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Abstract
The Linear Latent Structures (LLS) analysis assumes that the mutual correlations observed in sur-
vey variables reflect a hidden property of subjects that can be described by low-dimensional random
vector. The statistical properties of LLS analysis, the algorithm for parameter estimates and its im-
plementation, simulation studies, and application of LLS model to the National Long Term Care
Survey (NLTCS) data are discussed. The results of analyses are compared numerically and ana-
lytically to predictions of the Latent Class and Grade of Membership analyses. Simulation studies
demonstrate high quality of reconstruction of the major model components and demonstrate its po-
tential to analyze survey datasets with 1000 or more questions. Applying the LLS model to the 1994
and 1999 NLTCS datasets (5,000+ individuals) with responses to over 200 questions on behavior
factors, functional status, and comorbidities resulted inidentified population structure with basis
represented pure-type individuals, e.g., healthy, strongly disabled, having chronic diseases, etc. The
components of the vectors of individual LLS scores are used to make predictions of individual
lifespans.

Key Words: Multidimensional categorical data; demographic surveys;latent analysis; health state;
Grade of Membership; Latent Class Model

1. Introduction

Survey data typically represent sample-based collections of measurementsmade with dis-
crete outcomes for individuals. Common property of such datasets is high dimensionality,
and that measured variables are highly correlated. Methods dealing with such tasks are
known as latent analysis. Typical assumption in the methods is that the observed struc-
ture of multiple categorical variables are generated by the small number of latent (i.e.,
unobserved) variables. The task of latent analyses is to find these latentvariables, estimate
parameters of their distribution, and describe their properties using a sampleof high dimen-
sional categorical variables. Generally speaking, it is necessary to findthe properties of a
population, associated with latent variables, and properties of individuals, based on those
multiple categorical measurements. It appears that both goals may be achieved simultane-
ously. To the increase precision of population and individual estimates, one has to increase
both the sample size (i.e., the number of individuals) and the number of measurements (i.e.,
questions asked for each individual).

One of the best known of methods of latent analyses is the latent class model(LCM),
which can be characterized as a statistical method for finding discrete subtypes of related
cases (latent classes) from multivariate categorical data. Other models ofthis type (known
as latent variable models), such as item response theory and Rasch models, differ by the
assumptions made about the latent variable(s) (reviewed by Clogg, 1995,and Collins and
Lanza, 2010). One method for identifying the latent structure in large categorical data sets
with a simultaneous evaluation of individual scores in a state space is Grade of Membership
(GoM) analysis introduced by Woodbury and Clive (1974). Manton et al. (1994) provided
a detailed exposition of different version of this approach and reviewedits properties.
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Recently Linear Latent Structure (LLS) analysis has been proposed to model high di-
mensional categorical data (Kovtun et al., 2006, 2007, Akushevich et al., 2009). The LLS
specific assumption is that the support for latent variable occupy a polyhedron of lower di-
mensionality. The LLS model was formulated using the mixing distribution theory. Similar
to other latent structure analyses, the goal of LLS analysis is to derive simultaneously the
properties of a population and individuals, using discrete measurements. The LLS, how-
ever, does not use maximization of a likelihood for parameter estimation. Instead, it uses
an estimator, where the LLS parameter estimates are solutions of a quasilinear system of
equations.

2. Linear Latent Structure Analysis

2.1 Structure of datasets and population characteristics.

The typical dataset analyzed by methods of latent structure analysis can be represented
by the I × J matrix constituted by categorical outcomesXi

j of J measurements onI
individuals, wherei = 1, . . . , I andj = 1, . . . , J run over individuals and measurements,
respectively. Each row in the matrix corresponds to an individual and contains an individual
response pattern, i.e., a sequence ofJ numbers with thejth number running from 1 to the
number of responsesLj for that variable. In most casesLj ranges from 2 to 5-10, and rarely
exceeds several dozens. Thus, the results of a survey are represented byI measurements
of random variablesX1, . . . , XJ , with the set of outcomes of thejth measurement being
{1, ..., Lj}. The joint distribution of random variablesX1, . . . , XJ can be described by the
elementary probabilities,

pℓ = Pr (X1 = ℓ1 and · · · and XJ = ℓJ) , (1)

whereℓ = (ℓ1, ..., ℓJ) is an individual response pattern andℓj ∈ {1, ..., Lj}. To include
into consideration marginal probabilities, we allow some components ofℓ to be0’s. For
example, for three binary variables,

p(2,0,1) = Pr(X1 = 2 and X3 = 1) = p(2,1,1) + p(2,2,1).

Values of these probabilitiespℓ (and only these) are directly estimable from the observa-
tions. If Iℓ is the number of individuals with patternℓ, consistent estimates forpℓ are given
by frequenciesfℓ = Iℓ/I.

2.2 LLS task: statistical, geometrical, and mixing distribution points of view.

The problem in LLS analysis is to evaluate dimension of a hidden space, identify its lo-
cation in the space of larger dimension, and to evaluate hidden individuals’ characteristics
(coordinates in the latent sub-space) from the data. The LLS analysis is based on two
assumptions. The first is the assumption about “local independence”, which is common
for all methods of latent structure analysis. The second is specific for LLS analysis. It
is about existence of low-dimensional linear subspace associated with the latent structure.
We present LLS in terms of the theory of mixing distributions, and then discussits specific
assumption from statistical and geometrical points of view.

Population characteristics are completely described by the joint distribution ofrandom
variablesX1, . . . , XJ presented by probabilities (1). Among all possible joint distributions,
one can distinguish independent distributions, i.e. distributions satisfying,

pℓ = Pr (X1 = ℓ1 and · · · andXJ = ℓJ) =
∏

j
Pr (Xj = ℓj). (2)
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The description of an independent distribution law requires only knowingPr (Xj = ℓj)
denoted below asβjl. Vectors of probabilitiesβ = (β11, . . . , βJLJ

) belong to vector space
R|L|, where|L| =

∑

j Lj . Indexes of the vector components run over all possible pairs
of jl, i.e., corresponding to probabilities of the first outcome to the first question,of the
second outcome to the first question, and so on. Requirements forβjl to be probabilities
restricts their domain in the vector space by

∑Lj

l=1
βjl = 1 and βjl ≥ 0. (3)

This domain represents the direct product ofJ unit simplex of dimensionsLj .
Since variablesX1, . . . , XJ in general case are not independent, the observed distri-

bution{pℓ} cannot be described by the product of independent distributions, butit can be
exactly described as a mixture of independent distributions. This means thateach set of
independent probabilities contributes to observed distribution with a weight function. This
weight function is called mixing distribution. It is defined in the space of independent dis-
tributions, i.e. for each vector of probabilitiesβ satisfying (3). LetF (β) be the cumulative
distribution function of the mixing distribution. Probabilitiespℓ are represented as,

pℓ =

∫

dF (β)
∏J

j=1
βjℓj

. (4)

Thus, latent structure analysis searches for a representation of the observed distribution as
a mixture of independent distributions.

Any distribution{pℓ} can be represented as a mixture, so representation (4) does not
restrict the family of distributions and further specifications are required.They are formu-
lated as restrictions on the support of mixing distribution or, equivalently, ona set of mixed
independent distributions. The LLS specific assumption is that this set is restricted to be a
K-dimensional linear subspace of the space of independent distributions,i.e., the mixing
distribution is supported by the linear subspace spanned byK basis vectorsλ1, . . . , λK .
Below this LLS assumption is considered from the point of view of pure statistical analysis
and the geometry of the task.

Individual characteristics are described by individual probabilitiesβi
jl = Pr(Xi

j = l)
of specific outcomes (i = 1, . . . , I runs over individuals).

The LLS assumption about the existence of a low-dimensional linear subspace sup-
porting the mixing distribution is essentially equivalent to the assumption that thereexists a
K-dimensional random vectorG such that for everyj a regression ofYjl (random variable
Yjl equaling 1 ifXj = l and 0 otherwise) onG is linear. The regression equation relates
the expectation ofYjl, which isβjl, to the random vectorG. If a specific value ofG is
associated with individuali (so-called LLS scoresgik), then the regression takes the form,

βi
jl =

∑K

k=1
gikλ

k
jl. (5)

The sense of the regression coefficientsλk
jl and model restrictions is clarified by analyzing

the geometry of the LLS task.
Vectors of individual probabilitiesβi = {βi

jl}, of individual responsesY i = {Y i
jl}

and the regression coefficientsλk = {λk
jl} lie in the permitted domain (3) of the space of

independent distributions. From a geometric point of view, LLS searchesaK-dimensional
subspace (represented byλk

jl) in this space, which is the “closest” to the set ofI points rep-

resenting individual outcomesY i
jl. This linear subspace is defined by its basisλ1, . . . , λK ,

so to find theK-dimensional subspace means finding a basis,λk
jl, (k = 1, . . . , K). Every
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basisλ1, . . . , λK defines a family of regression coefficients and vice versa. The complete
set of restrictions in the LLS task allowing to considerβi

jl andλk
jl as probabilities, is,

LJ
∑

l=1

λk
jl = 1, λk

jl ≥ 0,
K

∑

k=1

gik = 1 and
∑

k

gikλ
k
jl ≥ 0. (6)

LLS scoresgik characterizing an individuali are then estimated as the expectation of vector
G, conditional on the respondent’s answers. Basis vectors of the subspace can be inter-
preted as probabilities and can define the “pure types” (Manton et al., 1994). In this sense,
the model decomposition (5) has the interpretation of a decomposition over pure types or
over “ideal persons” whose individual probabilities are basis vectorsof the subspace.

Summarizing, one can say that the LLS model approximates the observed distribution
of X1, . . . , XJ by a mixture of independent distributions with a mixing distribution sup-
ported by aK-dimensional subspace of the space of independent distribution. To specify
such a model distribution it is sufficient to define the following LLS parameters:

1. A basisλ1, . . . , λK of the space that supports the mixing distribution.

2. Conditional momentsE(G|X = ℓ).

This set of model parameters is not the only set possible. We chose it because of a number
of useful properties listed below.

Property 1. The mixing distribution can be estimated in the style of an empirical
distribution, i.e., when the estimator is a distribution concentrated in pointsE(G|X = ℓ)
with weightsfℓ.

Property 2. The conditional expectationsE(G|X = ℓ) provide knowledge about indi-
viduals. These conditional expectations can be considered as coordinates in a phase space,
to which all individuals belong. The ability to discover the phase space and determine
individual positions in it is a valuable feature of LLS analysis.

Property 3. When the number of measurement,J , tends to infinity, the individual
conditional expectationsgi = E(G|X = ℓ(i)), whereℓ(i) is the vector of responses of in-
dividual i, converge to the true value of the latent variable for this individual, and estimates
of the mixing distribution converge to the true one, provided some regularity conditions
(Kovtun et al., 2011).

2.3 Moment matrix and the main system of equations.

Parameter estimation is based on two facts (Kovtun et al., 2005a,b) formulated interms
of the conditional and unconditional moments of the mixing distribution. The firstis that
columns of moment matrix belong exactly to the desired linear space. The second is that
they obey the main system of equations.

2.3.1 Unconditional moments and the moment matrix

The first set of values in which we are interested consists of the unconditional moments of
the mixing distributionF (β),

Mℓ =

∫

dF (β)
∏

j:ℓj 6=0
βjℓj

pℓ. (7)

Note an important fact regarding the above equation. The value on the left-hand-side,Mℓ,
is a moment ofmixing distribution, while the value on the right-hand-side,pℓ, comes from
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thejoint distribution of X1, . . . , XJ ; the equality of these values is a direct corollary of the
definition of mixture. The existence of their connection between two distinct distributions
is crucial for LLS analysis.

The first corollary of eq. (7) is that the unconditional moments are directly estimable
from data and, therefore, the frequenciesfℓ of response patternsℓ observed in a sample are
consistent and efficient estimators for conditional momentsMℓ.

Recall that we allow some components of response patternℓ to be 0. In this case
pℓ are marginal probabilities. In the definition ofMℓ the multipliers, corresponding to 0
components ofℓ, are excluded from the product. Thus, the order of momentMℓ is equal to
the number of non-zero components inℓ.

All moments defined in (7) are estimable by frequencies; however, this definition does
not cover all moments of a certain order. For example, moments of second order withβjl1

andβjl2 , (i.e., with the samej) are not estimable. This arises because the data do not
include double answers to the same question. One can notice that i) all moments of first
order are estimable, ii) the proportion of estimable moments decreases with the increase of
order, and iii) no moments of orderJ + 1 and higher are estimable.

The moment matrix is constructed from moments of order up toJ using the following
formal rules:

1. Rows of the moment matrix are indexed by response patterns containing exactly one
non-zero component or, equivalently, by pair indexesjl. Thus, the moment matrix
contains|L| rows, and their columns can be considered as vectors inR|L|.

2. Columns of the moment matrix are indexed by all possible response patterns, includ-
ing a response pattern containing all 0’s. The first column is indexed by response
pattern(0, . . . , 0); the next|L| columns are indexed by response patterns containing
one non-zero component, and so on.

3. The element on the intersection of rowℓ′ and columnℓ′′ is Mℓ′+ℓ′′ , if ℓ′′ has 0 at the
position of the only non-zero component ofℓ′ (in this case,ℓ′ + ℓ′′ is a meaningful
response pattern; otherwise, the question mark is placed on the position of intersec-
tion of row ℓ′ and columnℓ′′). For example, the element of the moment matrix in
row (1, 0, 0) and column(0, 2, 2) is M1,2,2, and element in row(1, 0, 0) and column
(1, 0, 2) is a question mark.

Equation (8) gives an example of a portion of the moment matrix for the case ofJ = 3
dichotomous variables, i.e.,L1 = L2 = L3 = 2.



























M(100) ? ? M(110) M(120) M(101) M(102) ? · · ·
M(200) ? ? M(210) M(220) M(201) M(202) ? · · ·
M(010) M(110) M(210) ? ? M(011) M(012) ? · · ·
M(020) M(120) M(220) ? ? M(021) M(022) ? · · ·
M(001) M(101) M(201) M(011) M(021) ? ? M(111) · · ·
M(002) M(102) M(202) M(012) M(022) ? ? M(112) · · ·



























(8)

In this example, places for inestimable moments are filled by question marks. The first
column of the moment matrix contains moments of the first order, when only one specific
outcome of one specific question is taken into account. There are no inestimable moments
in the first column. Elements of this column can be denoted as components of vectors
in R|L|, i.e., asMjl. The next six (|L| in general) columns correspond to second-order
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moments. Blocks of diagonal elements are not estimable. Second-order moments can be
also denoted via pairjl of indexes asMjl;j′l′ . The last shown column corresponds to third
order moments. The notationMjl andMjl;j′l′ is used below for specific columns of the
moment matrix.

The part of the moment matrix consisting of second-order moments (which is|L|× |L|
square matrix) together with the column of first-order moments is of special interest. A
well-know fact is that if a distribution in ann-dimensional Euclidean space is carried by
a k-dimensional linear manifold, then the rank of the covariance matrix is equal tok, and
the position of the manifold can be derived from the covariance matrix. This fact is the
cornerstone of principal component analysis. Our method is based on similar ideas, adapted
to having an incomplete set of second-order moments. For a smallJ (as in the example),
there is a relatively large fraction of non-estimable components in the second-order part of
the moment matrix. For increasingJ , this fraction rapidly decreases.

For a moment matrixM let its completionM̄ be a matrix obtained fromM by replacing
question marks with arbitrary numbers. The main fact with respect to the momentmatrix
is that the moment matrix always has a completion in which all columns belong to the
supporting planeΛ. Thus, if the estimable part of the moment matrix has sufficient rank
(which is the case in nondegenerate situations,) a basis inΛ may be obtained from this
matrix. As we have a consistent estimator of the moment matrix in the form of a frequency
matrix, the supporting plane may be consistently estimated.

2.3.2 Unconditional moments and main system of equations

Another set of the values of interest are the conditional momentsE(Gk|X = ℓ), which
express knowledge of the state of individuals based on measurements. They are not directly
estimable from observations. The goal of LLS analysis is to obtain estimates for these
conditional moments. Explicit expressions for those of the lowest order are obtained using
the Bayes theorem (Kovtun et al. 2007),

E(Gn|X = ℓ) =

∫

dF (g)gn

∏

j:ℓj 6=0

∑

k gkλ
k
jl

Mℓ(µβ)
. (9)

Analogously, higher conditional moments, including products of componentsof G, can be
constructed. As can be seen explicitly from (9), the relation of conditionaland uncondi-
tional moments in LLS analysis can be described as,

∑

k
λk

jl · E(Gk|X = ℓ)
Mℓ+lj

=
Mℓ, (10)

where vectorℓ contains 0 in positionj, andℓ + lj containsl in this position. Similar
equations can be written for conditional moments of higher orders. We refer to the system
of equations relating conditional and unconditional moments as the main system of the
equation. Kovtun et al, (2006) proved the following properties of solutions of the main
system of equations: i) any basisλk

jl of Λ together with conditional momentsE(Gk|X =
ℓ) calculated on this basis give a solution of the main system of equation; and ii) under
regular conditions, every solution of the main system of equations gives a basis ofΛ and
conditional moments calculated in this basis. Note, that equation (10) is linear withrespect
to conditional moments.

The described properties of the moment matrix and solutions of the main system of
equations suggest an efficient algorithm to obtain LLS estimates. First, a basis of the sup-
porting plane can be obtained from the moment matrix, and second, conditional moments
can be found by solving a linear system of equations.
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2.3.3 Two illustrative examples.

Before going into detail for the algorithm and to realistic tasks of data analysis, we consider
two simple illustrative examples. For both of them, assumeK = 2, three dichotomous vari-
ables (J = 3), and the basis vectors areλ1 = (1, 0; 1, 0; 1, 0) andλ2 = (1/2, 1/2; 0, 1; 0, 1).
Then the independent distributions being mixed are defined by vectors:

β = g1λ
1 + g2λ

2 = g1λ
1 + (1 − g1)λ

2, 0 ≤ g1 ≤ 1. (11)

Thus, a mixing distribution can be given one dimensional p.d.f.ρ(g1). For the first task, we
assume that the mixing distribution is uniform (ρ(g1) = 1 · θ(g1) · θ(1− g1). In the second
case we assume the mixing distribution is concentrated at two points withg1 = 0.1 and
g1 = 0.4 (ρ(g1) = 1/2[δ(g1 − 1/10) + δ(g1 − 2/5)]). Unconditional moments are calculated
using (7). Moment matrices for both cases are
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(12)

Since these matrices were constructed from mixing distributions known a priory, diagonal
blocks in the sub-matrix of the second order are calculable (marked by the italic font in
(12)). As one can see, the rank of both these matrices is 2. Conditional moments are
calculated for an outcome pattern. Chooseℓ = (001) andℓ + l1 = (101). Using (9) we
have,

E(G1|X = (001)) = 2/3 andE(G2|X = (001)) = 1/3 (13)

for the first example and,

E(G1|X = (001)) = 17/50 andE(G2|X = (001)) = 33/50 (14)

for the second. Using corresponding elements ofMℓ in (12) (marked by bold text) we can
see that l.h.s. and r.h.s of eq. (10) equal to5/6 for first example and67/100 for the second:

1 · 2

3
+

1

2
· 1

3
=

5/12

1/2
and 1 · 17

50
+

1

2
· 33

50
=

67/400

1/4
. (15)

External indexes in this example arej = 1 andl = 1.

3. Computational Algorithm for Estimating LLS model

Parameter estimations in LLS models are based on properties of the moment matrix and
the main system of equations. These properties allow us to reduce a problemof estimating
model parameters to a sequence of linear algebra problems. The algorithm based on linear
algebra methods assures a low computational complexity.

Data to be analyzed are represented by a set of measurementsXi
j (See section 2.1).

Finding a linear space and individual LLS scores is required. Estimation ofthe model in-
cludes four steps: i) estimating the rank of the frequency matrix, ii) finding thesupporting
plane, iii) choosing a basis in the found plane, iv) calculating individual conditional expec-
tations and estimating mixing distribution. The second and fourth steps are the essence of
LLS parameter estimation problem. The first step is defined as separate because sometimes
the desired dimensionality of the LLS model may be provided by a researcher, and this
step may be skipped. The third step requires using prior information about the processes
studied, so it is also examined separately.
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3.1 Moment matrix calculation

An important preceding step that deserves special attention is the moment matrixcalcu-
lation. The elements of the moment matrix given byMℓ are approximated by observable
frequencies defined asfℓ = Iℓ/I, whereIℓ is the number of individuals with outcome pat-
tern ℓ, andI is the total number of individuals having certain (not missing) outcomes for
nonzero elements inℓ. Columns of a different order have different normalizations, e.g., the
sum of first-order moments corresponding to questionj is one (e.g.,M(010) +M(020) = 1),
while sums of columns for thisj of the second-order sub-matrix are equal to corresponding
first-order moment (e.g.,M(110) + M(120) = M(100)). General conditions of summations
of the second order moments written in terms of notation defined after eq. (8) are,

∑Lj′

l′=1
Mjl;j′l′ = Mjl. (16)

Because of missing data, the property of normalization can be violated. This property,
with or without the renormalization making the sums equaling to one, is required for the
analysis. The renormalization could provide the property in the case of presence of missing
data, however, this approximation can be true only assuming missing data are random.

In addition, a matrix containing standard errors (or confidence intervals)of estimates
of frequencies is calculated for each element of the frequency matrix. Standard errors for
binomial distribution, i.e.σℓ =

√

fℓ(1 − fℓ)/Iℓ, require generalization for patterns with
smallIℓ as discussed in Brown et al. (2001).

3.2 Computational rank of the frequency matrix

The frequency matrix can be presented as a sum of the moment matrix with rankK and
a matrix with a stochastic component. To define the dimensionality of the LLS problem,
we have to estimate the rank of the frequency matrix eliminating the stochastic component.
Specifically, we take the greatest minor of the frequency matrix that does not contain ques-
tion marks. Then we calculate the singular value decomposition (SVD) and takeK equal
to the number of singular values that are greater than a maximum of the total standard
deviation estimated as the quadratic sum of standard errors of frequencies involved in the
minor.

The choice of a minor does not essentially influence the computational rank of the fre-
quency matrix. Indeed, the geometrically specific choice of a minor (e.g. an-dimensional
minor of maximal size in left low corner of moment matrix) corresponds to projection of a
part of vectors onto n-dimensional linear subspace. If the real rank of the moment matrix
is much less thann, it is clear that the rank of the projections does not change.

3.3 Finding the supporting plane

All columns of the moment matrix belong to the supporting plane, and as the frequency
matrix is an approximation of the moment matrix, a natural way to search for the supporting
plane is to search for a plane that minimizes the sum of distances from it to the columns of
the frequency matrix. In our case, however, this way is complicated by: (a) the frequency
matrix is incomplete; (b) the statistical inaccuracy of approximation of momentsMℓ by
frequenciesfℓ varies considerably over elements of frequency matrix; and (c) a sought
basis should exactly satisfy conditions

∑LJ

l=1 λk
jl = 1 for everyk andj. These obstacles

are overcome by using some heuristic methods: (a) An iterative procedurefor completion
of the frequency matrix is used: after a basis of supporting plane is obtained, it is used
to recalculate completion of the frequency matrix. A new frequency matrix is used for
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adjusting basis calculation etc. (b) Only the first and second order moments are examined,
so statistical errors of different columns in this matrix are compatible. (c) Rotation of
each simplex (corresponding to each question) to the hyperplane to eliminate one degree
of freedom. Rotation, but not a simple projection, is required to provide the same distances
between points in a simplex. Items (a) and (c) require explicit consideration.

3.3.1 Completion of the moment matrix

We consider the second-order moment matrix where for everyj̄ there are undefined ele-
ments corresponding to repeated answers to the same question. The intent of completion
procedure is to approximate these elements, assuming that the supporting subspaceΛ is
found. Since only the completed frequency matrix is used for finding subspace Λ, and
since the completion procedure uses a basis in the sought subspaceΛ, it can be done within
the iteration procedure. For one iteration step, it is required to find a symmetricmatrix Bj̄

of Lj̄ × Lj̄-dimension with positive elements and the required summation conditions such
that the sum of elements in a column (or in a row) equals to the corresponding moment
of the first order, i.e.,

∑

l Bj̄,ll′ = Mj̄l′ . Since we know first- and second-order frequen-
cies (fjl andfjl,j′l′ ; j 6= j′), which only approximate exact moments (Mjl andMjl,j′l′),
special efforts are required to process the properties ofBj̄ . Columns of the second-order
sub-matrix corresponding to questionj̄ are presented using known frequenciesfjl,j̄l̄; j 6= j̄
and inestimable elementsBj̄,ll̄,









































f11;j̄1 . . . f11;j̄Lj̄

. . . . . . . . .
f1L1;j̄1 . . . f1L1;j̄Lj̄

. . . . . . . . .
Bj̄,11 . . . Bj̄,1Lj̄

. . . . . . . . .
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. . . Bj̄;Lj̄Lj̄

. . . . . . . . .
f11;j̄1 . . . fJ1;j̄Lj̄

. . . . . . . . .
fJLJ ;j̄1 . . . fJLJ ;j̄Lj̄









































(17)

The completion procedure is based on the fact that the rank of the moment matrix is K,
which is much smaller than the dimension of matrix|L|. Therefore, onlyK columns are
linearly independent. Each column of the moment matrix, being a vector inK-dimensional
vector space, can be expanded over basis vectorsλ1, . . . , λK available after finding the
subspaceΛ. Known elementsfjl;j̄ l̄ (l̄ = 1, . . . , Lj̄ andj 6= j̄) of columns of the moment
matrix corresponding to question̄j are expanded,

fjl;j̄ l̄ =
∑

k
C j̄ l̄

k λk
jl (j 6= j̄). (18)

If coefficientsC j̄ l̄
k are found, matrixBj̄ can be constructed asBj̄,l̄′ l̄ =

∑

k

C j̄ l̄
k λk

j̄l̄′
, The

number of known components of a vectorfjl;j̄ l̄ is greater than the number of basis vectors,

so coefficientsC j̄ l̄
k can be calculated by ordinary least squares with restrictions:C j̄ l̄

k ≥ 0,
∑

k C j̄ l̄
k = 1 and

∑

k

(

C j̄ l̄
k λk

j̄l̄′
− C j̄ l̄′

k λk
j̄l̄

)

= 0. The functional to be minimized is:

∑

jl:j 6=j̄

(

fjl;j̄ l̄ −
∑

k

C j̄ l̄
k λk

jl

)2

. (19)
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3.3.2 Removing restrictions

The restrictions
∑LJ

l=1 λk
jl = 1 are removed by reducing the number of rows byJ (one for

every group of indexesj1, . . . , jLj). Specifically, we use a linear map fromR|L| to R|L|−J

represented by a block-diagonal matrixA with J blocks of sizeLj × (Lj − 1):

Aj =









−
√

Lj−1

Lj−1 1 0 . . . 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
−
√

Lj−1

Lj−1 0 0 . . . 1









. (20)

Geometrically, such a map provides isometric rotation (λ̄k = Aλk) to the hyperplane
with zero first coordinate, i.e., (every blockAj defines a rotation of a unit simplex in
Lj–dimensional space around a hypersurface opposite to the first vertex; the angle of this
rotation is such that the first vertex moves to the point where the first coordinate equals

0). Explicitly, this rotation is̄λk
jl−1 = Ajλ

k
jl in matrix form orλ̄k

jl−1 = λk
jl −

√
Lj−1

Lj−1 λk
j1

for l = 2, . . . , Lj . New vectorsλ̄k do not possess any ties. It is easy to ascertain that
such a transformation really conserves distances between points in a simplex. The reverse
transformation is,

λk
j1 =

1 − ∑Lj

l=2 λ̄k
jl−1

√

Lj

, λk
jl = λ̄k

jl−1 +

√

Lj − 1

Lj − 1
λk

j1. (21)

3.3.3 Algorithm for identifying the subspace

The initial completion of the moment matrix is constructed in a arbitrary way, e. g, by the
unitary diagonal matrix or completing by frequencies asfij = fifj . The next preliminary
step is the rotation of each simplex (corresponding to each question as described above)
to the hyperplane to eliminate one degree of freedom. This producesn pointsc1, . . . , cn

(images of columns of frequency matrix) inm = (|L|−J)-dimensional space. The problem
is to find an affine plane that minimally deviates from these points in the space of individual
probabilities. First, we find the center of gravity of this system

c0 =
1

n

∑

i
ci, (22)

and then consider a new set of pointsc̄i = ci − c0, that corresponds to shifting the point
of origin. Now we need to find aK-dimensional linear subspace inRm that minimally
deviates from this set of points. The solution of this problem is well-known: one has to
consider anm×m matrixX with componentsXrs =

∑

i c̄
i
r c̄

i
s; this matrix is symmetric and

positively defined, and thus its normalized eigenvectors are composed of an orthonormal
basis inRm. Let γ1 ≥ γ2 ≥ · · · ≥ γm > 0 be eigenvalues of matrixX, and letz1, . . . , zm

be corresponding eigenvectors. The plane of dimensionalityK that minimizes the sum of
squared distances from pointsc̄1, . . . , c̄n is spanned byz1, . . . , zm, and the sum of squared
distances is trX − ∑K

k=1 γk. Vectorsc0, c0 + z1, . . . , c0 + zK−1 give us an affine basis
of the sought affine plane. Finally, we apply inverses of transformation (21) to c0, c0 +
z1, . . . , c0 + zK−1 to obtain the sought basisλ1, . . . , λK of the subspaceΛ.

3.4 Choice of a basis

The basis cannot be defined uniquely, and any convex combination of basis vectors keeping
the LLS restrictions can be considered an alternative. A choice may be madeusing prior
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information about the process of interest. The appeal of prior informationat this stage
is reasonable because of the evident fact that the same dataset can be used for analyzing
different (say, disability or CVD) substantive tasks.

The way how this information is used and how the procedure of specific choice of the
basis is defined is a question of taste. We describe here two possible schemes used in our
analyses.

A researcher specifies the characteristics of “ideal” individuals basedon his/her ex-
perience in the research domain. Then he/she can construct vectors ofprobabilitiesβjℓj

for such ideal individuals or take these individuals from the sample underconsideration.
The vectors of probabilities of these individuals are taken as basis vectors. If probability
vectors are constructed by hand, they could be beyond polyhedronPg, so they should be
projected toPg. The individual coordinates in this basis would represent “proximity” of
the individual to the “ideal” ones.

In another scheme, the basis is obtained using assignment of LLS scores (calculated
on some arbitrary basis) toK clusters, and then basis vectorsλ1, . . . , λK are calculated as
means of probabilitiesβi

jl over each cluster.
A researcher can develop his/her own scheme of basis selection. For example, he/she

can simply use vectors already known from previous studies or construct a basis purely
mathematically, e.g., from the condition of maximal linear independence of the vectors, or
choose it from the set of the supportive polyhedron vertexes.

3.5 Calculation of individual conditional expectations.

When a basis of the supporting plane is found, the conditional expectationscan be found
from the main system of equations (10), which is a linear system after substituting the
basis. The system, however, relates conditional expectationsE(Gk|X = ℓ) for a pattern
ℓ with at least one 0th outcome. Thus exact system of equations (10) can be written for
all patternsℓ except patterns where all outcomes are known. For the complete patterns,
we can calculateJ conditional expectations, subsequently excluding one ofJ questions
(i.e., obtaining patternsℓ[j], whereℓ[j] denotes vectorℓ with jth coordinate equal to 0),
solving the exact system of equations for obtained patterns, and definingLLS score for
complete pattern as mean overJ solutions for conditional expectations forℓ[j] patterns.
This approach can be formalized by considering a system ofJ system of equations:

∑

k
λk

jl · gℓk ≈ fℓ

fℓ[j]
. (23)

This is a sparse overdetermined system that is solved by minimizing the functional

∑

j

(

∑

k

λk
jl · gℓk − fℓ

fℓ
[j]

)2

(24)

using least squares with restrictions
∑

k gℓk = 1 and
∑

k λk
jl · gℓk ≥ 0. It is implemented

using SAS Proc NLP (SAS, Cary NC).

3.6 Mixing distribution

The mixing distribution for an analyzed set of data is approximated by empiricaldistribu-
tion, where an individual gives a unit contribution to the histogram of the distribution. A
support of this distribution is a set ofI points. Probabilities of the joint distribution (4) are
estimated as the sum over sample individuals or to the sum over possible outcome patterns,

p∗ℓ =
∑

i

∏

j:ℓj 6=0
βi

jℓj
=

∑

ℓ′
fℓ′

∏

j:ℓj 6=0

∑

k
gℓ′kλ

k
jℓj

. (25)
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3.7 Properties of LLS estimator

Kovtun et al. (2007) proved identifiability and consistency of the LLS model.The LLS
model is identifiable if and only if the moment matrix has a completion with the rank equal
to the maximal rank of its completed minors. This property holds for almost all (withre-
spect to Lebesgue measure) mixing distributions; thus, LLS models are identifiable almost
surely. The parameters of the LLS model are the exact solutions of the main system of
equations, whose coefficients are true moments of the mixing distribution. The solutions of
this system continuously depend on its coefficients; thus, consistency of the LLS estimates
obtained by the above algorithm is a direct corollary of the known statistical fact that the
frequencies are consistent and are efficient estimators of the true moments.

4. Applications

4.1 Simulation Studies

Three types of simulation experiments were performed to test the predictive power of LLS
model and its ability to reveal and to quantitatively reconstruct a hidden latentstructure.
Specifically they were focused on analyzing the quality of reconstruction of: i) linear sub-
space; ii) LLS mixing distribution; and iii) clustering properties. The results demonstrated
an acceptable quality of reconstruction. Details of the design of these studies and results
were described in Akushevich et al. (2009).

4.2 LLS and latent class models

The geometric approach, which considers independent distributions as points in finite-
dimensional linear space and mixing distributions as measures in this space, allows us to
clarify relationship between various branches of latent structure analysis. Here we consider
relation between LLS models and latent class models (LCM).

In geometric language, latent classes are points in the space of independent distribu-
tions. If an LCM with classesc1, . . . , cm exists for a particular dataset, then an LLS
model also exists, and its supporting subspace is the linear subspace spanned by vectors
c1, . . . , cm. Thus, dimensionality of LLS model never exceeds the number of classes in
LCM. These numbers are equal if and only if LCM classes are points in general position
(n points are said to be in general position, if they do not belong to any linear manifold of
dimensionality smaller thann − 1).

If LCM classes are not in general position, however, the dimensionality ofLLS model
may be significantly smaller. For example, it is possible to construct a mixing distribution
such that (a) it is supported by a line (i.e., dimensionality of LLS model is 2); (b) there exists
LCM with J (number of variables) classes; (c) there is no LCM with smaller number of
classes. If, however, the mixing distribution is supported by an infinite set (as in example 1
above), a latent class model does not exist at all, while LLS analysis performs well. On the
other hand, LLS can be used to evaluate applicability of LCM: if the mixing distribution in
LLS model has pronounced modality, then an LCM is more likely to exist (with the number
of classes equal to number of modes). When both LCM and LLS models are applicable,
the LLS model may still be model of choice, due to its lower computational complexity.
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4.3 LLS and Grade of Membership Models

Parameters of GoM model are estimated by maximizing the likelihood function,

∏

ℓ

(

∏

j

∑

k

gℓkλ
k
jℓj

)fℓ

. (26)

Proof of consistency of maximum likelihood estimates is not done for GoM model.Nev-
ertheless, under modest conditions (which usually are satisfied in practical situations,) a
solution of the classic GoM problem provides reliable estimates. Roughly speaking, a
point of maximum of (26) converge to true values whenboth size of the sample,N , and
number of measurements,J , tend to infinity. The idea of the proof is to show that when
both size of the sample,N , and number of measurements,J , tend to infinity, then the
point where maximum of (26) is achieved converges to: i)λ1, . . . , λK converge to a basis
Λ̃ = {λ̃k} of the support of measureµβ , and ii) gℓ converge to conditional expectations
E(G | X = ℓ), calculated with respect to the basisΛ̃. The most important question here
is how to define properties, which an infinite system of measurements should satisfy. We
shall show that reasonable assumption lead to the property: ”For sufficiently big J , at the
point of maximumgℓ′ is very close togℓ′′ for every choice ofℓ′, ℓ′′ that differ only in one
component.” Now rewrite (26) as

∏

ℓ

(

∑

k

gℓkλ
k
1ℓ1

)fℓ · . . . ·
∏

ℓ

(

∑

k

gℓkλ
k
JℓJ

)fℓ

(27)

then takejth factor of (27) and rewrite it as

∏

ℓ′∈L
[j]

(

(

∑

k

gℓ′+1j ,kλ
k
j1

)fℓ′+1j · . . . ·
(

∑

k

gℓ′+(Lj)j ,kλ
k
jLj

)fℓ′+(Lj)j

)

. (28)

Due to the above property, we have for everyl′, l′′ ∈ [1..Lj ] thatgℓ′+l
′
j ,k = gℓ′+l

′′
j ,k. From

this:
Lj
∑

l=1

∑

k

gℓ′+lj ,kλ
k
jl =

∑

k

gℓ′,k

∑

l

λk
jl =

∑

k

gℓ′,k · 1 = 1. (29)

Thus, in (28) we have a product of positive factors, which sum is a constant. Such a product
reaches maximum when factors are proportional to their powers:

{

∑

k gℓ′+lj ,kλ
k
jl =

fℓ′+lj

fℓ′
, l ∈ [1..Lj ] . (30)

This means thatgℓk andλk
jl that deliver maximum to (26) satisfy the system of equations

(10) and consequently, by the theorem 5.1 of Kovtun et al. (2007), we obtain required
properties.

4.4 Application to the NLTCS data

The National Long Term Care Survey is a longitudinal survey designed tostudy the changes
in health and functional status of older Americans (aged 65+). The used dataset is described
in Akushevich et al. (2011).

The first 10 singular values of frequency matrix of NLTCS (σE=0.292):

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

39.112 3.217 1.464 0.652 0.363 0.310 0.243 0.220 0.198 0.148
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When the dimensionality of the LLS-problem is fixed, we can complete the moment
matrix using the algorithm described in Section 3.3. The sub-matrix corresponding to the
first four dichotomous variables is,

























0.094 0.513 0.051 0.328 0.011 0.258 0.012 0.518 0.014
0.906 0.487 0.949 0.672 0.989 0.742 0.988 0.482 0.986
0.264 0.918 0.1960.633 0.128 0.688 0.051 0.846 0.153
0.736 0.082 0.8040.367 0.872 0.312 0.949 0.154 0.847
0.335 0.916 0.275 0.872 0.1420.664 0.164 0.888 0.230
0.665 0.084 0.725 0.128 0.8580.336 0.836 0.112 0.770
0.160 0.879 0.085 0.514 0.034 0.424 0.0270.640 0.069

0.840 0.121 0.915 0.486 0.966 0.576 0.9730.360 0.931

























Completed values are marked in bold style.
On the basis of the cluster analysis we chooseK = 3 clusters corresponding to i)

individuals with minor chronic diseases without disability (k = 1), ii) individuals with
medium to severe chronic diseases, severe disabled (k = 2), and iii) individuals with
medium chronic diseases and minor to medium disability (k = 3). For K = 4 case, an
additional cluster (k = 4) intermediate between (k = 1) and (k = 3) is added. An extended
set of variables (J=230) allows us to identify two additional groups out of group i) with
similar set and severity of chronic diseases: a) very active physically and socially individ-
uals without disabilities, psychologically healthy, and b) moderately physicallyand social
active individuals with minor disabilities and minor to moderate psychological disorders.

Polyhedrons defined by the LLS constrains forK=3 (a) andK=4 (c,e) and their filling
by the LLS scores of NLTCS individuals (see Figure 1 forK = 3). The plot on the left
shows 2D-polyhedron forK = 3. The case ofK = 4 is considered by Akushevich et al.
(2009). The polyhedron is defined by the LLS restrictions. In this case,the LLS scores
are restricted by 130 inequalities (

∑

k gikλ
k
jl ≥ 0) and one equality (

∑

k gik = 1). Basis
vectors produced unit simplexes are labeled by numbers. Plots on the rightdemonstrate
how the polyhedrons are filled by the population. For the filling, we assignedall individuals
to 1,000 clusters. Each point in the plots represents one cluster. The areaof each point is
proportional to the number of individuals assigned to corresponding cluster. The exception
is the point marked by open circles with a closed point inside. About half of the total
population was assigned to this cluster.

An extended set of variables (J=230) allows us to identify two additional groups of
individuals: i) individuals with high physical and social activities and without disabilities,
and psychologically healthy and ii) individuals with moderate physical and social activities,
with minor disabilities, and minor to moderate psychological disorders.

Mortality is modeled by a Cox regression, where vectors of predictors arechosen as
g2, g3 for K = 3 andg2, g3, g4 for K = 4, i.e.,µ(3) = µ0(3) exp(b2g2 + b3g3) andµ(4) =
µ0(4) exp(b2g2 + b3g3 + b4g4). The estimates areb2=0.36±0.06,b3=1.71±0.06 forK=3,
andb2=0.28±0.07,b3=1.26±0.07, andb4=0.01±0.03 forK=4.

5. Conclusion

LLS is a model describing high-dimensional categorical data assuming existence of a la-
tent structure represented byK-dimensional random vectors. This vector is interpreted as
explanatory variables which can shed light on mutual correlations observed in measured
categorical variables. This vector plays the role of a random variable mixing independent
distribution such that the observed joint distribution is maximally close to the data. Mathe-
matically, LLS analysis considers the observed joint distribution of categorical variables as
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Figure 1: Polyhedrons defined by LLS constrains forK=3 and their filling by LLS scores
of NLTCS individuals.

a mixture of individual joint distributions, which are assumed to be independent. Explicit
consideration of the space of mixed distributions as a linear space leads to a fruitful de-
velopments, resulting in a new method as well as in a better understanding of theexisting
methods.

An important distinction is the existence of an algorithm capable of estimating a LLS
model for large numbers of questions and individuals. The estimators of theparameters
may be used for construction of second-level models (for example, whenthe application
domain justifies assumption about parametric structure of the mixing distribution).For
this estimator, it is possible to prove consistency, to formulate conditions for identifiability,
and to formulate a high-performance algorithm allowing one to handle datasetsinvolving
thousands of categorical variables.
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