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Abstract

We propose Horvitz-Thompson type of estimators of the total and mean of the values of a
variable of interest associated with the elements of a hard-to-reach population sampled by
the variant of link-tracing sampling proposed by Félix-Medina and Thompson (2004). As
examples of this type of population are drug users, homeless people and sex workers. In
this sampling variant a frame of sites where the members of the population tend to gather,
such as parks and bars, is constructed. The frame is not assumed to cover the whole
population. A cluster sample of elements is selected from the frame, where the clusters are
the sites, and the sampled elements are asked to named other members of the population.
The proposed estimators do not use design-based inclusion probabilities, but model-based
inclusion probabilities which are heterogeneous, that is, they depend on the sampled people.
These probabilities are derived from a model proposed by Félix-Medina et al. (2009) and are
estimated by maximum likelihood estimators. The performance of the proposed estimators
is evaluated by simulation studies and the results show that their performance is at least
acceptable.

Key Words: chain-referral sampling, capture-recapture, Horvitz-Thompson estimator,
inclusion probabilities, maximum likelihood estimator, snowball sampling

1. Introduction

Link-tracing sampling (LTS), also known as snowball sampling or chain referral
sampling, has been proposed for sampling hidden or hard-to-detect populations,
such as drug users, sex workers, HIV infected people and undocumented workers.
In this method an initial sample of members of the target population is selected
and the people in the initial sample are asked to name or to refer other members of
the population to be included in the sample. The named people that are not in the
initial sample might be asked to refer other persons, and the process might continue
in this way until a specified stopping rule is satisfied.

Félix-Medina and Thompson (2004) proposed a variant of LTS in which the
initial sample is a simple random sample without replacement (SRSWOR) of sites
selected from a sampling frame that is not assumed to cover the whole population.
The sites are venues where the members of the population might be found with high
probabilities, such as public parks, bars and blocks. The members of the population
who belong to a sampled site are identified and they are asked to name other
members of the population. In order to obtain a maximum likelihood estimator
(MLE) of the size of the population, those authors assumed that the probability
that a person is named by any person in a particular sampled site, which we will
call link probability, depends on the site, but not on the named person, that is, they
assumed homogeneous link probabilities.

Later Félix-Medina et al. (2009) derived MLEs of the population size under
the assumption that the link probabilities depend on the named persons, that is,
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that they are heterogeneous. In this work we use the model proposed by these au-
thors and consider the problem of estimating the total and the mean of a variable
of interest, such as monthly drug expenses, age of first drug use, number of drug
user partners and presence of HIV. It is worth noting that Félix-Medina and Mon-
jardin (2010) also considered the problem addressed in this work, but they proposed
estimators derived under the assumption of homogeneous link probabilities.

The structure of this paper is as follows. In Section 2 we introduce the LTS vari-
ant proposed by Félix-Medina and Thompson (2004). In Section 3 we present the
models and MLEs of the population sizes proposed by Félix-Medina et al. (2009).
In Section 4 we present the proposed Horvitz-Thompson-like estimators of the total
and the mean. In Section 5 we present the results of two simulation studies, and
finally, in Section 6 we present some conclusions and suggestions for future research.

2. Sampling design and notation

Félix-Medina and Thompson (2004) proposed the following variant of LTS. Let U
be a finite population of an unknown number τ of people. We assume that a portion
U1 of U is covered by a sampling frame of N sites A1, . . . , AN , where the members
of the population can be found with high probability. We suppose that we have
a criterion that allows us to assign a person in U1 to only one site in the frame.
Notice that we are not assuming that a person could not be found in different sites,
but that, as in ordinary cluster sampling, we are able to assign him or her to only
one site, for instance, the site where he or she spends most of his or her time. Let
Mi denote the number of members of the population that belong to the site Ai,
i = 1, . . . , N . From the previous assumption it follows that the number of people in
U1 is τ1 =

∑N
1 Mi and the number of people in the portion U2 = U − U1 of U that

is not covered by the frame is τ2 = τ − τ1.
The sampling design is as follows. A SRSWOR SA of n sites A1, . . . , An is

selected from the frame. The Mi members of the population who belong to the
sampled site Ai are identified and their associated y-values of the variable of interest
y are recorded, i = 1, . . . , n. Let S0 be the set of people in the initial sample. Notice
that the size of S0 is M =

∑n
1 Mi. The people in each sampled site are asked to

name other members of the population. We will say that a person and a site are

linked if any of the people who belong to that site names him or her. Let X
(k)
ij = 1

if person j ∈ Uk − Ai is linked to site Ai ∈ SA and X
(k)
ij = 0 if j ∈ Ai or j is not

linked to Ai, i = 1, . . . , n, k = 1, 2. For each named person we record the value
of the variable of interest y associated with him or her, the sampled sites that are
linked to him or her, and the subset of U : U1 − S0, a specific Ai ∈ SA or U2, that
contains him or her.

3. MLEs of the population sizes

Félix-Medina et al. (2009) proposed MLEs of the population sizes τ1, τ2 and τ ,
which derived from the following assumptions. The variables Mi, i = 1, . . . , N ,
are supposed to be independent identically distributed Poisson random variables
with mean λ1. Notice that this implies that the joint conditional distribution of
the vector of variables Ms = (M1, . . . ,Mn, τ1 − M), where M =

∑n
1 Mi, given that

τ1 =
∑N

1 Mi, is multinomial with parameter of size τ1 and vector of probabilities

(1/N, . . . , 1/N, 1 − n/N). The link indicator variables X
(k)
ij s are supposed to be
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independent Bernoulli random variables with means p
(k)
ij s, where the means or link

probabilities p
(k)
ij s are given by the following Rasch model:

p
(k)
ij = Pr(X

(k)
ij = 1|β(k)

j ) =
exp(α

(k)
i + β

(k)
j )

1 + exp(α
(k)
i + β

(k)
j )

, j ∈ Uk −Ai; i = 1, . . . , n. (1)

It is worth noting that this model was considered by Coull and Agresti (1999)

in the context of multiple capture-recapture sampling. In this model α
(k)
i is a fixed

(not random) effect that represents the potential that the site Ai has of forming links

with people in Uk − Ai, and β
(k)
j is a random effect that represents the propensity

of the person j ∈ Uk to be linked to a sampled site. We will suppose that β
(k)
j is

normally distributed with mean 0 and unknown variance σ2
k and that these variables

are independent. The parameter σ2
k determines the degree of heterogeneity of the

p
(k)
ij ’s: great values of σ2

k imply high degrees of heterogeneity.

Let X
(k)
j = (X

(k)
1j , . . . ,X

(k)
nj ) be the n-dimensional vector of link indicator vari-

ables X
(k)
ij associated with the j-th person in Uk − S0. The conditional probability

that X
(k)
j equals x = (x1, . . . , xn) given β

(k)
j , that is, the probability that the j-th

person in Uk − S0 is linked to only the sites Ai ∈ SA such that the i-th element xi

of x equals 1, is

Pr(X
(k)
j = x|β(k)

j ) =
n

∏

i=1

[p
(k)
ij ]xi [1 − p

(k)
ij ]1−xi =

n
∏

i=1

exp[xi(α
(k)
i + β

(k)
j )]

1 + exp(α
(k)
i + β

(k)
j )

.

Therefore, the probability that the vector of link indicator variables associated with
a randomly selected person in Uk − S0 equals x is

π(k)
x (α(k), σk) =

∫ n
∏

i=1

exp[xi(α
(k)
i + σkz)]

1 + exp(α
(k)
i + σkz)

φ(z)dz,

where α(k) = (α
(k)
1 , . . . , α

(k)
n ) and φ(·) denotes the probability density function of

the standard normal distribution [N(0,1)].
Félix-Medina et al. (2009), following Coull and Agresti (1999), approximated

π
(k)
x (α(k), σk) by using the Gaussian quadrature method, that is by

π̃(k)
x (α(k), σk) =

q
∑

t=1

n
∏

i=1

exp[xi(α
(k)
i + σkzt)]

1 + exp(α
(k)
i + σkzt)

νt, (2)

where q is a fixed constant and {zt} and {νt} are obtained from tables.

Similarly, the Gaussian quadrature approximation to the probability π
(Ai)
x (α

(1)
−i ,

σ1) that the vector of link indicator variables associated with a randomly per-
son selected from the sampled site Ai equals an (n − 1)-dimensional vector x =
(x1, . . . , xi−1, xi+1, . . . , xn) whose elements are zeros and ones is

π̃(Ai)
x (α

(1)
−i , σ1) =

q
∑

t=1

n
∏

j 6=i

exp[xj(α
(1)
j + σ1zt)]

1 + exp(α
(1)
j + σ1zt)

νt, (3)

where α
(1)
−i = (α

(1)
1 , . . . , α

(1)
i−1, α

(1)
i+1, . . . , α

(1)
n ), i = 1, . . . , n.
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Also, Félix-Medina et al. (2009), following Coull and Agresti (1999), used
Sanathanan’s (1972) approach to derive conditional MLEs α̂(k) and σ̂k of α(k) and
σk, k = 1, 2, given the number of distinct people in Uk − S0 that are linked to at
least one site in SA. The values of these estimators are obtained by maximizing nu-
merically the corresponding conditional likelihood functions. Then, they obtained
the conditional MLEs τ̂1 and τ̂2 of τ1 and τ2 by replacing α(k) and σk by α̂(k) and σ̂k

in the remaining parts of the likelihood function and maximizing these parts with
respect to τ1 and τ2. Thus, the estimators τ̂1 and τ̂2 proposed by Félix-Medina et
al. (2009) are

τ̂1 =
M + R1

1 − (1 − n/N)ˆ̃π
(1)
0 (α̂(1), σ̂1)

and τ̂2 =
R2

1 − ˆ̃π
(2)
0 (α̂(2), σ̂2)

,

where ˆ̃π
(k)
0

(α̂(k), σ̂k) is an estimator of the probability π
(k)
0

(α(k), σk) that a randomly
selected person from Uk − S0 is not linked to any site in SA. The conditional MLE
of τ is τ̂ = τ̂1 + τ̂2.

4. Estimators of the total and mean

In this section we will focus on the problem of estimating the total and the mean

of the values of the variable of interest y. Let y
(k)
j be the value of y associated with

the j-th element of Uk, j = 1, . . . , τk, k = 1, 2. In this work we will suppose that the
y-values are fixed numbers and not random variables. Notice that this assumption

is the one made in traditional sampling. Then Yk =
∑

j∈Uk
y

(k)
j and Ȳk = Yk/τk

represent the total and the mean of the subset Uk, k = 1, 2, of the population.
Similarly, Y = Y1 + Y2 and Ȳ = Y/τ represent the total and the mean of the whole
population U .

Since we cannot compute the design-based inclusion probabilities of the sampled
elements because we do not know the sites in the frame that are linked to each
sampled person, we compute conditional model-based inclusion probabilities given
the sites Ai ∈ SA. These probabilities are given by

π
(1)
j (α(1), σ1, β

(1)
j ) = 1 − (1 − n/N)

n
∏

i=1

(1 − p
(1)
ij ) if j ∈ U1 (4)

π
(2)
j (α(2), σ2, β

(2)
j ) = 1 −

n
∏

i=1

(1 − p
(2)
ij ) if j ∈ U2. (5)

The probabilities π
(k)
j (α(k), σk, β

(k)
j )s are not known because depend on unknown

parameters. However, we could estimate them by estimating those parameters and
replacing in (4) and (5) the parameters by their estimates. Estimators of α(k) and
σk have already been derived by Félix-Medina et al. (2009). We will next derive a

predictor of the random effect β
(k)
j .

Thus, given the subset U2, U1 − S0 or Ai′ ∈ SA that contains the element j,

we have that the conditional joint probability density function of the vector X
(k)
j of

link indicator variables associated with that element and the random effect β
(k)
j is

f(x
(k)
j , β

(k)
j |j ∈ Uk − S0) = Pr(X

(k)
j = x

(k)
j |β(k)

j , j ∈ Uk − S0)f(β
(k)
j )
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∝
n

∏

i=1

[p
(k)
ij ]x

(k)
ij [1 − p

(k)
ij ]1−x

(k)
ij exp[−(β

(k)
j )2/2σ2

k]

if j ∈ Uk − S0, k = 1, 2, and

f(x
(1)
j , β

(1)
j |j ∈ Ai′ ∈ SA)∝

n
∏

i6=i′

[p
(1)
ij ]x

(1)
ij [1 − p

(1)
ij ]1−x

(1)
ij exp[−(β

(1)
j )2/2σ2

1 ]

if j ∈ Ai′ ∈ SA, i′ = 1, . . . , n.

We will propose as a prediction of β
(k)
j the value β̂

(k)
j that maximizes the conditional

joint probability density function of X
(k)
j and β

(k)
j . This procedure yields that β̂

(k)
j

is given as the solution to the following equation:

n
∑

i=1

x
(k)
ij −

n
∑

i=1

exp[α̂
(k)
i + β

(k)
j ]

1 + exp[α̂
(k)
i + β

(k)
j ]

− 1

σ̂2
k

β
(k)
j = 0 if j ∈ Uk − S0, k = 1, 2, and

n
∑

i6=i′

x
(1)
ij −

n
∑

i6=i′

exp[α̂
(1)
i + β

(1)
j ]

1 + exp[α̂
(1)
i + β

(1)
j ]

− 1

σ̂2
1

β
(1)
j = 0 if j ∈ Ai′ ∈ SA, i′ = 1, . . . , n.

Notice that this equation implies that the predictor β̂
(k)
j of β

(k)
j depends on the

number of sites that are linked to the element j, but not on the particular sites to
which that element is linked. Thus, if two persons j and j′ in Uk − S0 are linked to

the same number of sites in SA, the predictors β̂
(k)
j and β̂

(k)
j′ are equal one another.

The same happens for two persons in Ai ∈ SA.
Thus, model-based Horvitz-Thompson-like estimators (HTLEs) of the totals Yk,

k = 1, 2, and Y are

Ŷk =
∑

j∈S∗

k

ykj/π̂
(k)
j (α̂(k), σ̂k, β̂

(k)
j ), k = 1, 2, and

Ŷ = Ŷ1 + Ŷ2.

Similarly, model-based HTLEs of the means Ȳk and Ȳ are

ˆ̄Y k = Ŷk/τ̂k, k = 1, 2, and ˆ̄Y = Ŷ /τ̂ .

5. Monte Carlo studies

We carried out two simulation studies to explore the performance of the proposed
estimators of the population totals and means. In each of the studies we constructed
populations from which samples were repeatedly selected using the sampling design
described in Section 2. In the first study we constructed two artificial populations,
whereas in the second study we used data from the Colorado Springs study on
transmission of HIV/AIDS to construct a population.

5.1 First simulation study

We considered two finite populations of N = 150 values Mi. In Population I the val-
ues were generated from a Poisson distribution with mean 8.0, whereas in Population
II from a zero truncated negative binomial distribution with mean 8.0 and variance
24.0. In Table 1 are displayed the characteristics of each population. Notice that in
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Table 1: Characteristics of the artificial populations generated for the first study.

Population I Population II

N = 150 N = 150
Mi ∼ Poisson Mi ∼ Zero-truncated neg. bin.

E(Mi) = 8.0 V (Mi) = 8.0 E(Mi) = 8.0 V (Mi) = 24.0
τ1 = 1209 τ2 = 400 τ = 1609 τ1 = 1208 τ2 = 400 τ = 1608

Y1 = 50135.6 Y2 = 16793.7 Y1 = 50244.8 Y2 = 16876.9
Y = 66929.4 Y = 67121.7

Ȳ1 = 41.5 Ȳ2 = 42.0 Ȳ = 41.6 Ȳ1 = 41.6 Ȳ2 = 42.2 Ȳ = 41.7

both populations the value of τ2 was set to 400. The values of the link probabilities

p
(k)
ij ’s were obtained by means of Rasch model (1), where α

(k)
i = ck/(M

1/4
i + 0.001),

c1 = −5.7 and c2 = −6.5. The β
(k)
j ’s were obtained by sampling from the N(0, 1)

distribution. The values of these parameters were such that the average values of

p
(1)
ij and p

(2)
ij were about 0.04 and 0.03. In addition, since we used an initial sample of

size n = 15, the sampling fractions in U1 and U2 were about 0.4 and 0.3. The value

y
(k)
j of the variable of interest Y was obtained by sampling from the noncentral

chi-square distribution with two degrees of freedom and noncentrality parameter

θ
(k)
j = 0.4 exp(β

(k)
j )/[1 + exp(β

(k)
j )]. The use of these distributions yielded that the

y-values and the inclusion probabilities were positively correlated with correlation
coefficients ρ1 = 0.73 and ρ2 = 0.71 for the elements in U1 and U2, respectively.

The simulation study was carried out by replicating r = 10000 times the fol-
lowing procedure. From each population of N = 150 values of Mis a SRSWOR
of n = 15 values was selected. From the i-th selected value, i = 1, . . . , n, the val-

ues of X
(1)
ij and X

(2)
ij were obtained from Bernoulli distributions with means p

(1)
ij ,

j = 1, . . . , τ1 −Mi, and p
(2)
ij , j = 1, . . . , τ2, respectively. These data on the Mis and

the X
(k)
ij s were used to compute the estimates of the population totals and means.

In this study we considered the estimators {Ŷ1, Ŷ2, Ŷ } and { ˆ̄Y 1,
ˆ̄Y 2,

ˆ̄Y } proposed
in this paper, and the following two types of estimators proposed by Félix-Medina

and Monjardin (2010). The estimators {Ỹ1, Ỹ2, Ỹ } and { ˜̄Y 1,
˜̄Y 2,

˜̄Y } based on the
MLEs of the population sizes proposed by Félix-Medina and Thompson (2004) and

derived under the assumption of homogeneous p
(k)
ij s, and the estimators {Y̌1, Y̌2, Y̌ }

and { ˇ̄Y 1,
ˇ̄Y 2,

ˇ̄Y } based on the Bayesian-assisted estimators of the population sizes
proposed by Félix-Medina and Monjardin (2006), also derived under the assump-

tion of homogeneous p
(k)
ij s, and using the following initial distributions for τ1, τ2

and α
(k)
i = ln[p

(k)
i /(1 − p

(k)
i )], where p

(k)
i is given by (1), but setting β

(k)
j = 0;

ξ(τ1|λ1) ∝ (Nλ1)
τ1/τ1! and ξ(λ1) ∝ λa1−1

1 exp(−b1λ1); ξ(τ2|λ2) ∝ λτ2
2 /τ2! and

ξ(λ2) ∝ λa2−1
2 exp(−b2λ2), and ξ(α

(k)
i |θk) ∝ exp[−(α

(k)
i − θk)

2/2σ2
k] and ξ(θk) ∝

exp[−(θk − µk)
2/2γ2

k ], where a1 = 1.0, b1 = 0.1, a2 = 6.0, b2 = 0.01, µk = −3.5 and
σ2

k = γ2
k = 9.0. These values assigned to the parameters of the initial distributions

made them practically non-informative. The Gaussian quadrature approximations

(2) and (3) to the probabilities π
(k)
x (α(k), σk) and π

(Ai)
x (α

(1)
−i , σ1) were computed us-

ing q = 20 terms. The performance of an estimator Ŷ say, of Y was evaluated by
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Table 2: Populations constructed using artificial data: relative biases and square
roots of relative mean square errors of estimators of the population totals and means.
Results based on 10000 samples.

Population I Population II Population I Population II

Esti- Esti-
mator r-bias

√
r-mse r-bias

√
r-mse mator r-bias

√
r-mse r-bias

√
r-mse

Ŷ1 -0.03 0.08 -0.04 0.08 ˆ̄Y 1 -0.03 0.04 -0.04 0.04

Ŷ2 -0.16(35) 0.26(35) -0.18(22) 0.25(22) ˆ̄Y 2 -0.06(35) 0.17(35) -0.09(22) 0.15(22)

Ŷ -0.06(35) 0.10(35) -0.08(22) 0.10(22) ˆ̄Y -0.05(35) 0.06(35) -0.05(22) 0.06(22)

Ỹ1 -0.15 0.15 -0.18 0.19 ˜̄Y 1 0.17 0.17 0.18 0.18

Ỹ2 -0.31 0.32 -0.33 0.34 ˜̄Y 2 0.23 0.24 0.22 0.22

Ỹ -0.19 0.19 -0.22 0.22 ˜̄Y 0.18 0.18 0.19 0.19

Y̌1 -0.15 0.15 -0.18 0.19 ˇ̄Y 1 0.17 0.17 0.18 0.18

Y̌2 -0.28 0.29 -0.30 0.31 ˇ̄Y 2 0.21 0.21 0.19 0.20

Y̌ -0.18 0.18 -0.21 0.21 ˇ̄Y 0.18 0.18 0.18 0.18

Notes: Number in parentheses indicates the number of samples in which the esti-

mator was not obtained. Ŷk and ˆ̄Y k, proposed estimators. Ỹk and ˜̄Y k, as well as

Y̌k and ˇ̄Y k, estimators proposed by Félix-Medina and Monjardin (2010).

means of its relative bias (r-bias) and the square root of its relative mean square error

(r-mse) defined by r-bias =
∑r

1(Ŷi − Y )/(rY ) and
√

r-mse =
√

∑r
1(Ŷi − Y )2/(rY 2),

where Ŷi was the value of Ŷ obtained in the i-th trial.
The results are shown in Table 2. The following are the main aspects of the

results. First, the proposed estimators of the totals and means showed smaller val-
ues of r-bias and

√
r-mse than the values showed by the estimators derived under

the assumption of homogeneous link probabilities. Second, the estimators of the
total Y2, including the proposed estimator, showed problems of bias that increased
the values of the square roots of their r-mse. Third, the estimators of the means
performed better than the corresponding estimators of the totals. Finally, the per-
formance of every one of the estimators was practically not affected by the type of
population. So the proposed estimators are robust to deviations from the assump-
tion of the Poisson distribution of the Mis. It is worth noting that in some of the
samples the proposed estimators were not computed because convergence problems
precluded the calculation of the corresponding estimators of the population sizes
and inclusion probabilities.

5.2 Second simulation study

In this simulation study we constructed a population using data from the Colorado
Springs study on heterosexual transmission of HIV/AIDS, described by Potterat
et al. (1993), Rothenberg et al. (1995) and Potterat et al. (2004), among others.
That epidemiological research was focused on a population of people who lived in
the Colorado Springs metropolitan area from 1982-1992 and who were at high risk of
acquiring and transmitting HIV. That population included drug users, sex workers
and their personal contacts, defined as those persons with whom they had close
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social, sexual or drug-associated relations. In that study, 595 initial responders were
selected in a non-random fashion and they were asked for a complete enumeration
of their personal contacts. A total of 7379 contacts who were not in the set of
the initial responders were named and included in the study. In our simulation
study the set U1 was defined as the set of the 595 initial responders and, as in Félix-
Medina and Monjardin (2010), they were grouped into N = 105 clusters of sizes Mis
generated by sampling from a zero-truncated negative binomial distribution with
parameter of size 2.5 and probability 2/3. The sample mean and variance of the
Mis were 5.67 and 15.03, respectively. A person was defined to be linked to a cluster
if he or she was a personal contact of at least one element in that cluster. Since,
approximately 95% of the 7379 contacts of the initial responders were linked to only
one cluster, and this could affect the performance of the proposed estimators, in
our study we considered the subset of the 7379 contacts formed by the 415 persons
who were linked to at least two clusters plus the 379 sex workers who were linked
to only one cluster. In our simulation study, the set U2 was defined as that subset
of 794 contacts. Thus, τ1 = 595, τ2 = 794 and τ = 1389. The variable of interest
was a binary variable which equaled 1 if a person was a sex worker and equaled
0 otherwise. It is worth noting that this population is the same as the one called
“reduced population” by Félix-Medina and Monjardin (2010). We used an initial
sample of size n = 20, which yielded that the sampling fractions for U1 and U2 were
about 0.4 and 0.3.

The simulation experiment was carried out as the previous one, except that
any time that the i-th cluster was included in an initial sample, every one of the
people linked to that cluster was included in the sample. The results of the study
are shown in Table 3. The following are the main aspects of the results. First,
every one of the estimators of Y1 performed acceptably well and similarly. Second,

the proposed estimator ˆ̄Y 1 of Ȳ1 was the one of the best performance, although
its performance was only moderate. Third, in estimating the other parameters, the
estimators derived under the assumption of homogeneous link probabilities were the
ones of the best performance, although their performance was hardly acceptable.
Fourth, in some of the samples the proposed estimators were not computed because
of convergence problems.

6. Conclusions and suggestions for future research

Based on the results of the Monte Carlo studies we have the following conclusions.
The proposed estimators seem to work acceptably well when every of the assump-
tions is satisfied or when only the assumption of the Poisson distribution of the
Mis is not satisfied. However, they do not seem to be robust to deviations from
the other assumptions, as we can see from the results of the second simulation
study. Unfortunately, at this moment we do not know which assumptions need to
be satisfied in order that the estimators perform acceptably well. Thus, additional
Monte Carlo studies need to be carried out to obtain more information about this
problem of lack of robustness. The performance of the estimators derived under the
assumption of homogeneous link probabilities is not good when this assumption is
not satisfied, as we can see from the results of the first simulation study. Therefore,
it is surprising that in the second simulation study those estimators performed bet-
ter than the proposed estimators. A possible explanation for this result is that the

small degree of heterogeneity of the p
(2)
ij s (σ̂2 = 0.12) caused that the estimators Ỹ2

and Y̌2 had negative r-biases of moderate magnitudes which were canceled out by
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Table 3: Population constructed using data from the Colorado Springs study:
Relative biases and square roots of relative mean square errors of estimators of the
population totals and means. Results based on 10000 samples.

Estimator r-bias
√

r-mse Estimator r-bias
√

r-mse

Ŷ1 0.04(29) 0.14(29) ˆ̄Y 1 0.16(29) 0.20(29)

Ŷ2 -0.23(29) 0.35(29) ˆ̄Y 2 -0.33(29) 0.36(29)

Ŷ -0.17(29) 0.27(29) ˆ̄Y -0.20(29) 0.23(29)

Ỹ1 0.06 0.14 ˜̄Y 1 0.37 0.39

Ỹ2 -0.12 0.41 ˜̄Y 2 -0.30 0.32

Ỹ -0.08 0.31 ˜̄Y -0.12 0.17

Y̌1 0.06 0.14 ˇ̄Y 1 0.37 0.39

Y̌2 -0.19 0.33 ˇ̄Y 2 -0.29 0.32

Y̌ -0.13 0.25 ˇ̄Y -0.12 0.16

Notes: Number in parentheses indicates the number of samples in which the

estimator was not obtained. Ŷk and ˆ̄Y k, proposed estimators. Ỹk and ˜̄Y k, as

well as Y̌k and ˇ̄Y k, estimators proposed by Félix-Medina and Monjardin (2010).
σ̂1 = 1.12, σ̂2 = 0.12.

the positive biases of Ỹ1 and Y̌1. This did not happen with the proposed estimators
because the magnitude of the r-bias of Ŷ2 was not small enough to be canceled out
by the positive r-bias of Ŷ1.

Regardless of the only fair performance of the proposed estimators, we consider
that they are a better alternative than that based on the estimators derived under
the homogeneity assumption. Obviously, our proposal still need to be improved. As
we indicated earlier, additional simulation studies need to be carried out to obtain
information about the lack of robustness of the proposed estimators. That infor-
mation could be used to modify the estimators so that they have better robustness
properties than the ones proposed in this work. Other problem that we have not
considered is interval estimation. A possible solution to this problem is to use boot-
strap to construct confidence intervals or, if the previous solution is computationally
very expensive, to use bootstrap to construct variance estimators and then to obtain
Wald confidence intervals.
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