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Abstract 
Measuring trend or change over time is a central problem for many users of social, 

economic and demographic data and is of interest in many areas of economics and social 

sciences. Smith et al. (2003) recognised that assessing change is one of the most 

important challenges in survey statistics. The primary interest of many users is often in 

trends rather than cross sectional estimates. Samples at different waves are not 

necessarily completely overlapping sets of units, because repeated surveys often use 

rotating samples which consist in selecting for each wave new units to replace old units 

that have been in the sample for a specified number of waves (Tam, 1984; Nordberg, 

2000; Kalton, 2009). Moreover, surveys are usually stratified and units can be selected 

with unequal probabilities. In this paper, we propose a novel approach to estimate trends 

and its variance taking into account of rotations, stratification and unequal probabilities. 

The variance depends on covariances between estimates calculated from different waves. 

In a series of simulation based on the Swedish Labour Force Survey, Andersson et al. 

(2011) showed that the approach proposed by Berger & Priam (2010) can give more 

accurate estimates of covariance than standard estimators of covariance (Tam, 1984; 

Qualité & Tillé, 2008). In this paper, we show how the approach proposed by Berger & 

Priam (2010) can be used to estimate the variance of a trend parameter. The proposed 

method is a semi-parametric design-based approach which is based upon a multivariate 

linear regression (or general linear) model (Berger & Priam, 2011). This multivariate 

regression model captures the effect of rotations, unequal probabilities, stratification and 

unequal probabilities. 
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1. Introduction 

 
In this paper, we propose a novel approach to estimate a trend and its variance taking into 

account of the rotation, the stratification and the unequal probabilities. In Section 2, we 

define the class of rotation designs considered. In Section 3, we defined the trend 

parameter. In Section 3.1, we proposed a model-design unbiased estimator of the trend 

parameter. In Section 3.2, we show how Berger & Priam (2010) approach can be use to 

estimate the variance of a trend parameter. 

 

2. Rotation Designs 

 
Rotation designs consist in selecting, for each wave, new units to replace old units that 

have been in the sample for a specified number of waves (Tam, 1984; Nordberg, 2000, 
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Kalton, 2009). In Sections 2.1, 2.2 and 2.3, we show how rotation designs can be used to 

select samples. 

 

2.1 Unequal Probability Rotation Designs for Two Waves 

Let 1s  and 2s  denote respectively the first and second wave samples. We consider that 

1s  and 2s  have the same fixed sample size n . Assume that 1s  is a probability sample 

without replacement with first-order inclusion probabilities iπ . Suppose that 2s  is a 

simple random sample without replacement sample of 2,1n  units selected without 

replacement from 1s  combined with a sample of 2,12|1 nnn −=  units selected without 

replacement from 1/ sU  with probabilities )1/()/1( 2,1 iii nnq ππ −−= ; where U  

denotes the population and 1/ sU  is the set of units not selected at wave 1. Tam (1984) 

studied this design when Nni /1=π ; where N  denotes the population size. Note that the 

first-order inclusion probabilities of 2s  are also given by iπ  (Berger & Priam, 2010). 

 

2.2. Random Groups Rotation Designs for Two Waves 
There are other rotation designs used in practice such that the rotation groups sampling 

design. Suppose that we have a single stratum randomly divided into G  rotation groups. 

We assume GN /  integer. At gt = , the first g  groups are selected. At 1+= gt , group 

1 rotates out and group 1+g  rotates in. By assuming that the G  rotation groups are 

randomly constructed, the rotation group sampling design and the design described in 

Section 2.1 are equivalent when Nni /=π . Rotation groups can be also constructed with 

systematic sampling.  

 

2.3 Rotation Designs for More than Two Waves 

Consider that we have T  waves. Let { 1s , 2s , …, ts , …, Ts } denote a series of samples 

selected at each waves, where the sample ts  and 1+ts  are selected using a designs 

described in Section 2.1 or 2.2. Thus, any pair of sample �s  and ts  can be overlapping 

sets of units. Let us consider that all the samples ts  ),,1( Tt �=  have the same sample 

fixed size n . We denote by tn ,�  the number of units in tss ∩� . Note that in practice 

)1(, +ttn  is a fixed quantity which does not depend on t . For example, if %20  of units 

rotate in and out from the sample at each wave, we have that nn tt ×=+ 8.0)1(, . 

 

Note that under a rotation groups sampling design in (see Section 2.2) with G  groups, 

the quantities tn ,�  are fixed and given by =tn ,�  }/||1,0max{ Gtn �−− . Note that 

0, =tn�  if Gt >− || � , implying that ∅=∩ tss� . This means that under rotation groups 

sampling, two samples �s  and ts  will have no units in common when Gt >− || � . Under 

the rotation design described in Section 2.1, the quantities tn ,�  are random, and have a 

positive probability of being equal to zero when 1|| >− �t . 
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3. Estimating a Trend 

 
Suppose that we would like to estimate the trend of a variable of interest y  over time. 

This trend can be measured by the trend parameter β  of the following model 

 ititit e'y += xβ ;               (1) 

where ity  and itx  denote respectively the values of unit i  at wave t  of the variable of 

interest y  and p  covariates. The residuals ite  are assumed to be correlated within 

subjects. We consider that itx  contains the wave number t  and possible interactions of t  

with other covariates or even 2
t  if the trend is not linear. For example, when )',1( tit =x  

we have that )',( 0 tββ=β  and ittit ety ++= ββ0 . 

 
In Section 3.1, we propose an estimator for β  and an estimator of its variance in Section 

3.2. We show that both estimators are approximately design unbiased and take into 

account of the rotation design, the inclusion probabilities and stratification. 

 

The classical model-based approach consists in estimating β  using a fixed or random 

effect model from the sample data given by the values of ity  and itx  for the set of units 

selected at T  consecutive waves. Hence, the sample data are given by }:,{ siy itit ∈x , 

where t
T
t ss 1=∪= . Note that under a rotation groups sampling design, the sample data is 

empty ( ∅=s ) when GT >−1  (see Section 2.3). Nevertheless, the proposed estimator 

(2) and its variance estimator (5) can be still calculated even if ∅=s . 

 

The model-based likelihood approach (Diggle et al. 1994) needs assumption about the 

correlations between the ite  in orders to obtain consistent estimates for the variance-

covariance of the estimator of β . The proposed point estimator of β  in Section 3.1 does 

not depend on these correlations. However the proposed variance estimator (see Section 

3.2) depends on between waves correlations generated by the rotation design. We 

propose to estimate these correlations using another multivariate regression model (6). 

We show that this approach gives design-based consistent estimator for the correlations 

even if model (6) does not fit the data. 

 

3.1 The Proposed Estimator of β  

Let UB̂  be the usual Ordinary Least Squares (OLS) estimator of β  based on the 

population values }:,{ Uiy itit ∈x . It is well known that UB̂  is model unbiased (Diggle 

et al. 1994 page 58); that is, βB =)ˆ( UmE , where )(⋅mE  denotes the expectation with 

respect to the model (1). We proposed to predict UB̂  by the following design-based 

weighted estimator 
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If the population model holds sβ̂  is also approximately model-design-unbiased, as 

βBβ =≈ )ˆ())ˆ(( Umsdm EEE , 
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where )(⋅dE  denote the expectation with respect to the rotation design used. 

 

3.2 An Estimator for the Variance-Covariance of sβ̂  

Note that sβ̂  is a smooth function of Q  totals where 2/)1( += ppQ ; that is, 

=sβ̂  )ˆ()ˆ,,ˆ( 1 τfττf Q =� ; 

where 
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and 
)(q

itw  is defined by the totals involved in (2). For example, under a random groups 

rotation design, we have that 3=Q , 1
)1( =itw , itit yw =)2(

 and itit tyw =)3(
, when 

)',1( tit =x . 

 

As sβ̂  is a smooth function of totals, we can use the delta method to derive the following 

design-based linearised estimator for the variance-covariance 

 )ˆ()ˆ(râv)'ˆ()ˆ(râv τττβ ∇∇= dsd ,              (4) 

where τβτ ˆ/ˆ)ˆ( ∂∂=∇ s  is the 1×Q  gradient vector of )ˆ(τf  at τ̂ . Using (3), we have that 

∑
=

=
T

t
t

1

ˆˆ ττ , 

where )'ˆ,,ˆ(ˆ )()1( Q
ttt ττ �=τ . Thus, (4) can be re-written as 

 )ˆ(ˆ)'ˆ()ˆ(râv
1 1

τΣτβ ∇∇= ∑ ∑= =
T T

t tsd � � ;             (5) 

where )ˆ,ˆ(vôcˆ
tdt ττΣ �� =  is the QQ ×  matrix block ),( t�  of the covariance matrix Σ̂  

between the estimators }ˆ,,ˆ,,ˆ,,ˆ,,ˆ,,ˆ{
)()1()()1()(

1
)1(

1
Q

TT
Q

tt
Q

ττττττ ����� . We propose to 

use a multivariate regression approach (Berger & Priam, 2010) to calculate the 

covariance matrix Σ̂ .  

 

In a series of simulation based on the Swedish Labour Force Survey, Andersson et al. 

(2011) showed that the method proposed by Berger & Priam (2010) gives more accurate 

estimates of covariance than standard estimators of covariance (Tam, 1984; Qualité & 

Tillé, 2008) for estimate of strata domains. This is not a surprise since the correlations are 

implicitly calculated within each stratum (Andersson et al. 2011). This property is 

important when the trend parameter is an interaction parameter with strata domains. 

Furthermore, the approach proposed by Berger & Priam (2010) can accommodate 

temporal stratification and unequal probabilities. Temporal stratification means that the 

stratification at t  differs from the stratification at 1+t ; i.e., new strata are created and 

units move between strata. However, the approach proposed by Berger & Priam (2010) 

relies on the assumption that the sampling fractions are negligible. Berger (2004) 

proposed a more general method based on the same principle, which account for large 

sampling fractions. For large sampling fractions, it is recommended to use the more 
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general estimator proposed by Berger (2004). In the rest of this section, we show how the 

approach proposed by Berger & Priam (2010) can be used to calculate the covariance 

matrix Σ̂ , when we have one stratum. 

 

Let 
)(~ q

itw  be defined by 0~ )( =q
itw  if tsi ∉ , and i

q
it

q
it ww π/~ )()( =  if tsi ∈ ; where 

t
T
t ssi 1=∪=∈ . Let sn #~ = . Consider the following QTn ×~  matrix of the 
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itw : 
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Tt www �= ; where )~,,~(~ )()1( Q

ttt www �=  and )'~,,~(~ )(
~

)(
1

)( q
tn

q
t

q
t ww �=w .  

 εαZw += s
~ ;                (6) 

where α  is a QTL ×  matrix of regression parameters and sZ  is a Ln ×~  design matrix 

which specifies the fixed sizes constraints of the rotation design. The residuals ε  have a 

QTQT ×  covariance matrix S . 

 

For the rotation design described in Section 2.1, 12 −= TL , as we have T  design 

variables itz ; , and 1−T  interactions itit zz ;;1− ; where 1; =itz  if tsi ∈ , and 0; =itz  if 

tsi ∉ . It can be shown that nz itsi =Σ ∈ ;  and ttititsi nzz ),1(;;1 −−∈ =Σ  are fixed. For the 

rotation scheme describe in Section 2.2, we have additional interactions itizz ;;� , because 

the sums titisi nzz ,;; �� =Σ ∈  are fixed. The fact that these sums are fixed justifies the 

covariate sZ  used in (6) (Berger & Priam, 2010). More design variables are needed for 

stratified designs (Berger & Priam, 2010). The matrix y~  can be modified to 

accommodate two-stage designs (Berger & Priam, 2010). 

 

Berger & Priam (2010) showed that 

DSDΣ ˆˆ'ˆˆ =                 (7) 

is an approximately design unbiased estimator for the covariance matrix between the 
)(ˆ q

tτ  

when the finite population corrections are negligible. The matrix Ŝ  is the OLS residual 

covariance matrix estimate of the model (6) and D̂  is a diagonal matrix with diagonal 

elements 2/11)(
}ˆ)ˆr(â{v −

jj
q

t Sτ  where )ˆr(âv
)(q

tτ  is a standard design-based variance estimator 

of 
)(ˆ q

tτ  where jqQt =+− )1(  and qqŜ  is the q -th diagonal component of Ŝ . The 

estimator Σ̂  is a design-based consistent estimator for the covariance matrix between the 

)(ˆ q
tτ  even when model (6) does not fit the data. The estimator for the variance of sβ̂  is 

obtained by substituting (7) into (5).  

 

Note that the overall variance (model & design) of sβ̂  is given by 

))ˆ((var

)ˆ(var))ˆ((var
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Thus, the proposed variance estimator is also approximately unbiased for the overall 

variance of sβ̂ , as 

=)ˆ(râ(v sdE β ≈)))ˆ(râ(v( sddm EE β ≈))ˆ((var sdmE β )ˆvar( sβ . 
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4. Conclusion 

 
In this paper, we propose a novel approach to estimate a trend parameter and its variance 

taking into account of rotations, stratification and unequal probabilities. The point 

estimator of the trend parameter is a standard design-based estimator of the population 

trend estimator. We show that the proposed estimator is also model-design unbiased. For 

variance estimation, we used the delta method as the point estimator is a function of 

totals. However, it is necessary to estimate covariances between cross-sectional totals 

measured at different waves. We propose a semi-parametric design-based approach 

(Berger & Priam, 2011) to estimate these covariances. This model captures the effect of 

rotations, unequal probabilities and stratification. 
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