dispersion parameter σ2u, σ

2
v , or 1/(1 + τ).

In the FHtr model, the empirical best point predictor (EBP) for the target
ȳi is defined (Rao 2003) by substituting maximum likelihood estimators (MLEs)
(β̂, σ̂2u) for the unknown parameters (β, σ2u) into the expression E(arcsin(

√
ȳi) | y∗i ),

yielding

arcsin(

√̂̄yBP

i ) = xtri β̂ +
σ̂2u

σ̂2u + (4n∗i )
−1

(
arcsin(

√
y∗i /n

∗
i ) − xtri β̂

)
(7)

In each of the GLMM and BBIN models, the empirical best predictors for the tar-
get ȳi is given by substituting MLEs for parameters in the conditional expectation
E(ȳi | y∗i ) . The resulting expressions are, for GLMM:

̂̄yBP

i = g(y∗i + 1, n∗i + 1, xtri β̂, σ̂
2
v)/g(y∗i , n

∗
i , xtri β̂, σ̂

2
v) (8)

where

g(k, n, η, σ2) ≡
∫

e(η+σz)k

(1 + eη+σz)n
φ(z)dz , φ(·) ∼ N (0, 1) (9)

and in the BBIN model,

̂̄yBP

i = {y∗i + τ̂ h(xtri β̂)} / {n∗i + τ̂} (10)

recalling that h(·) denotes the logistic distribution function.
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We turn now to the estimation of UCBs for πi = ȳi under the three small area
models. In FHtr, these intervals are standardly based on estimates of mean-squared
error (on the transformed scale), i.e., of E{arcsin[ˆ̄yBP

i ]1/2 − arcsin(
√
ȳi)}2. Two

such estimates are respectively a crude one mseoi = γ̂i/(4n
∗
i ) and a ‘higher-order

correct’ one (Datta and Lahiri 2000, Rao 2003) defined as

msei = mseoi + (1−γ̂i)2 xtri Σ̂β xi + 2(1−γ̂i)2 Σ̂σ2
u

(arcsin(
√
y∗i /n

∗
i )− xtri β̂

ζ̂i

)2
(11)

given in terms of the notations

ζ̂i = σ̂2u +
1

4n∗i
, γ̂i =

σ̂2u

ζ̂i
, Σ̂β =

[ m∑
i=1

xix
tr
i

ζ̂2i

]−1
, Σ̂σ2

u
= 2

[ m∑
i=1

ζ̂−2i

]−1
Based on approximate large-sample normality of arcsin[ˆ̄yBP

i ]1/2 − arcsin(
√
ȳi), an

approximate level 1− α UCB for ȳi is

FHtr.UCBi = sin2
(
γ̂i arcsin(

√
y∗i /n

∗
i ) + (1− γ̂i) xtri β̂ + zα

√
msei

)
(12)

However, there are no formula-based numerical methods to estimate UCBs in the
small-area models GLMM and BBIN. Such estimates are instead obtained by a
parametric bootstrap approach which has been found to work well in the Fay-Herriot
case.

2.3 Small-Area Bootstrap UCB Estimators

To construct confidence intervals or bounds for a small-area target πi = ȳi in
terms of a small-area estimator ˆ̄yBP

i , all existing methods rely on estimates of
quantiles of centered and possibly scaled quantities

Ri = ψ(ˆ̄yBP
i ) − ψ(ȳi) or Si = Ri/{V̂ (ψ(ȳBP

i )}1/2 (13)

for a fixed smooth strictly increasing function ψ, where V̂ ≡ V̂ (ψ(ȳBP
i )) is

chosen as a consistent estimator of the model-based variance of ψ(ȳBP
i ) − ψ(ȳi)

and ȳBP
i denotes the best predictor expressed in each model as a function of known

parameters. In the present context of small-area models, the transforming function
ψ is taken to be ψ(x) = arcsin(

√
x) for FHtr and ψ(x) = x for GLMM and

BBIN.
To obtain confidence intervals for πi = ȳi (sometimes distinguished by the term

prediction intervals when the quantities πi are random), we need to find approx-
imate quantiles for the distribution of Ri or Si. Under conditions (which hold
under our three models) guaranteeing uniformly over neighborhoods of parameter
values that Si is approximately distributed as standard normal, the distributions
of Ri and Si are approximately the same as if the data were generated afresh with
parameter values fixed at the MLEs ϑ̂ from the observed data. Thus we generate

Monte Carlo or parametric bootstrap replicate data-vectors y∗(b) ≡ {y∗(b)i }mi=1 in-
dependently for b = 1, . . . , B from the same model (FHtr or GLMM or BBIN)
assumed to generate {y∗i }mi=1 , but with parameters fixed at the MLEs ϑ̂ (β̂ to-

gether with σ̂2u or σ̂2v or τ̂), and denote by R
∗(b)
i and S

∗(b)
i the random variables

defined from {y∗(b)i }mi=1 exactly as Ri and Si were defined from {y∗i }mi=1.
Then if m and B are large, it follows from standard bootstrap theorems (Shao

and Tu 1995, Sec. 3.2 and 6.4.4; Hall and Maiti 2006 Sec. 4) that the α1 and
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1− α2 quantiles qRi1, q
R
i2 of Ri and qSi1, q

S
i2 of Si (for fixed ϑ) are consistently

estimated by the corresponding empirical quantiles q∗Rij , q
∗S
ij obtained from the

[Bα1] and [B(1 − α2)] order statistics of the respective samples {R∗(b)i }Bb=1 or

{S∗(b)i }Bb=1 . ‘Consistency’ in this context means that the ratios of the true and
estimated quantiles converge to 1.

Then the asymptotically level 1− α1 − α2 confidence statement

qRi1 ≤
[
ψ(ˆ̄yBP

i ) − ψ(ȳi)
]
≤ qRi2

translates into the level 1− α1 − α2 confidence or prediction interval

ȳi ∈
[
ψ−1

(
ψ(ˆ̄yBP

i )− qRi2

)
, ψ−1

(
ψ(ˆ̄yBP

i )− qRi1

) ]
. (14)

Similarly, the asymptotically level 1 − α1 − α2 confidence statement qSi1 ≤ Si =
Ri/V̂

1/2 ≤ qSi2 translates into the confidence or prediction interval

ȳi ∈
[
ψ−1

(
ψ(ˆ̄yBP

i )− q̂S2i V̂
1/2
)
, ψ−1

(
ψ(ˆ̄yBP

i )− q̂S1i V̂
1/2
) ]

(15)

The recipe we have described here to obtain bootstrap-based quantiles and confi-
dence intervals is the one we follow in calculating UCBs for the three models FHtr,
GLMM, and BBIN, with respective choices of ψ(x) = arcsin(

√
x), x, and x,

and with α1 = α, α2 = 0. In the FHtr case (after taking account of the trans-
formation of scale), this is exactly the bootstrap algorithm proved by Chatterjee
et al. (2008) to yield confidence or prediction intervals with coverage probabilities
accurate to an order of m−3/2. This is an accuracy greater than can be claimed
for the UCB (12) based on msei estimators of mean-squared prediction error (on
transformed scale). For the GLMM and BBIN, the precise results of Chatterjee
et al. (2008) are not available, but the parametric bootstrap idea still provides (as
argued in general terms by Hall and Maiti 2006) coverage accuracy of order 1/m
for the bootstrap-based UCBs. Parametric bootstrap intervals for generalized lin-
ear models like GLMM and BBIN are given by Hall and Maiti (2006), but as
remarked by Chatterjee et al. (2008, Remark 8 in Sec. 3), the intervals provided
there are prediction intervals not for the target ȳi based on the statistic ˆ̄yBP

i − ȳi,
but rather for ȳi based on xtri β̂ − ȳi.

3. Effective Sample Size

Determining the method is not the only modeling priority. Another is to determine
the effective sample size n∗gi to use in the modeling, where g is the index for the
higher-level aggregate (group of areas) and i is the index for individual areas in-
cluded in g. (Throughout this section, we use the term n∗gi to denote exactly the
same quantity elsewhere denoted n∗i , in order to emphasize the grouping of areas
within a higher-level aggregate.) The effective sample size is a measure of how many
‘independent’ units of information contribute to the estimate. In complex samples,
sampled units in an area may be correlated, thus reducing the amount of indepen-
dent information. The proposed methods below are intended to reduce the sample
size for an area to more accurately reflect the equivalent amount of independent
information. These adjustments may greatly affect the power for hypothesis testing
and variance estimation.

Section on Survey Research Methods – JSM 2012

3546



3.1 Ratio-Adjusted Sample Size

The Ratio-Adjusted Sample Size (RA) is the simplest scheme for reweighting sample
cases in each area. It involves taking the weights that are already present in the
small area, and scaling them to a fixed known total so that the sum of the adjusted
weights equals the unweighted sample size (over the whole sample). The relative
ratio between sample weights remains the same. Then the effective sample size, n∗gi,
for an area is the sum of the adjusted sample weights:

n∗gi =
∑
j

w∗gij =
n

N̂

∑
j

wgij (16)

where N̂ =
∑

gij wgij estimates the overall population size by the sum of all the
sampling weights, n is the total number of records in the dataset, and wgij is the
weight for household j within area i which in turn lies within aggregate group g.

This adjustment essentially represents a synthetic estimate of sample size, with
no modeling involved. The sample size is adjusted down in (16) so that the predictive
power of models can be assessed as though the sample were unweighted. However,
this method may not accurately capture the variance of the sampling scheme. An
alternative is to use a design effect , as in the two options below.

3.2 Constant Design Effect

A sample size divided by a design effect for a particular attribute yields the equiv-
alent sample size that would produce the same design-based variance estimates for
the attribute under the assumption of simple random sampling. When reliable
area-level design effects are not available, one may use a constant design effect as-
sumption, that is, one may start with a higher-level design effect (for a group of
areas) and assume that they are all equal to the area-level design effect. For exam-
ple, design effects for states can be calculated and then assumed to be the same as
the design effect of all counties (or places) within the state. First let ng =

∑
i ngi be

the sum of sample-sizes over all areas i within group g, and let p̂g be the estimated
group rate. Then we use the design effect to adjust unweighted sample size ngi for
area i, by obtaining an aggregate-level variance estimator V̂g and using it to find an
effective sample size n∗gi:

V̂g = DEFFg p̂g(1− p̂g) / ng
DEFFg = ngV̂g/{p̂g (1− p̂g)}

n∗gi = ngi /DEFFg

3.3 Weight-Adjusted Design Effect

The weight-adjusted design effect is similar to the constant DEFF, but it is able
to take into account the variability of the weights within the area. This method
was derived from a model-based justification of Kish’s formula for design effects in
clustered data (Gabler et al, 1999). The weight-adjusted design effect calculates
the design effect, bg, after taking unequal sampling weights into account. The use
of such a design effect is also motivated by Hawala and Lahiri (2010). We find
the weight-adjusted effective sample size n∗gi through the aggregate-level variance

estimator V̂g by:
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V̂g = bg cg p̂g (1− p̂g) where cg = Σi,j w
2
gij/(Σi,j wgij)

2

bg = V̂g/{cg p̂g (1− p̂g)}

n∗gi =
1

bg cgi
=
cg
cgi

ng
DEFFg

where cgi = Σj w
2
gij / (Σj wgij)

2

Recall that i indexes counties, j indexes HUs, and summations over i range over
all i within group g. As with the constant design effect, the weight-adjusted design
effect is restricted by the design assumption of the adjustment factor carrying down.
However, it does take into account weight variability in ways that the other methods
do not.

4. Census Coverage Measurement Application

The Census Coverage Measurement (CCM) program is an effort to measure de-
cennial census accuracy by comparison with an independent population survey,
also called CCM. The CCM produces Correct Enumeration (CE) and Erroneous
Enumeration (EE) rates – the proportion of Census records that are correct and in-
correct, respectively – tabulated across different geographic boundaries. The CCM
studies these rates for both the individual and housing-unit (HU) records; this study
focuses on HU EE-rate estimation.

One of the goals of CCM is to estimate the components of enumeration among
HUs: totals and rates of CEs and EEs for different areas, broken down into smaller
categories. The Census Bureau publishes those estimates, along with the associated
standard errors, for counties and places of over 500,000 people. These estimates are
known as the CCM Housing Unit production estimates, and the specific jurisdictions
are known as production counties or production places.

The 2010 CCM used a probability-based sample of over 170,000 Housing Units
(HUs) across the United States and Puerto Rico. It features 1,728 counties and
2,630 places, of which 128 counties and 33 places are in production. The quantities
observed in the CCM are survey-weighted ratio estimators ˆ̄yi as in (1).

The rates for Erroneous Enumeration are typically small. The 2010 overall EE
rate is 2.7% (Keller and Fox 2012) and there were fifteen production counties and
four production places that had an estimated rate ˆ̄yi < .001, which CCM considered
to be zero.

The goal of this project was to produce reasonable estimates of uncertainty
for those nineteen areas. However, more broadly there was interest in developing
a paradigm for handling similar situations in the future, as this problem applies
across different operations at the Bureau.

5. Component Modeling with CCM

The first step was to develop county and place models for Erroneous Enumerations,
but this paper only addresses county-level results. EE rates, household weights,
and many potential covariates were extracted from the CCM data files. For this
project, an enumeration is labeled correct if it is classified as type ACPRHUCE,
PRHUSB, or PRHUGE (see Table 1) and it is labeled as erroneous if classified as
type APRHUDUP or PRHUOTH.
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5.1 Initial Modeling and Testing

The models were fit at the county and place levels simultaneously. All areas in
sample were used for building and estimating them. Because CCM uses a sample
of block groups, the candidate variables were taken from the 2010 decennial census,
which included demographic and census operational variables for each area.

We evaluated many fixed-effects candidate models using likelihood testing and
the Bayesian Information Criterion (BIC), −2 · ln(L) + k · ln(n), where L is the
likelihood, k is the number of parameters, and n is the total records in sample.
This formula assesses a penalty of ln(n) for each extra parameter. Model checking
methods identified the same model for both counties and places: a logistic regres-
sion model, using an effective sample size defined by the ratio-adjusted scheme of
Section 3.1. The model included these five covariates:

• The logistic-transformed rate of correct enumerations for the state, as a synthetic
estimator;
• The arcsin-square-root of the rate of single-unit households for the area;
• The arcsin-square-root of the rate of multi-unit households for the area;
• The arcsin-square-root of the rate of urban households for the area;
• The arcsin-square-root of the enumeration rate for the area.

The model chosen had the lowest value of BIC for both counties and places.
Subsequent tests to assess the quantile fit of models subjectively confirmed our
choice of best model.

The range of various weight parameters for counties is given in Table 2. The
effective sample sizes show a wide range that depends on the method used. The
range of n∗ using adjusted weight is very different from the design effect schemes
(which are similar to each other).

The sum of the effective sample size for all areas is 46,690 for the constant design
effect method and 43,066 for the weight-adjusted design effect method. These sums
are both approximately a quarter of the sum under the allocated weight scheme
(which is fixed at the CCM sample of 172,503).

6. Results

The results vary by UCB estimation method and the type of effective sample size
chosen, but we present results only for the weight-adjusted effective sample size
described in Section 3.3. We determined that the weight-adjusted effective sample
size did a good job of capturing cross-county variations in HU clustering. These

Table 1: CCM Component Variables

Variable Name Definition

ACPRHUCE CE in block cluster
PRHUSB CE in nearby blocks
PRHUGE CE with geocoding error

APRHUDUP EE due to duplication
PRHUOTH EE due to other
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sample sizes are usually a little bit larger than the constant design effect sample
sizes, with a maximum difference of about 20%. However, the differences in UCBs
due to the choice of Constant design effect versus Adjusted-Weight design effect are
typically no more than about .01. By contrast, the ratio-adjusted effective sample
sizes were much larger, leading to much smaller one-sided confidence intervals which
were too narrow to be trustworthy.

Viewed over the Production counties, i.e., those with total population≥ 500, 000,
the Cell-based UCBs tend to be larger than the UCBs from small-area models, with
the GLMM model-based bounds generally lying above the FHtr bounds, which
are close to but tend to be slightly larger than the BBIN bounds. This pattern
can be seen in Figure 1. (The UCBs produced by the bootstrap methods for the
small-area models were based on B = 2500 bootstrap replications. Generally, at
least 1000 replicates are needed to provide the desired level of accuracy).

To get a clearer idea of the comparison between the UCBs on individual large
counties, the scatterplot in Figure 2 shows that UCB size is ordered GLMM �
FHtr � BBIN, where ‘�’ means ‘generally greater than’.

One of the questions which motivated our study was the appropriate method to
provide upper confidence bounds on direct estimated (HU EE) rates of 0. Among
the 15 production counties whose direct EE rates were 0, we see in Table 3 a
somewhat different relationship among the UCBs provided by the four methods.
Now the Cell-based method provides the narrowest intervals for n∗i ≥ 30. This
makes some sense because the Cell-based method does not borrow strength from
counties with larger point estimates, as the others do, and therefore its upper bound
will be smaller when the estimated rate is. However, we caution the reader that
the anomalously small Cell-based bounds for the counties with estimates close to
0 are to some extent an artifact of having used the anticonservative arcsin square
root method; when the method is modified as suggested below (3), the Cell-based
UCBs are no longer smaller than the GLMM-based UCBs for effective sample sizes
less than 118.

This paper has been concerned with UCBs, which are understood to bracket
the direct estimators of survey proportions, but one may also ask about the point
estimators generated by small-area methods. These are displayed in boxplot format
in Figure 3. The point estimates for the different methods reflect similar means
across all methods but narrower ranges for the model-based ones, while the UCBs
from Figure 1 reflect lower means for the model-based methods. We propose to use
these estimators in conjunction with prediction intervals based on xtri β̂ for model

Table 2: Mean and Quartiles for Effective n and Associated Ratios
based on counties with ≥ 20 HUs in sample.

Mean 1st Q Median 3rd Q

n∧ 119.4 26.4 52.4 115.4

n† 30.3 6.4 12.9 28.2

n‡ 32.8 7.5 14.3 30.2

n‡/n† 1.2 1.1 1.1 1.2

n∧ = Ratio-Adjusted sample size, n† = Constant DEFF sample size,
n‡ = Weight-Adjusted DEFF sample size.
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Table 3: UCBs of HU EE Rates for Larger Counties where ˆ̄yi < 0.001.

Cty n∗i FH.pred Cell FHtr GLMM BBin

10.4 .0105 .0638 .0240 .0339 .0183
11.7 .0108 .0569 .0233 .0335 .0188
20.1 .0168 .0332 .0320 .0431 .0233
30.8 .0123 .0218 .0265 .0415 .0228
60.7 .0064 .0111 .0163 .0272 .0144
60.8 .0021 .0111 .0087 .0193 .0103
98.9 .0061 .0068 .0151 .0276 .0145

101.9 .0027 .0066 .0098 .0217 .0110
118.8 .0073 .0057 .0165 .0335 .0169
120.3 .0013 .0056 .0067 .0154 .0079
135.9 .0052 .0101 .0132 .0245 .0124
164.5 .0022 .0041 .0080 .0192 .0091
171.0 .0031 .0040 .0092 .0234 .0108
186.7 .0014 .0067 .0060 .0153 .0073
188.8 .0036 .0036 .0096 .0230 .0106

checking, as Slud (2012) did with the FHtr model in another data application.

7. Conclusion and Future Research

Because the UCB estimates generated from all methods were roughly similar, CCM
staff made the decision to use the Cell-based method in releasing the production
county results in May 2012. It is the most easily explained method and does not rely
on a regression model. The published estimates reflect the upper confidence bounds
from the Cell-based method. CCM does not publish bounds, but did publish pseudo-
standard errors that reflected the same one-sided 95 percent confidence bound when
applied on the probability scale.

The methods presented here suggest that model-based UCBs estimated by small-
area models using a parametric bootstrap approach can be used effectively to bracket
the unknown area-level proportions corresponding to small estimated survey pro-
portions. Before such UCBs could be released in official data products, additional
research assessing model fit must be undertaken. Such research should probably
also include some sensitivity checking of the results to the choice of the method of
defining effective sample sizes.

7.1 Future Plans

The general problem discussed here is applicable to other work done at the Census
Bureau. Ideally, this research can provide a framework to others working on similar
tasks, perhaps through the development of an R package that would incorporate
these methods.

The need for model checking in specific applications of these methods has al-
ready been emphasized above. In addition, specific topics for further methodological
research which would enhance the applicability and value of the methods discussed
here include:
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(i) alternative numerical procedures for calculating and approximating bootstrap
quantiles, including a method for justifying the choice of a number B of bootstrap
iterations;

(ii) investigating which features of specific small-area models tend to lead to
larger or smaller estimated UCBs;

(iii) exploring alternative choices of effective sample-size definitions, and what
might justify them in specific survey applications.
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Figure 1: Boxplot of UCBs produced on 128 counties with total population ≥
500, 000, by the Cell-based and 3 Small Area methods, using the bootstrap approach
described in Section 2.3.
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Figure 2: Scatterplot of UCBs produced on 128 counties with total population ≥
500, 000, by the GLMM and BBIN methods, each plotted against those produced
by the FHtr method. All of these UCBs were estimated by the bootstrap approach
described in Section 2.3.
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Figure 3: Boxplot of predictors for 128 counties with total population ≥ 500,000.
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