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Abstract
In sample surveys, it is often the case that there is insufficient sample size to obtain reliable direct
estimates for a parameter of interest for certain domains. Precision can be increased, at the cost of re-
liance on possibly misspecified models, by introducing small area models which “borrow strength”
by connecting different areas and incorporating auxiliary covariate information. This article con-
siders multivariate generalized linear models for analyzing survey data, with special attention given
to the mixed effect multinomial logistic regression model. Because it is possible that the predic-
tors used may be measured with error, the small area models considered include error terms which
attempt to account for possible measurement errors, in addition to the usual area-specific random
effects. A comparison of the model where area-specific random effects are correlated is made with
the model where area-specific random effects are assumed to have independent components. A gen-
eral theorem is presented which gives necessary and sufficient conditions for the propriety of the
posterior. An example is given where a simulated data set is analyzed using the model to estimate
the proportion in different income levels for different demographic groups. This example compares
the results of the Gibbs sampler when the posterior is proper, to the Markov chain from a Gibbs
sampler when the posterior distribution is improper. The results of this example indicate that we
can have improved estimates over estimates based on a small area model for single components
when we use area-specific random effects with correlated components.

1. Introduction

In sample surveys, it is often the case that there is insufficient sample size to obtain reliable
direct estimates for a parameter of interest for certain small areas. By small area (or small
domain), we mean a subgroup of a population, such as a geographic region, or a cross-
classification of demographic factors, such as age, race, or gender. There has been great
demand for reliable estimates at progressively smaller domains. For example, the Small
Area Health Insurance Estimates (SAHIE) program provides estimates of the number of
people without health insurance by demographic groups and income categories at the state
and county level. The Small Area Income and Poverty Estimates (SAIPE) program pro-
duces estimates of income and poverty levels by demographic groups at the state, county,
and school district level. It is important that the estimates produced by these programs are
reliable, as the estimates help determine the allocation of federal funds and the administra-
tion of federal programs.

Most surveys provide little information on one or more small areas, since they are often
designed to produce accurate estimates at a higher level of aggregation, and obtaining suf-
ficient sample sizes at the small area level can be prohibitively expensive. Due to the small
sample size, the direct estimate (the estimate based only on the small area specific data) can
have inadequate precision to be considered reliable. For this reason, small area modelling
approaches are often used to improve upon direct estimates by using an appropriate model
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which allow estimates to “borrow strength” by relating similar small areas and making use
of relevant covariate information from other sources, such as administrative records.

Bayesian methods are widely used for small area problems, as a hierarchical approach
can be particularly effective in connecting local areas. The full hierarchical Bayesian
method can have computational advantages, as there are many algorithms available, such
as the Gibbs sampler, and the adaptive rejection algorithm, which make sampling from the
posterior distribution straightforward, and there are software packages, such as BUGS and
JAGS, which can be used to implement these algorithms. Also, using a full hierarchical
Bayes model and specifying prior distributions eliminates the need to integrate over the
unobserved random effects.

However, there are several difficulties in the Hierarchical Bayes approach. First, the
posterior distribution is often intractable, necessitating the use of Markov Chain Monte
Carlo techniques to sample from the posterior distribution, and it can be difficult to choose
an appropriate proposal distribution for the Metropolis-Hastings algorithm to achieve a
suitable acceptance rate. Second, there is difficulty selecting an appropriate prior distribu-
tion. One approach is to choose conjugate priors, which simplify computations required to
sample from the posterior distribution. However, without strong prior information, it can
be difficult to select the values of the hyperparameters. Also, if the hyperparameters are
chosen so that a “vague,” or minimally informative proper prior distribution is used, the
rate of convergence of the Gibbs sampler for the full set of parameters may be reduced due
to the widely dispersed mass of the resulting posterior (Natarajan and Kass, 2000).

Since there is typically is little information about the hyperparameters, it is desirable
to use a flat “noninformative” prior. Noninformative priors are designed to reflect the lack
of information about the hyperparameter. Motivated by this desire to reflect lack of infor-
mation, and a desire for invariance properties, noninformative priors are often improper, in
the sense that the integral of the prior distribution over the parameter space is infinite. The
danger in using an improper prior is that the resulting posterior distribution could also be
improper.

Much has been written concerning the propriety of the posterior distribution for univari-
ate hierarchical Bayesian models. Hobert and Casella (1996) considered the linear model,
and gave conditions for the propriety of the posterior distribution when a uniform distri-
bution is used on the regression parameters and improper inverse gamma distributions are
used on the variance components. Ghosh et al. (1998) considered univariate generalized
linear models for small area estimation problems, and gave conditions for the propriety of
the posterior distribution when a uniform distribution is used on the regression parameters,
and vague, but proper inverse gamma distributions are used on the area-specific random
effects components. Sun et al. (2001) extended the work of Ghosh et al. (1998) by allowing
improper inverse gamma priors for the variance components.

In this paper we consider multivariate extensions of univariate small area models and
investigate prior distributions that result in proper posterior distributions. One of the most
commonly used multivariate small area models is a multivariate extension of the Fay-
Herriot model (Rao, 2003, p. 81). Suppose we have a d× 1 vector of survey estimators

θ̂ i =
(

θ̂i1, . . . , θ̂id

)T
and

θ̂ i = θ i + ei, i = 1, . . . ,m (1)

where θ i = (θi1, . . . ,θid)
T with θi j = g j

(
Y i j
)
, j = 1, . . . ,d, and the sampling errors ei =

(ei1, . . . ,eid)
T are independent d−variate normal, Nd (0,Ψi), with known covariance matri-

ces Ψi, conditional on θ i. Here, Y i j is the ith small area mean for the jth characteristic.
The means θ i are related to area-specific auxiliary data Xi j through a linear model

θ i = Xiβ +vi, i = 1, . . . ,m (2)
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where the area-specific random effects vi are independent Nd (0,Σ), Xi is a d× p matrix
with rows Xi j, and β is a p–dimensional vector of unknown coefficients. Combining equa-
tions (1) and (2) gives

θ̂ i = Xiβ +vi + ei.

It was argued by Fay (1987) that the multivariate Fay-Herriot model can lead to more
efficient estimators of the small area means Y i j than a univariate approach, because it takes
advantage of the correlations between the components of θ̂ i.

Inference can be made by applying the hierarchical Bayes approach after specifying
a prior distribution on the model parameters (β ,Σ,Ψ). Datta et al. (1998) considered the
selection of prior distributions for the multivariate Fay-Herriot model, with unknown vari-
ance components, and used the hierarchical Bayes approach to obtain model-based esti-
mates. They found necessary and sufficient conditions for the propriety of the resulting
posterior distribution corresponding to a certain class of improper prior distributions on the
components of variance matrices.

The multivariate Fay-Herriot model assumes normality, which may not always be an
appropriate assumption if, for example, the responses are categorical. In this paper we con-
sider multivariate generalized linear models which can be used for small area problems.
This approach can be used to model survey data that may not be continuous, and allows
“borrowing strength” by relating similar small areas and incorporating area-specific covari-
ate information. It also incorporates “errors-in-variables” modeling, which allows for the
possibility that model predictors, such as administrative records, may be measured with
error. Section 2 introduces the bivariate generalized linear model and gives conditions for
the propriety of the posterior distribution. Section 3 extends the bivariate model to a multi-
variate model, when the components of the area-specific random effects are assumed to be
independent. Finally, a simulated data set that is similar to the data set used by the SAHIE
program is analyzed in Section 4.

2. A bivariate hierarchical small area model

Let
{

Yi j, i = 1, . . . ,m, j = 1, . . . ,ni
}

be conditionally independent, 2-dimensional random
vectors, given a parameter θ i j, with sampling distribution belonging to a natural bivariate
exponential family, so that

f (yi j | θ i j) = ρ (yi j)exp
{

θ
T
i jyi j−ψ (θ i j)

}
,

where θ
T
i j = (θi j1,θi j2) is the natural parameter. For k = 1,2, let gk be known, monotone

differentiable functions such that

gk
(
θi jk
)
= Xi jkβ + γik + εi jk,

where Xi jk is a vector of covariates, β ∈ Rp is a vector of unknown coefficients, and γi is a
vector of area-specific effects. We assume that the (2∑

m
i=1 ni× p) matrix X, with rows Xi jk,

is of full rank p≤ 2∑
m
i=1 ni.

The reason for the inclusion of εi jk is that the usual assumption of regression models,
that predictors are measured without error, is not always appropriate. Standard regression
models assume that the regressors are observed without error and that the model is used
to account for the errors in the response variables. However, it can often be the case that
some regressors are measured with error. In particular, if administrative records are used as
predictors, as they are in the SAHIE model, there could be nonnegligible sampling error.
The inclusion of εi jk is an attempt to model this measurement error. This approach is known
as errors-in-variables modeling (Fisher, 2003).
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To complete the model specification, we use the prior distributions

γ i = (γi1,γi2)
T | Σ i.i.d∼ N2 (0,Σ) ,

εi jk | σ2 i.i.d∼ N
(
0,σ2) ,

σ
2 | a,b∼ IG(a,b) ,

π
(
β ,σ2

1 ,σ
2
2 ,ρ | a1,a2,a3

)
∝
(
σ

2
1
)−a1−1 (

σ
2
2
)−a2−1 (

1−ρ
2)−a3−1

,

(3)

where

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
,

IG(a,b) represents the inverse gamma distribution, εi jk and γ i are independent for all i, j,
and k, and a,b,a1,a2, and a3 are hyperparameters.

We do not assume that ρ = 0, because in some problems it makes sense to allow for
the possibility that components of the area-specific random effects γ i are correlated. For
example, the SAHIE program models the number of people in the three income to poverty
ratio (IPR) categories IPR ≤ 200%, 200 < IPR ≤ 250%, and IPR > 250% for different
geographic regions and demographic subgroups. Intuitively, we should expect strong cor-
relation of the random effects for the first two categories.

Remark 2.1. When each ai =−1/2, the priors are the scale invariant priors for the variance
components, and when ai =−1, the priors are the improper uniform priors.

Remark 2.2. The prior specification for (β ,Σ) in model (3) includes the class of generalized
Wishart distributions (Berger and Sun, 2008)

πW (β ,Σ) ∝
1

σ
3−c1
1 σ

2−c2
2 (1−ρ2)2−c2/2

and the prior
πJ (β ,Σ) ∝ |Σ|−c .

Remark 2.3. Model (3) is a bivariate extension of the model considered by Ghosh et al.
(1998). We consider this extension, rather than using a univariate model for each com-
ponent of the observation, because when the observations are multivariate, there could be
strong correlation which can be exploited to improve the estimators.

Section on Survey Research Methods – JSM 2011

4173



The full conditionals for model (3) are

β | θ ,γ,σ2,Y∼ Np

((
XT X

)−1 XT (G−Zγ) ,σ2 (XT X
)−1
)
,

γ i | θ i,β ,Σ,σ
2,Y∼ N2

((
niI+σ

2
Σ
−1)−1

ni

∑
j=1

(Gi j−Xi jβ ) ,
( ni

σ2 I+Σ
−1
)−1
)
,

σ
2 | θ ,β ,γ,Y∼ IG

(
m

∑
i=1

ni +a,
1
2
(G−Xβ −Zγ)T (G−Xβ −Zγ)+b

)
,

Σ | γ ∝
(
σ

2
1
)−a1−1 (

σ
2
2
)−a2−1 (

1−ρ
2)−a3−1 |Σ|−m/2 exp

{
−1

2

m

∑
i=1

γ
T
i Σ
−1

γ i

}
.

θ i j | β ,γ i,σ
2,Y ∝ g′1 (θi j1)g′2 (θi j2)

× exp

{
θ

T
i jti j−ψ (θ i j)−

1
2σ2

2

∑
k=1

(
gk
(
θi jk
)
−Xi jlβ − γil

)2

}
,

(4)

Remark 2.4. If we choose a1 = a2 = a3, then

Σ | γ ∼W−1

(
m

∑
i=1

γ iγ
T
i ,m+2a3−1

)
,

where W−1 (·, ·) represents the inverse Wishart distribution.

Remark 2.5. The conditional distribution of θ i j given the remaining parameters is not a
standard distribution, so a Metropolis-Hastings step must be used. However, if gk is the
identity link for k= 1,2, then π

(
θ i j | β ,γ i,σ

2,Y
)

is log-concave, and the adaptive rejection
algorithm of Gilks and Wild (1992) can be used to sample from this density. This algorithm
greatly reduces the complexity of the sampling algorithm, as we do not need to introduce a
proposal distribution and the Metropolis-Hastings algorithm.

For the joint posterior distribution to be proper, it is necessary that the full conditional
distributions are proper, so that, for example, we must have m/2+ ak > 0 for all k. It is
therefore tempting to only check for propriety of the full conditionals. However, the propri-
ety of the full conditionals is not a sufficient condition for the propriety of the joint posterior
distribution. Furthermore, it was shown by Hobert and Casella (1996), that when the poste-
rior distribution is improper, the Gibbs Markov chain possesses an invariant measure with
infinite mass and thus is null, not positive, recurrent. It follows that if A is any compact set
in the parameter space that contains the starting value, the probability of the chain being in
the set A after n iterations converges to zero as n→ ∞. Therefore, for the inference based
on a Gibbs sampler to be valid, we must first check that the joint posterior distribution is
proper.

Let PX = I−X
(
XT X

)−1 XT and Z = ⊕m
i=1Di, where Di = (I2×2 · · ·I2×2)

T is a matrix
consisting of ni identity matrices and ⊕ is the direct sum operator.

Theorem 2.6. The following conditions are sufficient for the propriety of the posterior
distribution of model (3):

1. ZT PXZ is of full rank,

2. −m/2 < ak for k = 1,2 and a1 +a2 <−m/2,
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3. a3 < m/2+a1 +a2,

4. w = ∑
m
i=1 ni− p/2+a1 +a2 +a > 0,

5.
∫ (

GT WG/2+b
)−w

∏i jk g′k
(
θi jk
)

exp
{

∑i j
(
θ

T
i jTi j−ψ (θ i j)

)}
dθ < ∞,

where W =
(

PX−PXZ
(
ZT PXZ

)−1 ZT PX

)
. The conditions

1. −m/2 < ak < 0 for k = 1,2,

2. a3 < m/2+a1 +a2,

3. w = ∑
m
i=1 ni +a1 +a2− p+a > 0, and

4.
∫ (

GT PXG/2+b
)−w

∏i jk g′k
(
θi jk
)

exp
{

∑i j
(
θ

T
i jTi j−ψ (θ i j)

)}
dθ < ∞

are necessary.

The proof is given in the appendix.

Remark 2.7. A popular prior distribution for the variance components is IG(ε,ε), with ε

set low, as it is a prior distribution that is proper, makes the full conditionals convenient to
work with, and can be thought of as an approximation to a noninformative prior. However,
by Theorem 2.6, the IG(ε,ε) does not have a proper limiting posterior as ε → 0, hence, as
noted by Gelman (2006), posterior inferences can be very sensitive to ε .

3. A multivariate extension

Conceptually, the bivariate small area model introduced in Section 2 can easily be extended
to a multivariate model. However, specifying prior distributions on the individual correla-
tion components could quickly become unwieldy for higher-dimensional observations, so
in this section, to simplify the discussion, we consider a multivariate extension of Model
(3) which assumes independence between the components of the random effects.

As in Section 2, let
{

Yi j, i = 1, . . . ,m, j = 1, . . . ,ni
}

be conditionally independent ran-
dom vectors, given a parameter θ i j, with distribution belonging to a natural multivariate
exponential family, so that

f (yi j | θ i j) = ρ (yi j)exp
{

θ
T
i jyi j−ψ (θ i j)

}
,

with θ
T
i j =

(
θi j1, . . . ,θi jd

)
now assumed to be d−dimensional. For k = 1, . . . ,d, let gk be

known, monotone, differentiable functions such that

gk
(
θi jk
)
= Xi jkβ + γik + εi jk, k = 1, . . . ,d.

The change in prior specification for the higher-dimensional model is

γik | σ2
k

ind∼ N
(
0,σ2

k
)
,

εi jk | σ2 i.i.d∼ N
(
0,σ2) ,

σ
2 | a,b∼ IG(a,b) ,

π
(
β ,σ2

1 , . . . ,σ
2
d | a1, . . .ad

)
∝

d

∏
k=1

(
1

σ2
k

)ak+1

.

(5)

As before, let PX = I−X
(
XT X

)−1 XT and let Z =⊕m
i=1Di be a d ∑

m
i=1 ni×md matrix,

where Di = (Id×d · · ·Id×d)
T is a matrix consisting of ni identity matrices and⊕ is the direct

sum operator.
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Theorem 3.1. The following conditions are sufficient for the propriety of the posterior
distribution of model (5):

1. t ≡ rank
(
ZT PXZ

)
≥ (d−1)m

2. (d−1)m− t < 2ak < 0 for all k = 1, . . . ,d,

3. w = d ∑
m
i=1 ni/2+∑

d
k=1 ak− p/2+a > 0,

4.
∫ (

GT WG+b
)−w

∏i jk g′k
(
θi jk
)

exp
{

∑i j
(
θ

T
i jTi j−ψ (θ i j)

)}
dθ < ∞,

where W = 1/2
(

PX−PXZ
(
ZT PXZ

)−ZPX

)
, and

(
ZT PXZ

)− is the generalized inverse

of ZT PXZ. The conditions

1. −m/2 < ak < 0 for all k = 1, . . . ,d,

2. w = d ∑
m
i=1 ni/2+∑

d
k=1 ak− p/2+a > 0, and

3.
∫ (

GT PXG/2+b
)−w

∏i jk g′k
(
θi jk
)

exp
{

∑i j
(
θ

T
i jTi j−ψ (θ i j)

)}
dθ < ∞

are necessary.

The reason for the choice of the proper inverse gamma prior for σ2 in Models (3) and
(5), rather than a noninformative improper of the class considered for the parameters σ2

k , is
that it is not clear that any improper prior will result in a proper posterior distribution, as
can be seen by the following corollary.

Corollary 3.2. If gk(x) = x for all k, and we change the specification in model (3) or model
(5) so that an improper prior of the form π

(
σ2 | a

)
∝
(
σ2
)−a−1 is used, then the posterior

distribution will be improper for a≥−∑
d
k=1 ak.

Corollary 3.3. If the data are multinomial, so that

Yi j | θ i j ∼MN
(
Ni j; pi j1, . . . , pi jd , pi j(d+1)

)
,

where pi jk = eθi jk/
(
1+∑

d
l=1 eθi jl

)
for k = 1, . . . ,d and pi j(d+1) = 1−∑

d
l=1 pi jl , and gk(x) =

x for all k, then condition 4 in Theorem 3.1 (or condition 5 in Theorem 2.6) is implied by
the condition that Yi jk > 0 for all triples (i, j,k) and ∑

d
k=1Yi jk < Ni j for each pair (i, j).

Remark 3.4. A problem that is often encountered in the analysis of multinomial data is
“complete separation of points,” which results in a likelihood for which the maximum like-
lihood estimates do not exist and for which the posterior distribution is often improper
when improper prior distributions are used (Natarajan and McCulloch, 1995). One conse-
quence of the inclusion of the error terms εi jk in the model is that, even if the data shows
complete separation of points, we will still have a proper posterior distribution, so long as
the conditions of Theorem 3.1 or Corollary 3.3 hold.

Remark 3.5. Mixed effects multinomial logistic regression models have been considered
before by, for example, Hedeker (2003) and Speckman et al. (2008). Hedeker (2003) used
these types of models with proper prior distributions to study observations that are clustered
or repeatedly measured. Speckman et al. (2008) showed that propriety of multinomial
models with flat prior distributions on the regression coefficients (and no random effects in
the model) is equivalent to complete separation of points, which is, in turn, equivalent to
the existence of the maximum likelihood estimator.
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4. Example

Due to confidentiality issues, data inputs for the SAHIE model cannot be released. Instead,
for our example, we use a single simulated data set which has similar characteristics to the
SAHIE data set. For this simulated data set, the overall sample size is large; however, for
many individual small areas, the sample sizes are small, with a smallest sample size of 4.
The median sample size is 206, and the 95th percentile of sample sizes is 1100.

For our example, we model direct estimates of the proportion of people in each income
category, the IPR categories 0− 200%, 200%− 250%, and > 250%. We compare the
bivariate model (3) with model (5) with the parameter ρ set to 0, both using the multinomial
likelihood. The covariate information used for the regression component of the model are
main effects for age (0 – 18, 19 – 39, 40 – 49, and 50 – 64), race/ethnicity (Hispanic,
White not Hispanic, Black not Hispanic, and Other not Hispanic), and gender. Estimates
are made for each demographic subgroup for each of 7 states, so that there are a total of
2∗4∗4∗2∗7 = 224 estimates to be made.

Remark 4.1. We note that there are important differences between the SAHIE model and
the small area models that we consider in this paper. The SAHIE model is more com-
plicated, and has more parameters. In addition, the SAHIE model is able to make use of
administrative records, which strengthen estimates. The models we consider here can be
thought of as simplified versions of the SAHIE model. See Bauder and Luery (2010) for a
complete description of the SAHIE methodology.

We first investigate the behavior of the Markov chains for the two different models for
different values of the hyperparameters. In all the examples that follow, we set a= b= 0.01,
so that we are using a vague, but proper prior distribution for σ2. All computations were
done using R. For Model (5), we ran the Gibbs sampler for three cases: 1) a1 = a2 = −1,
corresponding to improper uniform prior distributions on the variance components, leading
to a proper posterior distribution (Theorem 3.1), 2) a1 = a2 = 0, corresponding to values of
the hyperparameters that result in an improper posterior, but that are on the boundary of the

Figure 1: Trace and density plot when a1 = a2 =−1 for Model (5)
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(a) Chain 1
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(b) Chain 2

Figure 2: Sensitivity to starting value when a1 = a2 = 0 for Model (5)

parameter space of parameter values that lead to an improper posterior, and 3) a1 = a2 = 1,
which are values which more clearly lead to an improper posterior distribution.

Figure 1 shows the trace and density plots for the parameters σ2
1 and σ2

2 when a1 =
a2 = −1, based on two separate chains with randomly chosen starting values. Since we
know that these values of a1 and a2 result in a proper posterior distribution, we can use this
figure as a baseline for comparison.

Figure 2 shows the trace and density plots for the parameters σ2
1 and σ2

2 when a1 =
a2 = 0. Figures 2(a) and 2(b) are the trace and density plots for the Gibbs sampler when
two different randomly chosen starting values were used. By Theorem 3.1, these values of
the hyperparameters result in an improper posterior distribution. However, the necessary
and sufficient conditions for propriety given by Theorem 3.1 are that a1 and a2 are less than
0, so that these values are as close as possible to values that will give us a proper posterior,
while still resulting in an improper posterior.

It is clear from the behavior of the trace plots of Figure 2 that something is wrong. The
chain for σ2

1 shown in Figure 2(b) exhibits seemingly reasonable behavior. However, the
chain for σ2

1 shown in Figure 2(a) gives a clearer indication of bad behavior. The chain has
several regions where it seems to get stuck in a neighborhood of 0, followed by jumps into
a more reasonable region of the parameter space. This shows the sensitivity of the analysis
to the starting values. Both chains for σ2

2 did seem to concentrate near 0 without the jumps
shown in the chains for σ2

1 .
When we set the values of the hyperparameters to 1, lack of convergence to a proper

limiting distribution was clear. After a number of iterations of the Gibbs sampler, the values
of σ2

1 and σ2
2 settled in a neighborhood of 0, so that σ2

k became computationally indistin-
guishable from 0, and the algorithm crashed. In this example, propriety or impropriety of
the posterior was clearly evident from the results of the Gibbs sampler for different values
of the hyperparameters for model (5). However, the story was not the same when we re-
peated this procedure for Model (3). We ran the Gibbs sampler two times, with values of
the hyperparameters set to a1 = a2 = a3 = 0 for the first run, and a1 = a2 = a3 = 7/2 for
the second run.

Figure 3(a) shows the trace plot and the density plot for two chains with randomly cho-
sen starting values (the first shown in black, and the second in red) for σ2

1 , σ2
2 , and ρσ1σ2

when we use Model (3) with a1 = a2 = a3 = 0. By Theorem 2.6, these values of ak lie on
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Figure 3: Gibbs sampling chains for improper posterior distributions for Model (5)

the boundary of the parameter space separating the hyperparameters which correspond to a
proper posterior distribution with those corresponding to an improper posterior distribution.

A visual inspection of Figure 3(a) gives no indication that there may be a problem
with the analysis based on this model specification. In addition, the usual convergence
diagnostics, such as the Geweke statistic and the Heidelberger and Welch statistic (Robert
and Casella, 2004; Plummer et al., 2010) indicate “convergence” of the Markov chain to
the stationary distribution, so that it is not clear how to detect lack of propriety through the
output of the Gibbs sampler in this case.

Figure 3(b) shows the trace and density plots when a1 = a2 = a3 = 7/2, which, by
Theorem 2.6 is more clearly in the part of the parameter space which results in an improper
posterior distribution. Still, we do not see any clear lack of convergence through the plots
or the convergence statistics. What we do see in comparing Figures 3(b) to 3(a) is that
the samples for σ2

1 and σ2
2 in the second case are more tightly concentrated around 0 than

they are in the first case. It appears that the inclusion of the parameter ρ holds together the
output for σ2

1 and σ2
2 enough, at least in the first 10000 iterations of the Gibbs chain, to
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Figure 4: Comparison of models (3) and (5)
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prevent either σ2
1 or σ2

2 from diverging quickly, making it more difficult to detect lack of
convergence or lack of propriety of the posterior distribution.

Finally, we do a comparison of the two models to try to understand if the inclusion of
the parameter ρ is important for our analysis. The inclusion of ρ makes Model (3) more
complicated than Model (5), makes the conditions for propriety of the posterior distribution
less clear (compare Theorem 2.6 to Theorem 3.1) and, as the previous examples suggest,
makes the Markov chains from the Gibbs sampler less indicative of poor convergence when
the posterior distribution is truly improper.

Figure 4(a) compares the box plot of the 224 estimated posterior standard deviations
for the main parameter of interest pi j, the proportion in income category i in age / race
/ sex / region category j for each of the two models. The average standard deviation for
Model 3 is 0.065, while the average standard deviation for Model 5 is 0.070. Perhaps more
importantly, the 75th and 95th percentiles are significantly reduced when we use Model 3.

Figure 4(b) compares the box plot of the 224 absolute errors for the estimated propor-
tions pi j using the two different models. Model (3) reduces the root mean squared error
from 0.091 to 0.082, and also lowers the 75th and 95th percentiles compared to Model (5).
Taken together, Figure 4 suggest that despite additional analytic difficulties, inclusion of
the correlation parameter ρ can be useful for improving the analysis.

5. Appendix: Proofs

Lemma 5.1 (Fiedler 1971). Let A and B be n× n positive semidefinite matrices and let
λ1 (A) ≥ ·· · ≥ λn (A) ≥ 0 and λ1 (B) ≥ ·· · ≥ λn (B) ≥ 0 be the eigenvalues of A and B.
Then

n

∏
i=1

(λi (A)+λi (B))≤ |A+B| ≤
n

∏
i=1

(λi (A)+λn−i+1 (B)) .

Lemma 5.2. The eigenvalues of the inverse of the covariance matrix

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
satisfy

0≤ λ2 (Σ)≤
min

(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
≤

max
(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
≤ λ1 (Σ)≤

σ2
1 +σ2

2

σ2
1 σ2

2 (1−ρ2)
.

Proof. Straightforward.

Proof of Theorem 2.6. We use the notation [x | y] to represent a general conditional density
of a random variable X given Y . The joint posterior distribution is[

θ ,β ,γ,Σ,σ2 | Y
]
= [Y | θ ]

[
θ | β ,γ,σ2][

γ | Σ,σ2] [β ,Σ | a1,a2,a3]
[
σ

2 | a,b
]
/m(Y)

where
m(Y) =

∫ [
θ ,β ,γ,Σ,σ2 | Y

]
dβ dγ dΣdσ

2 dθ .

Clearly, the joint posterior distribution is proper if and only if m(Y) is finite, so we need to
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check that the function

exp

{
∑
i j

(
θ

T
i jTi j−ψ (θ i j)

)}(
∏
i jk

g′k
(
θi jk
))( 1

σ2
1

)a1+1( 1
σ2

2

)a2+1( 1
1−ρ2

)a3+1

×
(

1
σ2

)
∑i ni+a+1

exp

{
− 1

2σ2 ∑
i jk

(
gk
(
θi jk
)
−Xi jkβ − γik

)2

}

×|Σ|−m/2 exp
{
− b

σ2

}
exp

{
−1

2

m

∑
i=1

γ
T
i Σ
−1

γ i

}

is integrable. To simplify notation, we write

∑
i jk

(
gk
(
θi jk
)
−Xi jkβ − γik

)2
= (G−Xβ −Zγ)T (G−Xβ −Zγ) ,

where G ∈ R2∑
m
i=1 ni and γ ∈ R2m are vectors with elements g

(
θi jk
)

and γik, respectively.
The calculations are similar to those used in the proof of Theorem 1 in Hobert and

Casella (1996), so we give only a sketch of the proof. First, it is straightforward to show
that ∫∫

exp

{
− 1

2σ2 (G−Xβ −Zγ)T (G−Xβ −Zγ)− 1
2

m

∑
i=1

γ
T
i Σ
−1

γ i

}
dβ dγ

∝
(
σ

2)m+p/2 |M|−1/2 exp
{
− 1

2σ2 GT (PX−PXZM−1ZT PX
)

G
}
,

(6)

where M = ZT PXZ+σ2Σ̃ and Σ̃ =⊕m
i=1Σ.

Next, note that Σ̃ is positive definite and ZT PXZ is positive semidefinite, so

σ
2
Σ̃
−1

+ZT PXZ≥ ZT PXZ≥ 0,

which implies that

exp
{
− 1

2σ2 GT PXG
}
≤ exp

{
− 1

2σ2 GT (PX−PXZM−1ZT PX
)

G
}

≤ exp
{
− 1

2σ2 GT WG
}
,

(7)

where W = PX−PXZ
(
ZT PXZ

)−1 ZT PX.
Let λ1 be the largest eigenvalue of ZT PXZ and λ2 the smallest eigenvalue of ZT PXZ,

which is assumed to be non-zero. Using Lemma 5.1 and Lemma 5.2 we obtain the follow-
ing bounds on |M|:

λ
m
2

(
σ2 max

(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
+λ2

)m

≤ |M|

≤

(
σ2 min

(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
+λ1

)m(
σ2
(
σ2

1 +σ2
2
)

σ2
1 σ2

2 (1−ρ2)
+λ1

)m

.

(8)

Sufficient conditions for the propriety of the joint posterior distribution can be obtained
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by combining equations (6), (7), and (8) to get the following upper bound:

[
θ ,Σ,σ2 | Y

]
≤C

(
σ

2)−∑
m
i=1 ni+p/2+m−a−1

exp
{
− b

σ2

}(
∏
i jk

g′k
(
θi jk
))

× exp

{
∑
i j

(
θ

T
i jTi j−ψ (θ i j)

)}
exp
{
− 1

2σ2 GT WG
}(

σ
2
1
)−m/2−a1−1

×
(
σ

2
2
)−m/2−a2−1 (

1−ρ
2)−m/2−a3

(
σ2 max

(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
+λ2

)−m/2

.

The integral

∫ 1

−1

∫
∞

0

∫
∞

0

(
1

1−ρ2

)m/2+a3+1( 1
σ2

1

)m/2+a1+1( 1
σ2

2

)m/2+a2+1

×

(
σ2 max

(
σ2

1 ,σ
2
2
)

σ2
1 σ2

2 (1−ρ2)
+λ2

)−m/2

dσ
2
1 dσ

2
2 dρ

can be calculated by considering separately the regions σ2
1 > σ2

2 and σ2
1 < σ2

2 , and is finite
and of order

(
σ2
)−m−a1−a2 if and only if −m/2 < a1, −m/2 < a2, a1 + a2 < −m/2, and

m/2+a2 +a2−a3 > 0. This gives

[
θ ,σ2 | Y

]
≤C

(
∏
i jk

g′k
(
θi jk
))

exp

{
∑
i j

(
θ

T
i jTi j−ψ (θ i j)

)}

×
(
σ

2)−∑
m
i=1 ni+p/2−a1−a2−a−1

exp
{
− b

σ2

}
exp
{
− 1

2σ2 gT Wg
}
.

(9)

As a function of σ2, the right hand side of equation (9) is the kernel of an inverse gamma
density, so long as w = ∑

m
i=1 ni− p/2+a1 +a2 +a > 0. Hence

[θ | Y]≤C
(
GT WG/2+b

)−w

(
∏
i jk

g′k
(
θi jk
))

exp

{
∑
i j

(
θ

T
i jTi j−ψ (θ i j)

)}
.

We therefore require that∫ (
GT WG/2+b

)−w

(
∏
i jk

g′k
(
θi jk
))

exp

{
∑
i j

(
θ

T
i jTi j−ψ (θ i j)

)}
dθ < ∞.

Necessary conditions for the propriety of the joint posterior distribution can be found
by first using equations (6), (7), and (8) to get a lower bound for

[
θ ,Σ,σ2 | Y

]
, and then

repeating the previous arguments used to prove sufficiency.

The proof of Theorem 3.1 is similar to the proof of Theorem 2.6 so is omitted.

Proof of Corollary 3.2. With the change in model specification, condition 3 in the set of
necessary conditions of Theorem 3.1 becomes

∫ (
θ

T PXθ
)−w

exp

{
∑
i j

(
θ

T
i jYi j−ψ (θ i j)

)}
dθ

≡
∫ (

θ
T PXθ

)−w
exp
{

θ
T Y− ψ̃ (θ)

}
dθ < ∞.
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The matrix PX is symmetric, idempotent, and of rank q = d ∑
m
i=1 ni− p. We can therefore

use the decomposition PX = PΛPT , where P is an orthogonal matrix and Λ is a diagonal
matrix with the first q diagonal elements equal to 1 and the remaining diagonal elements
equal to 0. Let B be a compact neighborhood of 0. Making the change of variables θ = Pξ ,
the integral is proportional to

I =
∫

(ξ Λξ )−w exp
{

ξ
T PT Y− ψ̃ (Pξ )

}
dξ

=
∫ (

ξ
2
1 + · · ·+ξ

2
q
)−w

exp
{

ξ
T PT y− ψ̃ (Pξ )

}
dξ

≥
∫

B

(
ξ

2
1 + · · ·+ξ

2
q
)−w

exp
{

ξ
T PT y− ψ̃ (Pξ )

}
dξ

≥
(

inf
ξ∈B

exp
{

ξ
T Y− ψ̃ (Pξ )

})∫
B

(
ξ

2
1 + · · ·+ξ

2
q
)−w

dξ

=C
∫

B
ξ
−2w
1

(
1+
(

ξ2

ξ1

)2

+ · · ·+
(

ξq

ξ1

)2
)−w

dξ .

We make the transformation u1 = ξ1 and ui = ξi/ξ1 for i = 2, . . . ,q. Let B̃ be a neighbor-
hood of 0 that is a subset of the transformed space. The Jacobian of this transformation is
uq−1

1 , which leads to

I ≥C
∫

B̃
u−2w+q−1

1

(
1+u2

2 + · · ·+u2
q
)−w

du.

This integral diverges if −2w+q≤ 0, or equivalently if a≥−∑
d
k=1 ak.

Proof of Corollary 3.3. We need to check that

∫ (
θ

T Wθ +b
)−w

exp

{
∑
i j

(
θ

T
i jYi j−Ni j log

(
1+

d

∑
k=1

eθi jk

))}
dθ < ∞.

Since w > 0 and W is non-negative definite, we can use the bound
(
θ

T Wθ +b
)−w ≤ b−w,

and check that ∫
exp

{
θ

T
i jYi j−Ni j log

(
1+

d

∑
k=1

eθi jk

)}
dθ i j < ∞

for each pair (i, j). Making the change of variables pi jk = eθi jk/
(
1+∑

d
l=1 eθi jl

)
for k =

1, . . . ,d gives (suppressing the subscript (i, j))∫
pk>0,∑d

k=1 pk<1

pY1−1
1 · · · pYd−1

d (1− p1−·· ·− pd)
N−∑Yi−1 dp,

which is finite so long as Yi > 0 and ∑
d
i=1Yi < N, since then the integrand is the kernel of a

Dirichlet distribution.
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