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Abstract
Given a random sample x1, x2, . . . , xn from a population, we examine circumstances that

lead to some of the values being deemed outliers and the methodologies proposed to analyze
the data set in the presence of these outliers. We review methods of determining outliers
and propose general principles for how to proceed. Often a mixture approach is appropriate:
most observations seem to follow a pattern or to satisfy a model, while the outliers remain
outside the pattern or model and require further investigation.
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1. Introduction

An outlier in a sample survey is an observation far away from most or all other
observations. What do we do with it when we are trying to draw conclusions from
the sample about the population?

There is of course the possibility that the outlier is an error. There are several
kinds of errors. A measurement error is due to some mistake in the process of
measuring - it may be a flaw in an instrument, an answer based on a misinterpre-
tation of a question asked or a poorly worded question, or an ambiguous answer
misinterpreted by the interviewer. A clerical error is an error that results when
data are transcribed or copied either manually or by computer and a mistake in
transcription takes place. Another kind of error is a sampling frame error: a unit
not in the target population somehow is included in the sample. Numerous ways
exist to detect such errors, but we will not consider them here. Instead we assume
that they have been ruled out.

We are concerned with values that are genuine but extreme. Resnick (2007)
points out that extreme values occur in network theory (file sizes, transmission
rates and durations) and finance (return rates from risky investments, insurance
claim sizes and frequencies).

Genuine outliers are typically treated in one of the following ways:
1) keep the outlier and treat it like any other data point; or
2) winsorize it (i.e., assign it lesser weight or modify its value so it is closer to

the other sample values); or
3) eliminate it (drop it from the sample).
The danger of each of these methods is that they may produce poor estimates

of parameters of interest. Methods 2) and 3) introduce statistical bias and may
undervalue the outlier, while keeping it and treating it like the other points may
overvalue it and cause the estimate to vary drastically from the true population
value.

Below we investigate these methods, and make some proposals that we think
are sensible about what an outlier really is and how to treat it.
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2. Winsorizing and Trimming

Treatments 2) and 3) above, winsorizing or eliminating, used to be standard ways
of treating outliers. The desire for robust statistics and for measures insensitive to
outliers was satisfied by dropping outliers or by modifying their values.

A common procedure has been to replace any data value above the ninety-fifth
percentile of the sample data by the ninety-fifth percentile and any value below the
fifth percentile by the fifth percentile. The assumption seems to be that the outlier
does not look right and estimates will be improved if the outlier is made to look like
other data. This suggests that the outlier value must be incorrect, an exaggeration
of the truth (e.g., old persons sometimes overstate their age, especially in rural or
underdeveloped regions). The value is replaced by a more plausible value. The new
value is a compromise - it is not thrown out but it is watered down. The danger of
bias is alleviated by retaining an attenuated version of the datum. Consider another
example. Acreage devoted to a certain crop may make sense by itself but when the
total acreage devoted to all crops is smaller than the reported total for one crop,
something is amiss. It can also happen that the observation is entirely correct but
is not part of the target population. This may be because the target population has
not been defined as precisely as necessary. For example, land ownership by farmers
may include several large parcels in dispute between erstwhile owners and the state.

However, these circumstances assume some kind of error has been made. In the
current relatively advanced stage of statistical theory and practice, errors should be
analyzed and specific methods are available to take them into account depending
on the error type.

Equivalent to winsorizing is the use of various estimators for population param-
eters that assign lesser weight to outliers.

The most extreme way to lower the weight of an outlier is to trim it from the
sample, i.e., eliminate it. If the outlier is a legitimate value, there is no justification
for this and it is counter to the basic principle of random sampling. Of course, the
statistician really seeks a representative sample, one that looks like the population in
miniature. Under random sampling the proper way to achieve representativeness is
to stratify the population by a relevant variable or variables for which the statistician
has good prior information about relative stratum sizes. Stratification may lead
to lesser weights (or greater weights) for outliers but must be based on reliable
information.

3. Definitions of an Outlier

Underlying the question of how to treat outliers is the issue of whether a particular
observation is an outlier. Morris Hansen many years ago (see, for example, p. 787 of
Hansen et al. (1983)) proposed the rule of thumb that an outlier is any observation
whose removal from the sample changes the estimate of a parameter of interest by
10 percent or more. For parameters with values near zero this is obviously suspect.
It is also dependent on which parameter is of interest.

A natural method of determining outliers has long been available in the litera-
ture when the variable under study has a known mathematical distribution. For a
symmetric distribution with mean µ it makes sense to compute:

P = P (|x1 − µ| < c, |x2 − µ| < c, ..., |xn − µ| < c) = P (|x− µ| < c)n.
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where x1, x2, ..., xn is an independent sample from the distribution, and c is the
distance of the farthest outlier in the actual sample of size n from µ. If the difference
between P and 1 is very small, say 0.05, then there is only a five percent probability
that one or more values would lie that far out or farther.

Consider the case where the distribution in question is the standard normal
distribution. In that case we can look at several stand-ins for c. They are:

En = E(max {|Z1|, |Z2|, . . . , |Zn|})
and

c = cn(α) where P (|Z| < c) = (1− α)1/n.

two-tailed
n En cn(0.05) cn(0.01) cn(0.001)
1 .80 1.96 2.58 3.29
2 1.13 2.24 2.81 3.48
3 1.32 2.39 2.93 3.59
4 1.48 2.49 3.02 3.66
5 1.55 2.57 3.09 3.72
6 1.67 2.63 3.14 3.76
7 1.74 2.69 3.19 3.80

10 1.87 2.80 3.29 3.89
15 2.05 2.93 3.40 3.99
20 2.17 3.02 3.48 4.06
30 2.32 3.14 3.59 4.15
50 2.52 3.29 3.72 4.26

100 2.75 3.48 3.89 4.42
200 2.97 3.66 4.06 4.56
500 3.25 3.89 4.26 4.75

1000 3.44 4.05 4.42 4.89

The normal distribution is very thin-tailed. As the sample size increases, plausi-
ble outliers get farther and farther out but their magnitude increases slowly. A table
like this can be applied to any normal distribution provided we pass to z scores:
z = x−µ

σ .
This general method is associated historically with Benjamin Peirce (1809-1880)

and his son Charles Sanders Peirce (1839-1914), William Chauvenet (1820-1870),
and Frank Grubbs (1925?-2000). These individuals started with the assumption
that the sample data are drawn from a normal population. If the mean and stan-
dard deviation of the population are known, then the z-score of the most extreme
candidate outlier is computed and an estimate is made for the likelihood of the most
extreme value being in the two tails associated with that z-score. If this is low, as
in hypothesis testing, we declare the value an outlier. As in hypothesis testing, the
decision about what is a low value is subjective.

Various subtleties have been addressed with this approach. One of them is
that since the mean and standard deviation are usually estimated from the sample,
T-distributions, which depend on the value of n, should be used rather than the
standard normal distribution. Another is that the presence of multiple outliers may
make it harder to reject any of them. At the NIST website (http://www.itl.nist.gov/
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div898/handbook/eda/section3/eda35h1.htm) the latest version of Grubbs’ test is
described, along with methods to handle masking effects related to multiple outliers.

A similar analysis can be done with the standard exponential distribution e−x,
x > 0. In this case we look at:

En = E(max {X1, X2, . . . , Xn}),
and

c = cn(α) where P (X < c) = (1− α)1/n.

The table we obtain is:

one-tailed
n En cn(0.05) cn(0.01) cn(0.001)
1 1.00 3.00 4.61 6.91
2 1.48 3.68 5.30 7.60
3 1.85 4.08 5.70 8.01
4 2.07 4.36 5.99 8.29
5 2.28 4.58 6.21 8.52
6 2.46 4.77 6.39 8.70
7 2.58 4.92 6.55 8.85

10 2.93 5.28 6.90 9.21
15 3.36 5.68 7.31 9.62
20 3.62 5.97 7.60 9.90
30 3.98 6.37 8.00 10.31
50 4.45 6.88 8.51 10.82

100 5.15 7.58 9.21 11.51
200 5.87 8.27 9.90 12.21
500 6.82 9.18 10.81 13.12

1000 7.49 9.88 11.51 13.82

The exponential has a thin tail and plausible outlier values grow slowly with
sample size. An exponential with mean µ can be normalized to this table by the
substitution z = x

µ . It is possible to refine this methodology when the mean µ must
be estimated from the sample.

Another family of distributions commonly used for nonnegative variables is the
gamma distribution. This distribution has two positive parameters, a shape param-
eter α and a scale parameter λ. When 0 ≤ α ≤ 1, the mode (most frequent value)
is zero, and when 1 < α, the mode is positive. The mean of a gamma variable is α

λ

and its standard deviation is
√

α
λ . When α = 1 we get an exponential distribution.

In the table below we take λ = 1 and consider two values of α, namely, 5 and
10.
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α = 5 α = 10
n En cn(0.01) En cn(0.01)
1 5.00 11.60 10.00 18.78
2 6.17 12.59 11.78 20.00
3 6.96 13.16 12.71 20.68
4 7.41 13.55 13.44 21.16
5 7.82 13.86 13.92 21.53
6 8.16 14.10 14.26 21.83
7 8.38 14.31 14.62 22.08

10 8.95 14.79 15.35 22.65
15 9.58 15.33 16.19 23.29
20 10.04 15.70 16.78 23.74
30 10.62 16.23 17.57 24.37
50 11.37 16.89 18.50 25.15

100 12.36 17.78 19.63 26.19
200 13.34 18.65 20.89 27.21
500 14.63 19.79 22.46 28.53

1000 15.52 20.64 23.55 29.52

Gamma distributions are thin-tailed despite the flexibility offered by the addi-
tional parameter. To pass from a gamma variable X with arbitrary α and λ to one
with λ normalized to 1, we take Z = λX.

Other distributions can be treated similarly. An outlier for a given sample size
is an extreme value (largest or smallest value) such that the a priori probability
that the most extreme value is in the tail region determined by the actual value is
less than five per cent or some similar small percentage.

4. The Real Questions

What has been said leaves several unanswered questions, the first of which has
already been noted:

1) How small should the tail probability be before we declare a value an outlier?
2) Where do we get the distribution from?
3) Where do we get the family of distributions from?
4) What do we do with the outliers?
Answer to 1): As with the significance level in hypothesis testing there is no

hard and fast answer. Outlier treatment is an art.
Answer to 2): If we have a family of distributions that plausibly describe most

observations, we use prior knowledge, or the maximum likelihood method, or an-
other related method to estimate the parameters of the distribution, including the
outliers as input data. If an outlier is eliminated by the test, we reestimate the
parameters without using the outlier.

Answer to 3): This requires judgment and experience and typically is based on
graphical inspection of the entire data set. If most of the data seem to follow a
particular family of distributions, this family is a candidate family.

Answer to 4): With only one or two outliers there is little that can be done but
to preserve them for future study. However, if there are four or five outliers or more,
we can employ extreme value theory and the theory of heavy tailed distributions.

One possibility in this case is to fit the outliers to a model of the following type:
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P (X > x) = Cx−α for x > x0.

Here the constants C, α, and x0 are estimated from the data, and P (X > x0) is
taken to equal the fraction of outliers in the original sample. This leads typically
to a mixture model where P (a < X < b) is given by:

P (a < X < b/ basic distribution)(1−w)+P (a < X < b/X belongs to outlier set)w.

Here w can be taken to equal the fraction of data values determined to be outliers,
and P (a < X < b/X belongs to the outlier set) vanishes unless b ≥ x0 and equals
(x0/x)α − (x0/b)α otherwise, where x = max{x0, a}. The quantity x0 can be taken
to be the smallest member of the outlier set {x1, . . . , xk} and α is given by:

1
α

=
1
k
Σk

i=1 log(
xi

x0
).

The parameters of the population such as the mean and standard deviation are no
longer items of interest in the mixture model. In a true mixture they distort our
representation of the population. We are really interested in estimating parameters
for the presumed subpopulations represented separately by the non-outliers and the
outliers. It is quite appropriate to eliminate the outliers in estimating parameters
for the first and more numerous subpopulation. In a preliminary way we can also
study the outlier subpopulation. We are of course interested in determining the
relative sizes of these two subpopulations. The quantity w

1−w , where w is as above,
can be taken to be a rough estimate of the relative size.
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