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Abstract 
 

Unit or person-level ARC models with linear, logistic, and log-linear marginal mean 

functions are developed for small area estimation. ARC models take the form of a first 
order Taylor series approximation to the associated general linear mixed model. The 

area-level random coefficient vectors specify effects for demographic groups. Protection 

against nonignorable sample designs is provided by a hybrid solution that combines the 
marginal [probability (P) sampling plus ARC model (ξ) ] distribution of the fixed 

regression coefficients with the MCMC simulated Bayes posterior distributions for the 

small area specific random coefficient vectors. Survey weighted estimating equations are 
employed in the solution for the fixed and random coefficients along with sample design 

consistent covariance matrix estimators. A generalized design effect matrix is used to 

stabilize the area-level covariance matrices for the random coefficients. A simulation 

study for the logistic ARC model contrasts the new method’s performance with a 
nonlinear version of You and Rao’s (2003) pseudo hierarchical Bayes solution that 

discounts the effect of nonignorable samples on the mean squared errors of small area 

estimates.   

 

Key Words: small area estimation; generalized design effects; nonignorable survey 

sample design; general linear mixed model; additive random coefficient; survey weighted 
estimating equations 

 

 

1. Introduction 
 

The Additive Random Coefficient (ARC) models utilized here for small area estimation 
(SAE) are versions of the generalized liner mixed model (GLMM) with additive random 

coefficients. ARC models can be derived as a first order Taylor series approximation to a 

GLMM. Our unit-level ARC model is an extension of Singh and Verret’s (2006) 
aggregate level GLMARC model. Small area estimators based on unit level models have 

the potential to be more precise than aggregate model estimators. This potential derives 

from the unit model’s use of person and neighbourhood level fixed predictors and main 

effect type random coefficients for demographic groups. A major impediment to using 
unit level models for SAE has been the difficulty in fully accounting for complex 

nonignorable sample designs. We provide such a solution here based on the unit level 

ARC model where  

 ( | ) ( ) [ ( )]dk d dk dk dk dE y f X f X Z       (1) 
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for 1, ,d m small areas and 1, , dk n area-d respondents. In this model 

( | )E y  equals a nonlinear marginal mean function ( )f X   and an additive random 

effect  contribution with a derivative multiplier f .  

 

For the logistic ARC model  

 

 Prob( 1 | )dk d dk dk dk dy f f Z      (2) 

 

where 
1

[1 exp( )]dk dkf X 


   and (1 )dk dk dkf f f   . A typical Z vector takes the 

form (1, , , )dk dk dk dkZ g a r with g denoting an indicator for male gender, a specifying 

a vector of age group indictors, and r containing indicator variables for race/ethnicity 

groups. We assume that the random effect vectors d  are q variate i.i.d. normal with zero 

mean and general covariance matrix  . 

 

The reason we favor the ARC model over GLMM is the significant computational 
advantage it has for achieving our SAE goals. Our SAE goal is to produce point estimates 

and mean squared errors (MSEs) that account fully for complex nonignorable sample 

designs. Existing solutions that account for complex sample features as regards the fixed 

model parameters   and    tend to discount the effect of nonignorable design on the 

MSEs of the random effects. The ARC model’s two key computational advantages are 
that: 

 

 The marginal means of the dky have the fixed model form dkf . This makes it 

easier to estimate the fixed   coefficients. 

 Solutions for the random effect vectors d do not require Newton-Raphson 

iterations.  

 

 

2. Survey Weighted Estimating Functions 
 

To estimate the   parameters we first considered the survey weighted pseudo-optimum 

estimating functions 

 

1 1

ˆ( | ) ( ) [ ( ) ( ) ( , )] 
dnm

w dk dk dk dk dk dk dk dk w d

d k

S w f v X y f f Z     

 

        (3) 

 

where var( | )
ddk dk dv E y  and 

1
( ) [1 ( )]dk dk dk dk dkf v f Z Z


      for the 

logistic ARC model. We used an optimum GEE type solution to derive the pure ARC 

model version of these equations and then inserted survey weights dkw to protect against 

bias from nonignorable sample designs. Equation (3) includes ARC model weighting 

factors involving ratios of the dkf derivatives and the conditional variances dkv of 
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|dk dy  . For continuous data linear ARC models and count data Poisson/Exponential 

ARC models these ratios are constants. While the ( )dk dkf v  ratios are not constant for 

the logistic model, we chose to discard them anyway in favor of the survey weighted data 

fitting equations. To further reduce the computational burden, we have chosen to use the 

consistent but less efficient GEE or SUDAAN type estimating equations that do not 

include the random effect ˆ ( , )wd    residual corrections. In the second generation of 

our software design, we plan to provide an option that implements the more efficient 

version of equation (3) with the ˆ ( , )wd    residual corrections.  

 

Turning to the survey weighted estimates of the random effect vector, we first define the 

column vectors [ ( )]dk dk dk dkZ y f    for a given  . We then compute area-d level 

survey weighted total vectors 

1

.
dn

w d dk dk

k

w 



  Taking the dual expectation of w d first 

over the probability sample-s given the data-y and then over the superpopulation ARC 

model for y given d , the resulting expected value is d d where d is the universe 

level matrix  

 

1

( ) .
dN

d dk dk dk

k

f Z Z



    (4) 

Computing d from the universe file for a given   we then use 
1
d


 to form 

1

dw d w d 



  which is an unbiased estimate for the d  realization.  

 
 

To account further for complex nonignorable sample designs we employ a stratified pps 

with replacement cluster sample estimator for the variance-covariance matrix of w d , 

say dC . The preferred sample designs for SAE are these where the target small areas 

are design strata. We assume here that the small areas are either design strata or 

geographic domains comprising parts of one or more design strata. For the latter case, we 

chose to ignore any cross area sampling covariances between  w d and w d  . Given the 

dC matrices we then use a design effect matrix averaged over the m small areas to 

stabilize dC which will often be based on relatively few clusters. With dC denoting the 

stabilized covariance matrix for w d , the sampling covariance matrix for wd  is  

 
1 1

|cov ( | ) .=  
d ds y w d d d dC C  

 

 
    (5) 

 

Given this stabilized version of dC , the correct sample design based shrinkage matrix 

for predicting d is 
1

( )w d dC  


    . This leads to the d predictor 

ˆ ( , ) wd wd wd     with the mean squared prediction error 
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ˆ(  | , ) .w d w d dm spe C     Assuming that  wd has a joint distribution over the 

sample and the ARC model that is q-variate normal with mean vector d and covariance 

matrix consistently estimated by dC , then the conditional posterior distribution of 

|d wd  is normal with mean vector wd wd  and covariance matrix w d dC .  

 

 

3. The ARC Model Small Area Estimates 
 

Given ,   and our predictor for d we can form the ARC model small area estimates 

for the area-d vector ˆ
dT of demographic domain totals. Assuming that the area level 

sampling fractions ( )d dn N are all negligible, the area-d demographic domain totals 

are predicted by  

 
1

ˆ ˆ[ ( ) ( , )]

ˆ .

dN

d dk dk dk dk wd

k

d d wd

T Z f f Z   







 

   

   


 (6) 

The vector d contains the universe level domain totals of the dkf fixed marginal 

means. With wd denoting the dkw weighted sample total of dk dkZ f and wd depicting 

the corresponding weighted sample total of dk dkZ y the vector of area-d small area 

estimates has the following composite form 
 

 ˆ ( ) [ ( )]d d d d wd wd dT I G G            (7) 

 

with 
1

( )[( ) ] .d d d d d dG C  


            Note that the compositing matrix 

dG has a shrinkage form incorporating the d  matrices. Note also that 

[ ( )]wd wd d     is a vector valued nonlinear survey regression estimator for the 

domain totals. The conditional posterior covariance matrix for ˆ
dT is .d dG C  

  

4. MCMC Posterior Variance Steps 

 

To estimate the random effects covariance matrix  we use a hierarchical Bayes 

solution based on an inverse Wishart prior with (q+2) degrees of freedom and prior mean 

matrix 0 . The details are sketched in the MCMC steps outlined here: 

 

1. Use SUDAAN to obtain 0 and its covariance matrix 0C . 

2. Sample 1, ,t K vectors 0 0~ ( , ).t N C   

3. Access the universe file for area-d and compute ( )d t and ( ).d t  
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4. Given ( 1)t  form ˆ
dtT and its covariance matrix .d dG C  

5. Sample ( ) ~ ( , )dt w dt w dt w dt dtiid N C    . 

6. Form 

1

( )

m

t dt dt

d

A  



  and draw 
1

0~ [ 2, ( )] t tW m q A 


     . 

7. Use the Rao-Blackwell formula to compute the covariance matrix of 

1

ˆ .

K

d dt

t

T T K 



   

 

 5. Nonignorable Sample Simulation 
 
For our nonignorable sample simulation we generated area-d (d=100 areas) populations 

of ~ 6, 000dN binary observations using a (0,1)N latent variable and unequal fractions 

of the conditional means dk as the tail probabilities. Specifically, with ~ (0,1)dke N  

 
1 1

1  [1 0.75 ]  [0.25 ] 

=0 

dk dk dk dk dky if e or e

otherwise

 
 

     
 

 

where Prob( 1 | )dk dk dy   and ( ) is the (0,1)N cumulative distribution 

function. We specified the dk using a logistic mixed model 

 log[ (1 )]dk dk dk dk dX Z        (8) 

with (1, , , )  dk dk dk dkX a r x and (1, , )dk dk dkZ a r where dka and dkr  denote 1/0 

indicators for binary age and race groups; the continuous covariate was generated using 

dk d dkx u   with ~ (0,1)du N and ~ (0,1)dk N ;  and 3~ (0 , )d N   .   

 

We set the fixed coefficients  and  to generate a wide range of small area domain 

proportions and then drew 160 sample records from each area-d with 120 drawn via srs 

from stratum d  where the latent variables 0dke  and 40 from stratum d  where 

0dke  . We generated such 200 populations with the same fixed predictors dkX and 

domain indicators dkZ but new random effects d and new latent variables dke .  

 

As a competitor for the ARC model we implemented a nonlinear version of You and 

Rao’s (2003) pseudo-hierarchical Bayes (PHB) solution. The PHB solution assumes the 

sample is ignorable for posterior variance estimation. 
 

6. Simulation Results 

 

To present the results we focus on one of the two age groups where the sample sizes per 

area were ~80. Results for the other demographic domains were similar. For comparison 

the small area totals for age group 1 were converted to percentages. For both the PHB 
and ARC solutions there were 100 area percentage estimates for each of 200 populations 

yielding a total of 20,000 estimates for each method. To examine the performance as a 
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function of the true finite population percentages we formed 20 groups of 1000 area by 

population combinations using the true finite population percents to rank the 20,000 
combinations. Figure 1 graphs the average bias calculations for the 20 groups. Both 

methods have fairly linear bias plots that exhibit some over shrinkage on the low and 

high ends. The ARC model fares a bit better in this regard.  

 

Figure 1. Bias: ARC vs. PHB 

Figure 2 shows the true and the estimated root mean squared errors (RMSEs) by group. 

The two parabolic curves are the true RMSEs. The two linear curves are the estimated 
RMSEs. Both methods underestimates the true RMSE on the ends but the ARC estimate 

tracks the true values better in the mid-range.  

 

Figure 2. RMSE (%): ARC vs. PHB 
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These MSE results are reflected in the interval coverage probabilities plotted in Figure 3. 

Both coverages drops off considerably in the outer groups with the PHB drops more 
pronounced. In the mid-range the ARC method stays closer to the desired coverage level. 

 

 

Figure 3. 95% Coverage Probability: ARC vs. PHB 

 

7. Future Developments 
 

For a more challenging simulation we plan to select nonignorable cluster samples. We 

will also consider the more efficient estimating equations for  coefficients that are 

conditioned on the estimated random effect vectors.  
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