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Abstract

The Linear Latent Structures (LLS) analysis assumes tlairititual correlations observed in sur-
vey variables reflect a hidden property of subjects that eatidscribed by low-dimensional random
vector. The statistical properties of LLS analysis, theodathm for parameter estimates and its im-
plementation, simulation studies, and application of LL&del to the National Long Term Care
Survey (NLTCS) data are discussed. The results of analygesompared numerically and ana-
Iytically to predictions of the Latent Class and Grade of Memship analyses. Simulation studies
demonstrate high quality of reconstruction of the major sl@dmponents and demonstrate its po-
tential to analyze survey datasets with 1000 or more questiépplying the LLS model to the 1994
and 1999 NLTCS datasets (5,000+ individuals) with respetsever 200 questions on behavior
factors, functional status, and comorbidities resulteddantified population structure with basis
represented pure-type individuals, e.g., healthy, styodigabled, having chronic diseases, etc. The
components of the vectors of individual LLS scores are usethake predictions of individual
lifespans.

Key Words. Multidimensional categorical data; demographic survétent analysis; health state;
Grade of Membership; Latent Class Model

1. Introduction

Survey data typically represent sample-based collections of measuremmahéswith dis-
crete outcomes for individuals. Common property of such datasets is higmsionality,
and that measured variables are highly correlated. Methods dealing withtasks are
known as latent analysis. Typical assumption in the methods is that the edssruc-
ture of multiple categorical variables are generated by the small number aof (@,
unobserved) variables. The task of latent analyses is to find theseate&iiles, estimate
parameters of their distribution, and describe their properties using a saftpégh dimen-
sional categorical variables. Generally speaking, it is necessary tthigngroperties of a
population, associated with latent variables, and properties of individo@ased on those
multiple categorical measurements. It appears that both goals may be acsirewdtane-
ously. To the increase precision of population and individual estimateshasto increase
both the sample size (i.e., the number of individuals) and the number of mesesuei.e.,
questions asked for each individual).

One of the best known of methods of latent analyses is the latent class thGdé),
which can be characterized as a statistical method for finding discretepsshty related
cases (latent classes) from multivariate categorical data. Other modais tfpe (known
as latent variable models), such as item response theory and Rasch,nidteidy the
assumptions made about the latent variable(s) (reviewed by Clogg, 488%;ollins and
Lanza, 2010). One method for identifying the latent structure in large cated data sets
with a simultaneous evaluation of individual scores in a state space is Grisidanbership
(GoM) analysis introduced by Woodbury and Clive (1974). Mantor.€t1894) provided
a detailed exposition of different version of this approach and reviatsgmoperties.
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Recently Linear Latent Structure (LLS) analysis has been proposeddelrhigh di-
mensional categorical data (Kovtun et al., 2006, 2007, Akushevich, @089). The LLS
specific assumption is that the support for latent variable occupy a pbiyhef lower di-
mensionality. The LLS model was formulated using the mixing distribution theamyils3
to other latent structure analyses, the goal of LLS analysis is to derivdtaimeously the
properties of a population and individuals, using discrete measurememsLLIS, how-
ever, does not use maximization of a likelihood for parameter estimation. thsteses
an estimator, where the LLS parameter estimates are solutions of a quasilistean ®f
equations.

2. Linear Latent Structure Analysis

2.1 Structureof datasets and population characteristics.

The typical dataset analyzed by methods of latent structure analysiseceeptesented
by the I x J matrix constituted by categorical outcomé’gL of J measurements on
individuals, where = 1,..., I andj = 1,...,J run over individuals and measurements,
respectively. Each row in the matrix corresponds to an individual anthaws an individual
response pattern, i.e., a sequencd ofumbers with theith number running from 1 to the
number of responsds; for that variable. In most casés ranges from 2 to 5-10, and rarely
exceeds several dozens. Thus, the results of a survey areeef@@dy/ measurements
of random variables\, ..., X, with the set of outcomes of thgh measurement being
{1,...,L;}. The joint distribution of random variablée¥, , ..., X ; can be described by the
elementary probabilities,

pg:Pr(Xlzfl and --- and X]Zf]), (1)

wherel = (¢4, ...,¢;) is an individual response pattern afde {1,...,L;}. To include
into consideration marginal probabilities, we allow some componenis@be0’s. For
example, for three binary variables,

P01y = Pr(X1 =2 and X3 =1) = p1.1) +P221)-

Values of these probabilitiesy (and only these) are directly estimable from the observa-
tions. If I, is the number of individuals with patteficonsistent estimates fpy are given
by frequencies, = I,/I.

2.2 LLStask: statistical, geometrical, and mixing distribution points of view.

The problem in LLS analysis is to evaluate dimension of a hidden space, idastib-
cation in the space of larger dimension, and to evaluate hidden individirasacteristics
(coordinates in the latent sub-space) from the data. The LLS analysasédon two
assumptions. The first is the assumption about “local independencé&h wghcommon
for all methods of latent structure analysis. The second is specific f& &halysis. It
is about existence of low-dimensional linear subspace associated withaghedaucture.
We present LLS in terms of the theory of mixing distributions, and then distauspecific
assumption from statistical and geometrical points of view.

Population characteristics are completely described by the joint distributiendbm
variablesX1, ..., Xy presented by probabilities (1). Among all possible joint distributions,
one can distinguish independent distributions, i.e. distributions satisfying,

pe = Pr(X, =4 and .-'andXJzeJ):HjPr(ijzj). 2)
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The description of an independent distribution law requires only knowingX; = ¢;)
denoted below as;;. Vectors of probabilitie® = (011, ..., 3s1,) belong to vector space
RILI, where|L| = >_; Lj. Indexes of the vector components run over all possible pairs
of ji, i.e., corresponding to probabilities of the first outcome to the first questiotine
second outcome to the first question, and so on. Requirements; far be probabilities
restricts their domain in the vector space by

L.
Zl:]l Bu=1 —and  Bj >0. )
This domain represents the direct product/afinit simplex of dimensiong ;.
Since variablesX, ..., X; in general case are not independent, the observed distri-

bution {p,} cannot be described by the product of independent distributions, ¢an be
exactly described as a mixture of independent distributions. This meansatiatset of
independent probabilities contributes to observed distribution with a waigletibn. This
weight function is called mixing distribution. It is defined in the space of inddpat dis-
tributions, i.e. for each vector of probabilitiessatisfying (3). LetF'(3) be the cumulative
distribution function of the mixing distribution. Probabilitipg are represented as,

pe= /dF(ﬂ) H;.Izl Bje,- 4)

Thus, latent structure analysis searches for a representation ofskevetd distribution as
a mixture of independent distributions.

Any distribution{p,} can be represented as a mixture, so representation (4) does not
restrict the family of distributions and further specifications are requitéaety are formu-
lated as restrictions on the support of mixing distribution or, equivalently, set of mixed
independent distributions. The LLS specific assumption is that this setiieted to be a
K-dimensional linear subspace of the space of independent distributienshe mixing
distribution is supported by the linear subspace spanneR lipasis vectors\!, ..., \¥.
Below this LLS assumption is considered from the point of view of pure stalsitalysis
and the geometry of the task.

Individual characteristics are described by individual probabiliﬁgs: Pr(X]i- =1)
of specific outcomes (= 1, .. ., I runs over individuals).

The LLS assumption about the existence of a low-dimensional linear StdSo@-
porting the mixing distribution is essentially equivalent to the assumption thatekists a
K-dimensional random vectdr such that for every a regression of; (random variable
Yj; equaling 1 ifX; = [ and O otherwise) ok is linear. The regression equation relates
the expectation of’;;, which is 3;;, to the random vectofs. If a specific value of~ is
associated with individual(so-called LLS scoreg;.), then the regression takes the form,

. K
=3 N 5)

The sense of the regression coefficiekﬁﬁand model restrictions is clarified by analyzing
the geometry of the LLS task.

Vectors of individual probabilitiegi’ = {3}, of individual response¥™ = {Y,
and the regression coefficient§ = {)\?l} lie in the permitted domain (3) of the space of
independent distributions. From a geometric point of view, LLS searali&glimensional
subspace (represented hy) in this space, which is the “closest” to the seffgfoints rep-
resenting individual outcomééjil. This linear subspace is defined by its basis. . . , A,
so to find theK -dimensional subspace means finding a ba%ﬁls,(k =1,...,K). Every
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basis\!,..., A\ defines a family of regression coefficients and vice versa. The complete
set of restrictions in the LLS task allowing to consiqﬂ;ff and)\;?l as probabilities, is,

L,y K
dNy=1, Mi>0, D ga=1 and ) ga>o0. (6)
=1 k=1 k

LLS scoregy;;, characterizing an individualare then estimated as the expectation of vector
G, conditional on the respondent’s answers. Basis vectors of the atbg@an be inter-
preted as probabilities and can define the “pure types” (Manton et al) 188this sense,
the model decomposition (5) has the interpretation of a decomposition ovetypes or
over “ideal persons” whose individual probabilities are basis veabtise subspace.
Summarizing, one can say that the LLS model approximates the observéloutisir
of X1,..., X by a mixture of independent distributions with a mixing distribution sup-
ported by aK-dimensional subspace of the space of independent distribution. Tdyspe
such a model distribution it is sufficient to define the following LLS parameters

1. Abasis\!, ..., \X of the space that supports the mixing distribution.
2. Conditional moment& (G| X = /).

This set of model parameters is not the only set possible. We chose itdeeaba number
of useful properties listed below.

Property 1. The mixing distribution can be estimated in the style of an empirical
distribution, i.e., when the estimator is a distribution concentrated in p&i€s| X = /)
with weightsf,.

Property 2. The conditional expectatiods(G|X = ¢) provide knowledge about indi-
viduals. These conditional expectations can be considered as cdeslina phase space,
to which all individuals belong. The ability to discover the phase space atetrdine
individual positions in it is a valuable feature of LLS analysis.

Property 3. When the number of measuremedt, tends to infinity, the individual
conditional expectationgs = E(G|X = (), where/® is the vector of responses of in-
dividual 7, converge to the true value of the latent variable for this individual, atichates
of the mixing distribution converge to the true one, provided some regularitditons
(Kovtun et al., 2011).

2.3 Moment matrix and the main system of equations.

Parameter estimation is based on two facts (Kovtun et al., 2005a,b) formulatechis
of the conditional and unconditional moments of the mixing distribution. Theifirgtat
columns of moment matrix belong exactly to the desired linear space. Thedsiscthrat
they obey the main system of equations.

2.3.1 Unconditional moments and the moment matrix

The first set of values in which we are interested consists of the uncamglinsoments of
the mixing distributionF'(3),

o= [arO]],, ,sime ™

Note an important fact regarding the above equation. The value on thealedt-side M,
is a moment ofnixing distribution, while the value on the right-hand-sige, comes from
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thejoint distribution of X1, ..., X ;; the equality of these values is a direct corollary of the
definition of mixture. The existence of their connection between two distintilaitons
is crucial for LLS analysis.

The first corollary of eq. (7) is that the unconditional moments are direstiynable
from data and, therefore, the frequencfe®f response patterrfsobserved in a sample are
consistent and efficient estimators for conditional moments

Recall that we allow some components of response pattéonbe 0. In this case
pe are marginal probabilities. In the definition 8f, the multipliers, corresponding to O
components of, are excluded from the product. Thus, the order of moniénts equal to
the number of non-zero component<in

All moments defined in (7) are estimable by frequencies; however, thisti@iidoes
not cover all moments of a certain order. For example, moments of secdadwith 3,
and 3;;,, (i.e., with the samg) are not estimable. This arises because the data do not
include double answers to the same question. One can notice that i) all morh&rds o
order are estimabile, ii) the proportion of estimable moments decreases with thaseof
order, and iii) no moments of ordgr+ 1 and higher are estimable.

The moment matrix is constructed from moments of order up tsing the following
formal rules:

1. Rows of the moment matrix are indexed by response patterns contaigictlyeone
non-zero component or, equivalently, by pair indexesThus, the moment matrix
containsg | rows, and their columns can be considered as vectaRs'in

2. Columns of the moment matrix are indexed by all possible response paitetod-
ing a response pattern containing all 0's. The first column is indexed dporese
pattern(0, ..., 0); the next|L| columns are indexed by response patterns containing
one non-zero component, and so on.

3. The element on the intersection of réhand columr?” is My, 4, if ¢” has 0 at the
position of the only non-zero component&f(in this casef’ + ¢” is a meaningful
response pattern; otherwise, the question mark is placed on the positiderseiy
tion of row ¢/ and column/”). For example, the element of the moment matrix in
row (1,0,0) and column(0, 2, 2) is M 2 2, and element in rowl, 0, 0) and column
(1,0,2) is a question mark.

Equation (8) gives an example of a portion of the moment matrix for the cage-08
dichotomous variables, i.el,; = Ly = L3 = 2.

M 100) ? 7 Muwy Ma2oy Maoyy Moz ?

M 200) ? T Mooy Mooy M@y Moz ?

Mooy M@ui0) M210) ? ? M1y M2 ? )
Mo20y M120) M220) ? ? M21) Mo22) ?

Mooy Maoyy Meory Moy Moo ? ? M)

Mooy Moy Mooy M2y Mz ? ? M112)

In this example, places for inestimable moments are filled by question marks. r$he fi
column of the moment matrix contains moments of the first order, when only @uifisp
outcome of one specific question is taken into account. There are no inestimaiments
in the first column. Elements of this column can be denoted as componentstofsvec
in RIL ie., asMj;. The next six (L] in general) columns correspond to second-order
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moments. Blocks of diagonal elements are not estimable. Second-order tsaraerbe
also denoted via paijil of indexes as\i;;.;,. The last shown column corresponds to third
order moments. The notatial;; and M., is used below for specific columns of the
moment matrix.

The part of the moment matrix consisting of second-order moments (whiéh is|L|
square matrix) together with the column of first-order moments is of speciakstteA
well-know fact is that if a distribution in an-dimensional Euclidean space is carried by
a k-dimensional linear manifold, then the rank of the covariance matrix is equalaad
the position of the manifold can be derived from the covariance matrix. Huisi$ the
cornerstone of principal component analysis. Our method is based onrsau#éa, adapted
to having an incomplete set of second-order moments. For a shial in the example),
there is a relatively large fraction of hon-estimable components in the sexrded part of
the moment matrix. For increasing this fraction rapidly decreases.

For a moment matrid/ let its completionV/ be a matrix obtained from/ by replacing
question marks with arbitrary numbers. The main fact with respect to the mamerik
is that the moment matrix always has a completion in which all columns belong to the
supporting plané\. Thus, if the estimable part of the moment matrix has sufficient rank
(which is the case in nondegenerate situations,) a basisritay be obtained from this
matrix. As we have a consistent estimator of the moment matrix in the form of agney
matrix, the supporting plane may be consistently estimated.

2.3.2 Unconditional moments and main system of equations

Another set of the values of interest are the conditional momeits,| X = ¢), which
express knowledge of the state of individuals based on measuremeeysarémot directly
estimable from observations. The goal of LLS analysis is to obtain estimatd¢sefee
conditional moments. Explicit expressions for those of the lowest ordenlatained using
the Bayes theorem (Kovtun et al. 2007),

Hj:ﬂﬂéo 2ok gk)‘ﬁz
Mo(p)
Analogously, higher conditional moments, including products of comporériis can be

constructed. As can be seen explicitly from (9), the relation of conditiandluncondi-
tional moments in LLS analysis can be described as,

E(G,|X = 1) = / 0F (9)gn ©)

My,

> N B(GHX = 0)—2M,, (10)
where vector/ contains 0 in positiory, and/ + [; contains/ in this position. Similar
equations can be written for conditional moments of higher orders. Wetetee system
of equations relating conditional and unconditional moments as the main syt o
equation. Kovtun et al, (2006) proved the following properties of solstiohthe main
system of equations: i) any ba§i§’7 of A together with conditional momen® (G| X =

¢) calculated on this basis give a solution of the main system of equation; and&y un
regular conditions, every solution of the main system of equations givasia bfA and
conditional moments calculated in this basis. Note, that equation (10) is linearesfibct
to conditional moments.

The described properties of the moment matrix and solutions of the main sy$tem o
equations suggest an efficient algorithm to obtain LLS estimates. Firstjsadfdke sup-
porting plane can be obtained from the moment matrix, and second, contlitionzents
can be found by solving a linear system of equations.
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2.3.3 Two illustrative examples.

Before going into detail for the algorithm and to realistic tasks of data analysisonsider
two simple illustrative examples. For both of them, assutfne 2, three dichotomous vari-
ables (/ = 3), and the basis vectors aké = (1,0;1,0;1,0) andA? = (1/2,1/;0,1;0,1).
Then the independent distributions being mixed are defined by vectors:

B=gMN +gpX =g\ +(1-g)\, 0<g <L (11)

Thus, a mixing distribution can be given one dimensional pad; ). For the first task, we
assume that the mixing distribution is uniforg(§;) = 1-6(g1) - (1 — ¢1). In the second
case we assume the mixing distribution is concentrated at two pointsgyvith 0.1 and
g1 = 0.4 (p(g1) = 1[0(g91 — Y10) + (g1 — %/5)]). Unconditional moments are calculated
using (7). Moment matrices for both cases are

3 7 1 1 1 5 1 5 317 183 451 549 67 183
4 12 6 9 4 12 3 8 800 80 1600 1600 400 800
SO S S G S § 99 19w Wy ¥ 11
4 6 12 8 12 6 8 800 800 160 160 400 400
s 1y 5 Y 7480 998 83 PP %Y 299
2 1 1 4 16 1600 160 3200 3200 800 800
§ 1 ¥ § 1| oand | 0N Y W B W O | (12
% 4 % 16 16 8 4 16 1600 1600 8200 3200 80 800
FOE T A G O | AT R G
2 12 12 3 6 4 400 400 800 800 00 20
S G B G § 019 199 3% 8 W 1
2 3 6 4 4 6 3 4 400 400 800 800 200 200

Since these matrices were constructed from mixing distributions known g piagonal
blocks in the sub-matrix of the second order are calculable (marked by tiefdat in
(12)). As one can see, the rank of both these matrices is 2. Conditional m e
calculated for an outcome pattern. Chodse (001) and? + I; = (101). Using (9) we
have,

E(Gi|X =(001)) =2/3 and E(G2|X = (001)) =1/3 (13)
for the first example and,
E(G1|X =(001)) =17/50 and E(G2|X = (001)) = 33/50 (14)

for the second. Using corresponding elementd/ffin (12) (marked by bold text) we can
see thatl.h.s. and r.h.s of eq. (10) equdl 16 for first example an@7,/100 for the second:
2 11
2 L1 sz 17 133 67/400
3 2 3 1/2 50 2 50 1/4
External indexes in this example gie= 1 and/ = 1.

(15)

3. Computational Algorithm for Estimating LL S model

Parameter estimations in LLS models are based on properties of the moment mdtrix a
the main system of equations. These properties allow us to reduce a probdstmating
model parameters to a sequence of linear algebra problems. The algoasieth bn linear
algebra methods assures a low computational complexity.

Data to be analyzed are represented by a set of measurem?m&e section 2.1).
Finding a linear space and individual LLS scores is required. Estimatitimeafodel in-
cludes four steps: i) estimating the rank of the frequency matrix, ii) findingtipgorting
plane, iii) choosing a basis in the found plane, iv) calculating individuaditmmal expec-
tations and estimating mixing distribution. The second and fourth steps arestrecesof
LLS parameter estimation problem. The first step is defined as separatsbeacaetimes
the desired dimensionality of the LLS model may be provided by a reseawrhethis
step may be skipped. The third step requires using prior information abeytrtitesses
studied, so it is also examined separately.
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3.1 Moment matrix calculation

An important preceding step that deserves special attention is the moment oatrix
lation. The elements of the moment matrix givendy are approximated by observable
frequencies defined g% = 1,/1, wherel, is the number of individuals with outcome pat-
tern/, and[ is the total number of individuals having certain (not missing) outcomes for
nonzero elements i Columns of a different order have different normalizations, e.g., the
sum of first-order moments corresponding to quesfieone (e.9.Mg10) + Mg20) = 1),
while sums of columns for thig of the second-order sub-matrix are equal to corresponding
first-order moment (€.9M 110y + M120) = M(100))- General conditions of summations
of the second order moments written in terms of notation defined after eqe(8) a

Lj/

V1 Mjl;j’l’ = Mjl- (16)

Because of missing data, the property of normalization can be violated. fdmsnby,
with or without the renormalization making the sums equaling to one, is requiretido
analysis. The renormalization could provide the property in the case épce of missing
data, however, this approximation can be true only assuming missing datndamn.

In addition, a matrix containing standard errors (or confidence interaéls¥timates
of frequencies is calculated for each element of the frequency matrind&te errors for
binomial distribution, i.e.c; = \/f/(1 — f¢)/I;, require generalization for patterns with
small I, as discussed in Brown et al. (2001).

3.2 Computational rank of the frequency matrix

The frequency matrix can be presented as a sum of the moment matrix withiram

a matrix with a stochastic component. To define the dimensionality of the LLS jpnoble
we have to estimate the rank of the frequency matrix eliminating the stochastic nentpo
Specifically, we take the greatest minor of the frequency matrix that ddeontain ques-
tion marks. Then we calculate the singular value decomposition (SVD) anddaagual

to the number of singular values that are greater than a maximum of the totdhstan
deviation estimated as the quadratic sum of standard errors of freqeémaddved in the
minor.

The choice of a minor does not essentially influence the computational fainé fre-
quency matrix. Indeed, the geometrically specific choice of a minor (engdienensional
minor of maximal size in left low corner of moment matrix) corresponds to projeaifa
part of vectors onto n-dimensional linear subspace. If the real ratheanoment matrix
is much less than, it is clear that the rank of the projections does not change.

3.3 Findingthe supporting plane

All columns of the moment matrix belong to the supporting plane, and as theefiegu
matrix is an approximation of the moment matrix, a natural way to search for gposging
plane is to search for a plane that minimizes the sum of distances from it tolthercoof

the frequency matrix. In our case, however, this way is complicated hyhéarequency
matrix is incomplete; (b) the statistical inaccuracy of approximation of moméhtby
frequenciesf, varies considerably over elements of frequency matrix; and (c) a sough
basis should exactly satisfy conditio@f;1 )\;?l = 1 for everyk andj. These obstacles
are overcome by using some heuristic methods: (a) An iterative procéaturempletion

of the frequency matrix is used: after a basis of supporting plane is obtainis used

to recalculate completion of the frequency matrix. A new frequency matrix esl figr
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adjusting basis calculation etc. (b) Only the first and second order momerggamnined,
so statistical errors of different columns in this matrix are compatible. (c)tRotaf
each simplex (corresponding to each question) to the hyperplane to elimmagegree
of freedom. Rotation, but not a simple projection, is required to providedimeslistances
between points in a simplex. Items (a) and (c) require explicit consideration.

3.3.1 Completion of the moment matrix

We consider the second-order moment matrix where for eyehere are undefined ele-
ments corresponding to repeated answers to the same question. The firtemipdetion
procedure is to approximate these elements, assuming that the supporsipgeb is
found. Since only the completed frequency matrix is used for finding sebspaand
since the completion procedure uses a basis in the sought subspgacan be done within
the iteration procedure. For one iteration step, it is required to find a symmegdtiex 5;

of L; x Lj-dimension with positive elements and the required summation conditions such
that the sum of elements in a column (or in a row) equals to the correspondimgmbo
of the first order, i.e.), B; ;, = Mj;,. Since we know first- and second-order frequen-
cies (f;; and f;; j; j # j'), which only approximate exact moment®/{; and M;; j«/),
special efforts are required to process the properties;of Columns of the second-order
sub-matrix corresponding to questigare presented using known frequencigs;; j # j
and inestimable elements; ;,

f11;31 s fll;jL;

fipign - f1L1;5L;

s - B
(7)

Bj;le e BE’LELE

fugr - fJ1;3L3

Fonygn - Fongie;

The completion procedure is based on the fact that the rank of the momeix imafr;
which is much smaller than the dimension of matiX. Therefore, onlyK columns are
linearly independent. Each column of the moment matrix, being a vecfdrdimensional
vector space, can be expanded over basis veetars ., A\ available after finding the

subspace\. Known eIementgfﬂil— (l=1,... , Ly andj # 7) of columns of the moment
matrix corresponding to questigrare expanded,
il .=
fugr= Zk CINy (G #7). (18)
If coefficientsC,Z[ are found, matrixB; can be constructed a8; ;;; = ZC,Z[)\%,, The
k

number of known components of a veciy.;; is greater than the number of basis vectors,
o] coefficientsCil can be calculated by ordinary least squares with restrictidljé:z 0,
>, Gl =1 andzk(C’il/\;—?l—, - C,lekg-‘?l—) = 0. The functional to be minimized is:

2
Z (fjl;jl_ Z CIZlA§Z> . (19)
k

Jlg#]
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3.3.2 Removing restrictions

The restrictionleL:J1 )\;?l = 1 are removed by reducing the number of rows.byone for

every group of indexesl, . . ., j ;). Specifically, we use a linear map froRi"! to RIZ1-/
represented by a block-diagonal matdxwith J blocks of sizel; x (L; — 1):

L;—1
EL g
T ) (20)
L;—1
Y 00 1

Geometrically, such a map provides isometric rotatiafi & AMF) to the hyperplane
with zero first coordinate, i.e., (every block; defines a rotation of a unit simplex in
L;—dimensional space around a hypersurface opposite to the first vébrgeangle of this
rotation is such that the first vertex moves to the point where the first cwiedequals

- . L= . : < L;—
0). Explicitly, this rotation is\", | = A;\% in matrix form orA%, | = A} — \ézllk’?
fori = 2,...,L;. New vectors\* do not possess any ties. It is easy to ascertain that
such a transformation really conserves distances between points in a simp&reverse

transformation is,

Ly Nk
A\ — M M= 2E 7V1’j_:l/\’? (1)
71 \/fj ’ 5l jl—1 Lj 1 71

3.3.3 Algorithmfor identifying the subspace

The initial completion of the moment matrix is constructed in a arbitrary way, ey thd
unitary diagonal matrix or completing by frequenciesfgs= f; f;. The next preliminary
step is the rotation of each simplex (corresponding to each question atbddsabove)
to the hyperplane to eliminate one degree of freedom. This produgesntsc', ..., c"
(images of columns of frequency matrix)im = (| L|—.J)-dimensional space. The problem
is to find an affine plane that minimally deviates from these points in the spacgivitimal
probabilities. First, we find the center of gravity of this system

& = 1 ZZ &, (22)

and then consider a new set of poiats= ¢ — ¢, that corresponds to shifting the point
of origin. Now we need to find & -dimensional linear subspace RI" that minimally
deviates from this set of points. The solution of this problem is well-knowre loas to
consider ann x m matrix X with componentX.,., = >, &.¢%; this matrix is symmetric and
positively defined, and thus its normalized eigenvectors are composedartreonormal
basis inR™. Lety; > vo > --- > ~,, > 0 be eigenvalues of matriX, and letz!, ..., 2™
be corresponding eigenvectors. The plane of dimensionAlitiiat minimizes the sum of
squared distances from poirits . . ., ¢" is spanned by!, .. ., 2, and the sum of squared
distances is t’X — S"r . Vectorse?,® + 2',..., " + 21 give us an affine basis
of the sought affine plane. Finally, we apply inverses of transformagah to °, c® +
2, ..., 4+ 2K~ 1 to obtain the sought basis, ..., \¥ of the subspaca.

3.4 Choiceof abass

The basis cannot be defined uniquely, and any convex combinatiosisfugetors keeping
the LLS restrictions can be considered an alternative. A choice may be usaug prior
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information about the process of interest. The appeal of prior informaticthis stage
is reasonable because of the evident fact that the same dataset csedderuanalyzing
different (say, disability or CVD) substantive tasks.

The way how this information is used and how the procedure of specificelod the
basis is defined is a question of taste. We describe here two possible sohrsgden our
analyses.

A researcher specifies the characteristics of “ideal” individuals baseldis/her ex-
perience in the research domain. Then he/she can construct vectusbabilities3;,;
for such ideal individuals or take these individuals from the sample ucalesideration.
The vectors of probabilities of these individuals are taken as basis sedfgrrobability
vectors are constructed by hand, they could be beyond polyheeroso they should be
projected toP,. The individual coordinates in this basis would represent “proximity” of
the individual to the “ideal” ones.

In another scheme, the basis is obtained using assignment of LLS scaladdted
on some arbitrary basis) t§ clusters, and then basis vectors . .., \X are calculated as
means of probabilitieﬁ;l over each cluster.

A researcher can develop his/her own scheme of basis selection. &uapkx he/she
can simply use vectors already known from previous studies or constrhasis purely
mathematically, e.g., from the condition of maximal linear independence of therseor
choose it from the set of the supportive polyhedron vertexes.

3.5 Calculation of individual conditional expectations.

When a basis of the supporting plane is found, the conditional expecta@onise found

from the main system of equations (10), which is a linear system after stiogfithe
basis. The system, however, relates conditional expectalifg,| X = ¢) for a pattern

£ with at least one £h outcome. Thus exact system of equations (10) can be written for
all patterns/ except patterns where all outcomes are known. For the complete patterns,
we can calculate/ conditional expectations, subsequently excluding ond gliestions

(i.e., obtaining patterng’!, where/l! denotes vectof with ;1 coordinate equal to 0),
solving the exact system of equations for obtained patterns, and defih®gcore for
complete pattern as mean owvérsolutions for conditional expectations fé¥! patterns.

This approach can be formalized by considering a systeshsyfstem of equations:

Z e

This is a sparse overdetermined system that is solved by minimizing the furictiona

2
> <zk: N5y - 9ok — f:&) (24)

J

using least squares with restrictiops, g, = 1 and) ;. Ag?l - g, > 0. Itis implemented
using SAS Proc NLP (SAS, Cary NC).

3.6 Mixingdistribution

The mixing distribution for an analyzed set of data is approximated by empdtisaibu-
tion, where an individual gives a unit contribution to the histogram of theibligion. A
support of this distribution is a set éfpoints. Probabilities of the joint distribution (4) are
estimated as the sum over sample individuals or to the sum over possible outatenes)

P = Zi Hj:eﬁéo ji'ej = Zé, Je Hj:ej;éo Zk gE’k)\;?gj. (25)
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3.7 Propertiesof LL S estimator

Kovtun et al. (2007) proved identifiability and consistency of the LLS modéle LLS
model is identifiable if and only if the moment matrix has a completion with the rank equa
to the maximal rank of its completed minors. This property holds for almost all (@ith
spect to Lebesgue measure) mixing distributions; thus, LLS models are idelatifiimost
surely. The parameters of the LLS model are the exact solutions of the ysiens of
equations, whose coefficients are true moments of the mixing distribution.oliness of

this system continuously depend on its coefficients; thus, consistenoy bE#estimates
obtained by the above algorithm is a direct corollary of the known statisticalthat the
frequencies are consistent and are efficient estimators of the true moments

4. Applications

4.1 Simulation Studies

Three types of simulation experiments were performed to test the predictiverpf LLS

model and its ability to reveal and to quantitatively reconstruct a hidden laterdture.

Specifically they were focused on analyzing the quality of reconstrucfioi) linear sub-

space; ii) LLS mixing distribution; and iii) clustering properties. The resultaalestrated
an acceptable quality of reconstruction. Details of the design of these stdlieresults
were described in Akushevich et al. (2009).

4.2 LLSand latent classmodels

The geometric approach, which considers independent distributionsiais fin finite-
dimensional linear space and mixing distributions as measures in this spaees addo
clarify relationship between various branches of latent structure @salfsre we consider
relation between LLS models and latent class models (LCM).

In geometric language, latent classes are points in the space of indapeisigbu-
tions. If an LCM with classes;,...,c, exists for a particular dataset, then an LLS
model also exists, and its supporting subspace is the linear subspacedgnvectors
c1,...,cm. Thus, dimensionality of LLS model never exceeds the number of classes in
LCM. These numbers are equal if and only if LCM classes are points iargeposition
(n points are said to be in general position, if they do not belong to any lineafatthaf
dimensionality smaller than — 1).

If LCM classes are not in general position, however, the dimensionality.8fmodel
may be significantly smaller. For example, it is possible to construct a mixing distib
such that (a) itis supported by a line (i.e., dimensionality of LLS model is 2}hé@re exists
LCM with J (number of variables) classes; (c) there is no LCM with smaller number of
classes. If, however, the mixing distribution is supported by an infiniteasat(example 1
above), a latent class model does not exist at all, while LLS analysisrpesfwell. On the
other hand, LLS can be used to evaluate applicability of LCM: if the mixing digiob in
LLS model has pronounced modality, then an LCM is more likely to exist (with timeber
of classes equal to number of modes). When both LCM and LLS modelgplieable,
the LLS model may still be model of choice, due to its lower computational complexity
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4.3 LLSand Grade of Membership Models

Parameters of GoM model are estimated by maximizing the likelihood function,
Te
TT(TT> o)™ (26)
¢ gk

Proof of consistency of maximum likelihood estimates is not done for GoM maddil-
ertheless, under modest conditions (which usually are satisfied in piagitications,) a
solution of the classic GoM problem provides reliable estimates. Roughlkisggaa
point of maximum of (26) converge to true values whmth size of the samplelV, and
number of measurementsg, tend to infinity. The idea of the proof is to show that when
both size of the samplelV, and number of measurements, tend to infinity, then the
point where maximum of (26) is achieved converges tali). .., \X converge to a basis
A= {5\’“} of the support of measurgg, and ii) g, converge to conditional expectations
E(G | X = ¢), calculated with respect to the bagis The most important question here
is how to define properties, which an infinite system of measurements shatigdfy.sWe
shall show that reasonable assumption lead to the property: "For soffickdg J, at the
point of maximumg, is very close tay,~ for every choice of’, ¢” that differ only in one
component.” Now rewrite (26) as

H (ZQM)\I&I)& e H (Zgék)\f?gjye (27)
¢k ¢k

then takej™ factor of (27) and rewrite it as

11 ((Zgz'ﬂj,k/\?l)mlj (Zgz'+(Lj)j,k)\§Lj>fM(Lj)j)- (28)
P !

E'EL‘,U]

Due to the above property, we have for evéty” € [1..L;] thatg, .y , = gy . From
77 77
this:
L;
S g s N =D gek Y M= gor-1=1, (29)
=1 k k l k

Thus, in (28) we have a product of positive factors, which sum is ateo. Such a product
reaches maximum when factors are proportional to their powers:

Sorqu
{Zk g1, 1N = %, lel.Lj]- (30)

This means thaj,, and A?z that deliver maximum to (26) satisfy the system of equations
(10) and consequently, by the theorem 5.1 of Kovtun et al. (2007), Merorequired
properties.

4.4 Application tothe NLTCS data

The National Long Term Care Survey is a longitudinal survey designsititty the changes
in health and functional status of older Americans (aged 65+). The #dadat is described
in Akushevich et al. (2011).

The first 10 singular values of frequency matrix of NLTGS;£0.292):

01 02 03 04 05 06 o7 08 g9 J10

39.112 3.217 1.464 0.652 0.363 0.310 0.243 0.220 0.198 0.148
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When the dimensionality of the LLS-problem is fixed, we can complete the moment
matrix using the algorithm described in Section 3.3. The sub-matrix corrdsgpio the
first four dichotomous variables is,

0.094 0.513 0.051 0.328 0.011 0.258 0.012 0.518 0.0
0.906 0.487 0.949 0.672 0.989 0.742 0.988 0.482 0.98p
0.264 0.918 0.1960.633 0.128 0.688 0.051 0.846 0.153
0.736 0.082 0.8040.367 0.872 0.312 0.949 0.154 0.847
0.335 0.916 0.275 0.872 0.14@.664 0.164 0.888 0.230
0.665 0.084 0.725 0.128 0.858.336 0.836 0.112 0.770
0.160 0.879 0.085 0.514 0.034 0.424 0.02:640 0.069
0.840 0.121 0.915 0.486 0.966 0.576 0.90360 0.931

Completed values are marked in bold style.

On the basis of the cluster analysis we choéSe= 3 clusters corresponding to i)
individuals with minor chronic diseases without disability & 1), ii) individuals with
medium to severe chronic diseases, severe disaldled (2), and iii) individuals with
medium chronic diseases and minor to medium disability=( 3). For K = 4 case, an
additional clusterX = 4) intermediate betweerk (= 1) and ¢ = 3) is added. An extended
set of variables [=230) allows us to identify two additional groups out of group i) with
similar set and severity of chronic diseases: a) very active physicallysaaially individ-
uals without disabilities, psychologically healthy, and b) moderately physiaalfysocial
active individuals with minor disabilities and minor to moderate psychologicatdiss.

Polyhedrons defined by the LLS constrains f6+3 (a) andkK'=4 (c,e) and their filling
by the LLS scores of NLTCS individuals (see Figure 1 for= 3). The plot on the left
shows 2D-polyhedron foK = 3. The case ofX = 4 is considered by Akushevich et al.
(2009). The polyhedron is defined by the LLS restrictions. In this céeel LS scores
are restricted by 130 inequalitie§ J;, gik)\g‘:’l > 0) and one equality)C, g;x = 1). Basis
vectors produced unit simplexes are labeled by numbers. Plots on thelegitnstrate
how the polyhedrons are filled by the population. For the filling, we assighéwividuals
to 1,000 clusters. Each point in the plots represents one cluster. Thefagaeh point is
proportional to the number of individuals assigned to correspondingeclughe exception
is the point marked by open circles with a closed point inside. About half eftdkal
population was assigned to this cluster.

An extended set of variableg£230) allows us to identify two additional groups of
individuals: i) individuals with high physical and social activities and withadisabilities,
and psychologically healthy and ii) individuals with moderate physical acidkactivities,
with minor disabilities, and minor to moderate psychological disorders.

Mortality is modeled by a Cox regression, where vectors of predictorstawsen as
92, g3 for K = 3 andga, g3, g4 for K = 4, i.e., i3y = po(3) exp(baga + bzgs) anduy) =
Ho(4) exp(b292 + b3g3 + b4g4). The estimates arg=0.36+0.06,b3=1.714+0.06 for K=3,
andb,=0.28+0.07,b3=1.26+-0.07, andh,=0.01+0.03 for K=4.

5. Conclusion

LLS is a model describing high-dimensional categorical data assuming recéstd a la-
tent structure represented By-dimensional random vectors. This vector is interpreted as
explanatory variables which can shed light on mutual correlations obdenvmeasured
categorical variables. This vector plays the role of a random variable giirotependent
distribution such that the observed joint distribution is maximally close to the dathevi
matically, LLS analysis considers the observed joint distribution of categjoréziables as

5063



Section on Survey Research Methods — JSM 2011

Figure 1. Polyhedrons defined by LLS constrains fge=3 and their filling by LLS scores
of NLTCS individuals.

a mixture of individual joint distributions, which are assumed to be indepgndexplicit
consideration of the space of mixed distributions as a linear space leadsuitfi tle-
velopments, resulting in a new method as well as in a better understandingenfistiag
methods.

An important distinction is the existence of an algorithm capable of estimating a LLS
model for large numbers of questions and individuals. The estimators qfafaneters
may be used for construction of second-level models (for example, wigeapplication
domain justifies assumption about parametric structure of the mixing distributieor).
this estimator, it is possible to prove consistency, to formulate conditions fotifidility,
and to formulate a high-performance algorithm allowing one to handle daiaselging
thousands of categorical variables.
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