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Abstract 
The U.S. Census Bureau has the responsibility to release high quality data products while 

maintaining the confidentiality promised to all respondents under Title 13 of the U.S. 

Code. This paper describes a Microdata Analysis System (MAS) that is currently under 

development, which will allow users to receive certain statistical analyses of Census 

Bureau data—such as cross-tabulations, regressions (with diagnostic plots), histograms 

and scatterplots—without ever having access to the data themselves. Such analyses must 

satisfy several statistical confidentiality constraints; those that fail these constraints will 

not be output to the user. In addition, all analyses are performed after application of the 

Drop q Rule, a data subsampling routine, and regressions involving categorical predictors 

sometimes require modification. We describe the system’s capabilities, as well as the 

confidentiality protections and the major types of attacks they prevent, then conclude 

with a description of other approaches to creating a system of this sort, and some 

directions for future research. 

 

Key Words: data confidentiality, remote access servers, universe subsampling, 

synthetic data, regression, disclosure 

  

 

1. Introduction 

 
The U.S. Census Bureau collects its survey and census data under Title 13 of the U.S. 

Code, which prohibits the Census Bureau from releasing any data “... whereby the data 

furnished by any particular establishment or individual under this title can be identified.” 

In addition to Title 13, the Confidential Information Protection and Statistical Efficiency 

Act of 2002 (CIPSEA) requires the protection of information collected or acquired for 

exclusively statistical purposes under a pledge of confidentiality. However, to fulfill its 

                                                 
1
 This report is released to inform interested parties of ongoing research and to encourage 

discussion of work in progress. The views expressed are those of the authors and not necessarily 

those of the U.S. Census Bureau. 
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mission, the agency also must release data for the purpose of statistical analysis. In 

common with most national statistical institutes, our goal is to release as much high 

quality data as possible without violating the pledge of confidentiality. 

 This paper discusses a Microdata Analysis System (MAS) that is under 

development at the U.S. Census Bureau. Much of the framework for the system was 

described in Steel and Reznek [2005] and Steel [2006]. The system is designed to allow 

data users to perform various statistical analyses (regressions, cross-tabulations, 

correlation coefficients, etc.) on confidential survey and census microdata without seeing 

or downloading the underlying microdata. 

 In Section 2, we give some background on the MAS and the motivation for its 

development. In Section 3, we discuss the current state of the prototype system, including 

its capabilities and the rules that protect confidentiality. In Section 4, we examine some 

other approaches to the problem of creating a remote access system such as the MAS. In 

Section 5, we conclude with remarks on future research and the further development of 

the system. 

 

2. Background on the MAS 

 
The problem of data confidentiality—at the Census Bureau and other statistical agencies 

around the world—has motivated the creation of remote access systems that allow the 

user to request a statistical analysis and receive the result without having direct access to 

the underlying microdata. Common to almost all remote access systems is that the ability 

to receive desired results is not absolute: in some instances, the result might be based on 

perturbed data, and most proposals for remote access systems include the rejection of 

some queries to preserve confidentiality. The idea of a remote access system goes back at 

least to Keller-McNulty and Unger [1998], although the concept of allowing customized 

queries was proposed much earlier; see the description of the Geographically Referenced 

Data Storage and Retrieval System in Fellegi [1969]. Fellegi et al. [1972] anticipate the 

need to screen the query results to ensure that confidentiality is adequately protected. 

 Adam and Worthmann [1989] describe several restrictions that can be imposed 

on systems that release counts of numbers of people with particular characteristics. These 

include keeping a log of each user’s queries and checking each new query against the log 

to verify nondisclosure. However, they acknowledge that the last of these is sufficiently 

time consuming and storage intensive as to be unfeasible. They also consider the 

possibility of partitioning the data into indivisible units of two or more observations each 

and allowing only queries that operate on unions of the units, rather than on arbitrary sets 

of observations. 

 The Microdata Analysis System will allow the U.S. Census Bureau to provide a 

controlled, cost-effective setting in which data users have access to more detailed and 

accurate information than is currently available in our public use microdata files. The 

data accessible through the MAS can identify smaller geographic areas and show more 

detail in certain variables where our public use files would be coarsened. Our goal for the 

MAS is to allow access to as much high quality data as possible, while lessening the need 

for data to be released in less secure or more expensive manners, such as those described 

in Weinberg et al. [2007]. Rowland and Zayatz [2001] describe a predecessor of the 

MAS. 

 Unlike the proposal in Schouten and Cigrang [2003], our plan is to make the 

MAS available to anyone who wishes to use it. The MAS will allow access to data from 

demographic surveys and decennial censuses, with the goal of eventually including 

economic survey and census data, as well as linked datasets. We will initially make 
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available regression analyses and cross-tabulations, with other analyses to be added in the 

future. Currently, we intend to keep a record of all of the queries entered into the system, 

but not the identities of the users making the queries. Although the record will not 

directly affect the output that the system provides, it will allow us to see how the system 

is being used so that we can improve the user experience and enhance disclosure 

avoidance techniques if necessary. 

 Our current plan—as described in Chaudhry [2007]—is to offer the MAS within 

the Census Bureau’s free DataFERRETT service, with the intention that the system will be 

used by people needing fairly standard statistical analyses. The MAS has a graphical 

interface, programmed in Java, that allows users to select variables of interest from a list. 

In the case of regression, variables can be dragged into equations and, with a few clicks, 

users may create variable interactions and transformations of selected variables. 

 

3. Overview of the MAS Confidentiality Rules 

 
The Census Bureau contracted with Synectics to develop an alpha prototype of the MAS 

using the SAS language, with Dr. Jerome Reiter of Duke University to help in developing 

confidentiality rules for the system and with Dr. Stephen Roehrig of Carnegie Mellon 

University to help in testing these rules. Some rules were developed and modified as a 

result of the testing. We are using the publicly available data from the Current Population 

Survey March 2008 Demographic Supplement to test the system. 

 The MAS software is programmed with several confidentiality rules and 

procedures that uphold disclosure avoidance standards. Some of these are limitations on 

the allowable universes on which to perform the analysis. Regression analyses are further 

subjected to restrictions on the use of predictor and response variables. We plan to 

explore whether additional rules are necessary for correlation coefficients. 

 

3.1 Confidentiality Protection for Universe Formation 
MAS users are allowed to run their statistical analyses on a universe, or sub-population, 

of interest. Users are presented with a set of variables and category levels from which 

they can define a universe using condition statements on the variables, including unions 

and intersections as desired. For example, the user may select a universe consisting of the 

sub-population of all females. A more complicated universe could consist of all people 

who are male or unemployed, or of all people whose income in dollars falls into the 

union of [9180,20155] and [31662,43468], although admittedly the last of these may be 

of dubious utility. One of the confidentiality rules requires that all variables used to 

define universes must be categorical. 

 Since a user may want to define a universe based on variables that are not 

inherently categorical (i.e., those that are continuous), raw numerical variables are 

presented to the user as categorical recodes based on output of a separate binning routine. 

This cutpoint program, outlined in Lucero et al. [2009], creates bins of numerical values 

and ensures a pre-specified minimum number of observations between any two cutpoint 

values. 

 To define a universe using a numerical variable, a user is required to choose from 

a predetermined list of ranges the range that best meets her goal. For example, if a user 

wished to run an analysis on people with income of $46,000, the user would select the 

range that contains this value, which might be ($45000,$53000], and this would define 

the universe as the sub-population of all individuals whose income is between $45,000 

and $53,000 (inclusive on the upper end but exclusive on the lower end). Note that a user 

cannot define the universe based on the income range ($39000,$46000] unless $39,000 
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and $46,000 are among the pre-determined cutpoints, but instead must choose cutoff 

values consistent with the cutpoints that are given. This is a crucial restriction on what a 

user can do, since allowing arbitrary universe formation on continuous data could lead to 

a differencing attack disclosure. Such a disclosure would occur, for example, if a user 

requested a table for the universe of individuals with income of at least $11,313 and the 

corresponding table for the universe of individuals with income of at least $11,314, and 

then manually compared the two tables. If only one person in the dataset had an income 

of $11,313, then this person’s other attributes could easily be deduced, as described in 

Section 3.1.1. 

 All universes must pass certain preliminary checks to ensure that they are large 

enough and are not likely to lead to disclosures in combination with other universes. 

There are two main criteria that any universe must pass, and we describe these only 

briefly here. 

 The Rule of 75 requires that any allowable universe must have at least 75 

observations. Furthermore, if a universe is defined as the union of smaller universes, then 

each of these smaller universes must have at least 75 observations, as must all non-empty 

intersections of two or more of the smaller universes. The rule has some more nuances, 

addressed in Lucero [2009], which we will not discuss here. It is also important to note 

that we may modify this rule before the system becomes operational, with some other 

number in place of 75. 

 The No Marginal 1s or 2s Rule states that if a universe is defined based on m 

variables, the m-way contingency table based on those variables must not have any m-1 

dimensional marginal totals that are equal to 1 or 2. For example, we might have 

available a binary variable indicating whether a person has moved in the most recent 

year, a variable indicating a subjective assessment of the person’s health (excellent, very 

good, good, fair, poor) and a binary variable indicating eligibility for Medicaid. Then a 

universe could be constructed consisting of those who have not moved in the last year 

and are eligible for Medicaid and in poor health. This universe would not be allowable if 

any of the two-way marginals with respect to these three variables is 1 or 2. It is 

important to note that a marginal total can cause a universe to be disallowed even if none 

of the people who are counted in that total are in the universe. So, for example, if there 

are 1 or 2 people who have not moved and are in excellent health, the universe would not 

be allowed, even though non-movers in excellent health are not in the desired universe. It 

is enough that the marginal is defined by two of the three variables in the universe 

definition. 

 We use the notation U(n) to denote a universe with n observations, and although 

this is in principle ambiguous, in most cases, it should be clear from the context which n 

observations lie in the universe. 

 

3.1.1 Confidentiality by Random Record Removal 
A differencing attack disclosure occurs when a data intruder attempts to reconstruct a 

confidential microdata record by subtracting the statistical analysis results obtained 

through two queries on similar universes. Suppose a data intruder first creates two 

universes on the MAS, U(n) and )1(U n , where both contain the same n observations 

with the exception of one observation missing from the second universe, i.e., 

1)1(U\)(U nn . The difference )1(U)1(U\)(U nn  is a manipulated universe that 

contains the single target observation. While our rules on allowable universes provide 

some protection of the confidential data in the MAS, they do not completely prevent 

differencing attack disclosures. For example, suppose a data intruder has prior knowledge 

of demographics in a small geographic area, and in particular is aware of individuals, 

Section on Survey Research Methods – JSM 2011

3648



households or establishments with unique characteristics within that area. It may be the 

case that the intruder knows that there is only one non-citizen among the n residents of 

the area. Then the intruder may create U(n) and )1(U n , where U(n) is the full universe 

of people in the area and )1(U n  is the universe of citizens who live in the area. 

Suppose the data intruder then requests two separate cross-tabulations for the same 

underlying table variables; we call these two tables Tn and Tn-1, as shown in Figure 1. 

Since U(n) and )1(U n  differ by a unique observation, Tn-1 will be the same as Tn, less 

one unique cell count. The tables in Figure 1 show a differencing attack based on a 

tabulation of age (a binary classification of whether the person is at least 45 years old) 

versus income (a binary classification of whether income is at least $50,000). 

 

All People  Citizens Only 

Tn <$50,000 >$50,000  Tn-1 <$50,000 >$50,000 

Age<45 323 170 - Age<45 323 169 

Age>45 45 58  Age>45 45 58 

       

   Non-Citizens Only  

   T1 <$50,000 >$50,000  

  = Age<45 0 1  

   Age>45 0 0  

Figure 1: An example of performing a differencing attack by matrix subtraction. 

 

We may perform the matrix subtraction Tn-Tn-1=T1, where T1 is a two-way table of 

gender by employment status built upon the one unique observation contained in 

)1(U)1(U\)(U nn . As shown in Figure 1, T1 contains a cell count of 1 in the cell of 

people under age 45 and with income of at least $50,000, which tells the data intruder 

that the one unique observation contained in U(1) has these two characteristics. By 

performing differencing attacks similar to the one just described, a data intruder can 

successfully rebuild the confidential microdata record for the one unique observation 

contained in U(1). 

 A differencing attack may also be a concern if there are two observations within 

an area that have a certain characteristic, particularly if the intruder is himself one of 

these two. Suppose, for example, that the universe contains only two non-citizens, one of 

whom is the intruder. The intruder could then construct the full universe U(n) and the 

portion of the universe consisting solely of citizens )2(U n . Since the intruder knows 

his own personal characteristics, he may manually remove himself from U(n) to get 

)1(U n  and then perform a differencing attack as above by comparing )1(U n  and 

)2(U n  to obtain information on the other non-citizen in the area. 

 To help protect against differencing attacks, the MAS implements a universe 

subsampling routine called the Drop q Rule. Traditionally, subsampling has usually been 

used to estimate parameters when a population is too large to analyze in an efficient 

manner and a (usually small) subset can give approximately the same results as the full 

population. Our aims are very different here: the Drop q Rule is intended to remove just 

enough observations from the dataset to thwart a differencing attack. A differencing 

attack performed while the Drop q Rule is in place will not lead to a meaningful outcome, 

when the attack is of one of the types described above. 
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 The Drop q Rule works as follows. A user-defined universe that passes all of the 

previous rules has q records removed at random. To do this, the MAS will first draw a 

random integer value of q such that 2<q<k and such that when the universe is modified 

by omitting q records, the number of remaining records is a multiple of 3. Here k is some 

predetermined number, which may depend on the size of the universe. The exact method 

for determining the maximum possible number k of observations to remove is still under 

consideration. Then, given q, the MAS will subsample the universe U(n) by removing q 

records at random from U(n) to yield a new subsampled universe )(U qn . 

 Within the MAS, all statistical analyses are performed on the subsampled 

universe )(U qn  and not on the original universe U(n). Each unique universe U(n) that 

is defined on the MAS will be subsampled independently according to the Drop q Rule. 

To prevent an “averaging of results” attack, the MAS will produce only one subsampled 

universe )(U qn  for each unique universe U(n), with this unique subsample persisting 

for the lifetime of the system. That is, all users who select a specific universe U(n) will 

have all analyses performed on exactly the same subsampled universe )(U qn . The 

MAS accomplishes consistent subsampling of universes by using the same random seed 

to perform the subsampling every time a given universe comes up. To receive the full 

disclosure protection offered by the Drop q Rule, it is necessary that the seed, while 

constant for a given universe, differs across universes, and this can be implemented by 

having the seed be a function of the set of units in the universe. 

 The differencing attacks of most concern require, among other things, that two 

universes are available that differ in size by 1 or 2. However, under the Drop q Rule 

described above, all subsampled universes have sizes that are multiples of 3, and no pair 

of multiples of 3 (including pairs where both numbers are the same) can have a difference 

of 1 or 2. Hence the Drop q Rule eliminates the possibility of this sort of disclosure, or 

even of an apparent disclosure where taking the difference of the resulting tables gives an 

answer that is plausible (because it has nonnegative numbers in all cells) but is not 

correct. 

 The Drop q Rule is a generalization of the previously used Drop 1 Rule and Drop 

2 Rule, where a small and fixed number of observations were removed before analysis. 

These rules led to tables that were susceptible to differencing attacks. One notable 

vulnerability could be exploited by starting, as usual, with two universes U(n) and 

)1(U n , identical with the exception of one unit, with the intention of performing a 

differencing attack. For example, an intruder might know that a certain geographical 

region contains exactly one Korean War veteran. The intruder could then consider the 

universe of all people in that region, as compared to the universe of all non-Korean War 

veterans in the region. However, instead of requesting a tabulation of these two universes, 

the intruder may augment each universe by adding to it the full population of a non-

overlapping geographical region of size N>>n, such as a large state that does not contain 

the original region. Then a three-way tabulation could be done of veteran status versus 

state versus the variable that the intruder wishes to disclose for the augmented universes 

U(n+N) and U(n-1+N). In the case of the Drop 2 Rule, it is overwhelmingly likely that all 

four of the dropped observations—two for each universe—will be in the large region of 

size N, thus leaving the portions of the provided tables representing the original region of 

interest unmodified. The MAS currently prevents a “padding” attack of this sort by 

restricting the types of geographies on which an analysis can be performed, and we are 

looking into how to further strengthen the system against this type of attack. 
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3.2 Confidentiality Protection for Regression Models 
The MAS implements a series of confidentiality rules for regression models, in addition 

to the universe restrictions already mentioned. For example, users may only select up to 

20 independent variables for any single regression equation. Users are allowed to 

transform numerical variables (either predictor or response), but they must select their 

transformations from a pre-approved list. This prevents the user from performing 

transformations that deliberately overemphasize individual observations such as outliers. 

Currently, the allowable transformations are square, square root and natural logarithm; 

others may be added in the future. 

 Any fully interacted regression model that contains only dummy variables as 

predictors poses a significant potential disclosure risk, as described in Reznek [2003] and 

Reznek and Riggs [2004]. Therefore, users are allowed to include only two-way and 

three-way interaction terms within any specified regression model, and no fully interacted 

models are allowed. Furthermore, a two-way interaction is allowed only if both of the 

interacted variables appear by themselves in the model, and a three-way interaction is 

allowed only if all three variables appear uninteracted in the model and each of the three 

associated two-way interactions also appears. However, interactions do not count against 

the 20-variable limit (so that, for example, if a model includes two predictor variables and 

their interaction, this is considered two variables, not three, for the purpose of the limit). 

Categorical predictor variables are included in the model through the use of dummy 

variables for all categories except one reference category. The MAS uses the most 

common category as the reference category. In addition, each predictor dummy variable 

must represent a category containing a certain minimum number of observations; if this 

minimum is not met, the dummy variable is omitted from the model. In effect, this means 

that sparse categories are absorbed into the reference category. We denote the minimum 

allowable number of observations in a category by the parameter m, which is initially set 

to 3m , but can be modified as described below. 

 Prior to passing any regression output back to the user, the MAS also checks that 

R
2
 is not too close to 1. If R

2
 is too close to 1, then the MAS will suppress the output of 

the regression analysis, as releasing the results of the regression would allow estimation 

of the response variable with a high degree of accuracy if the values of the predictor 

variables for any unit were known. This is somewhat different from the usual regression 

context, as a more familiar situation is one in which a high R
2
 is desirable, whereas here it 

is seen as problematic. It may also be the case that the regression does not have an 

unreasonably high R
2
, but that there exists a certain type of subset of observations where 

all observations have their response values perfectly predicted by the regression (up to 

rounding errors in the software). Regressions with this feature will also not be provided 

to the user; one may think of this as a check on the local goodness of fit to complement 

the R
2
 check on the global goodness of fit. Furthermore, output will not be given if there 

exists a dummy variable that assumes a value of 1 fewer than three times in the dataset. If 

the dummy variable represents a category of a single categorical variable, this is 

redundant with the use of the parameter m at the end of the preceding paragraph, but if 

the dummy variable is based on two or three interacted variables, then this is not 

necessarily the case. 

 When categorical variables are used as predictors, the rules above can be very 

restrictive, especially on relatively small datasets or when categorical variables are 

interacted, making it potentially unlikely that the system will give the desired output. 

Since the goal of the MAS is to provide output whenever possible, we make a slight 

modification to the regression in this case, in the hope that we can provide less detailed 

output, rather than no output at all. This is done by increasing the lower bound m on the 

number of observations that a category must contain to have its own dummy variable and 
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avoid being absorbed into the reference category. By absorbing more categories into the 

reference category, we hope to alleviate the conditions that prevented the regression from 

being output. The MAS continues to increase m until either a regression is found that can 

safely be output—in which case that regression is fit—or m is large enough that one of 

the categorical predictors is reduced to having just a single level, with all other levels 

being absorbed into the reference level, leading the system to refuse output. 

 A shortcoming of our current approach is that it will sometimes combine 

categories in undesirable ways, particularly in the case of a predictor variable with 

ordinal structure. The method we have described above does not consider any ordinal 

structure that may be present, but we hope to improve this aspect of the system in the 

future.  

 If all of the requirements for a regression are satisfied, either before or after 

adjusting the parameter m, then the MAS will pass output to the user. The output includes 

regression coefficients; their standard errors, t-statistics and P-values; the F-statistic for 

the regression and its P-value; the R
2
 for the regression; and an ANOVA table. All of 

these are rounded, to thwart any attack based on exact values of regression coefficients 

from large numbers of regressions. 

 Although most of the discussion above has focused on rules for ordinary least 

squares regression, the MAS also has the capability of performing logistic (either binary 

or multinomial) regression when the response variable is categorical or Poisson 

regression when the response variable is a count. In these cases, the rules for ordinary 

least squares regression are adapted to the new context. Limits on interactions and the 

approach to categorical predictors are the same. To measure whether the fit is “too good” 

and a regression needs to be withheld (or have m increased), we use pseudo-R
2
 measures 

as a measure of global goodness of fit; if these are too high, the regression will not be 

given or will have m increased. We have also developed local goodness of fit checks for 

these other types of regression. As before, the rounded estimated coefficients, along with 

their standard errors, test statistics and P-values, are provided, as is the Analysis of 

Deviance table in the Poisson or binary multinomial case. 

 When logistic or Poisson regression is performed, the results output are similar to 

those for ordinary least squares regression: rounded versions of the regression 

coefficients, their standard errors, test statistics and P-values and, except in the 

multinomial logistic case, the Analysis of Deviance table. 

 Sparks et al. [2008] propose some other confidentiality rules for regression, such 

as using robust regression to lessen the influence of outliers, although at the moment, we 

still plan to use ordinary least squares regression when the response variable is numerical. 

 

3.2.1 Synthetic Residual Plots 
To determine whether an ordinary least squares regression adequately describes the data, 

diagnostics such as residual plots are necessary, and these are provided in almost all 

cases. Actual residual values pose a potential disclosure risk, since a data intruder can 

obtain the values of the dependent variable by adding the residuals to the fitted values 

obtained from the regression model. Therefore, the MAS does not pass the actual residual 

values back to the user. To help data users assess the fit of their ordinary least squares 

regression models, diagnostic plots are based on synthetic predictor (or fitted) values and 

synthetic residuals. These plots are designed to mimic the patterns seen in the scatterplots 

of the real residuals versus the real fitted values, or of the real residuals versus the values 

of the individual variables. 

 The first step in creating synthetic residual plots is to create the synthetic dataset 

in such a way that the synthetic data mimic the actual data. For a plot of residuals versus 

a quantitative predictor variable, we first create a synthetic version of the predictor, then 

Section on Survey Research Methods – JSM 2011

3652



create the synthetic residuals. We summarize the methodology here; it was devised by 

Reiter [2003], who provides considerably more detail than we do, especially on 

determining the synthetic residuals. The distribution of the predictor variable x is 

simulated using a kernel density estimator, and then sampling is used to generate x
s
p from 

the approximate distribution. When Reiter’s method is used, there is no one-to-one 

correspondence between real observations and synthetic observations, so there need not 

be any particular relationship between the size of the actual dataset and the size of the 

synthetic sample. The lack of such a correspondence helps to protect outliers, as an 

outlier in the original data may not appear in the synthetic plot or may appear more than 

once. In the case of categorical predictor variables, we let the synthetic sample size equal 

the actual sample size, while in the case of numerical predictor variables, we let the 

synthetic sample size be the minimum of 5,000 and the actual sample size. This is 

because when making the synthetic and actual sample sizes equal in the numerical case, 

we found that the system was slow when dealing with large datasets, and that the vast 

majority of the time that the analysis took was spent on creating the synthetic residual 

plots for numerical variables. A shortcoming of the method for creating synthetic 

continuous predictors is that the kernel density estimator is not able to identify a 

probability mass at a single point, but rather will assume that the probability density 

function should be high in the neighborhood of that point. This should not invalidate the 

method, but it will affect the distribution along the x-axis for a predictor variable such as 

income, for which many people have a true value of 0, and for which round numbers are 

frequently reported. 

 For categorical variables xp, the values of x
s
p are generated by bootstrap sampling 

the real data. If some categories are sparsely populated and homogeneous in their 

residuals, there is the potential for using the synthetic residual values at the sparse 

category to disclose real residuals, but otherwise this part of the algorithm poses 

negligible disclosure risk. One possible approach to this problem is to suppress residuals 

for categories that are sufficiently sparse. 

 It should be noted that both of these methods for creating the synthetic data work 

with one variable at a time, i.e., x
s
p are drawn marginally, not jointly, and thus no valid 

analysis can be performed based on the joint distribution of the synthetic variables. This 

is not currently a major concern, as it is not our intention to release synthetic data through 

the MAS. However, this does impose a limitation on the range of diagnostics that we can 

make available in the future based on synthetic variables generated using this method. 

 The next step is to generate the standardized synthetic residuals t
s
p so that the 

relationship between t
s
p and x

s
p at any point x

s
kp in x

s
p is consistent with the relationship 

between t and xp around point x
s
kp. To accomplish this, we must make a different set of 

synthetic residuals for each predictor variable. Note that x
s
kp, if numerical, will not 

necessarily be a value observed in continuous real data, because of the use of the kernel 

density approach..  

 For each variable, the goal is to give the user something akin to a plot of the 

standardized residuals of the full (possibly multiple) regression model versus the value of 

xp. For a variable p and an index k, define 

 

t
s
kp = bkp + vkp + nkp. 

 

 The first term bkp gives the expected value of the standardized residual for any 

given value of p; this is determined by fitting a generalized additive model (GAM) to the 

relationship between the real values of the predictor variable and the real values of the 

residuals. The second term vkp accounts for the deviation of residuals from the GAM 

curve, and is found by examining the deviations of the real points whose x values are near 

Section on Survey Research Methods – JSM 2011

3653



x
s
kp from the GAM curve. The third term nkp is a homoscedastic noise term to further 

protect the true residuals. 

 When all steps are complete, the system creates a scatterplot of the synthetic 

residuals versus each numerical synthetic predictor variable, as well as a scatterplot of the 

synthetic residuals against the fitted value, with a kernel smoother used to show the 

general shape of the latter curve. To protect outliers, the scatterplot requires all synthetic 

standardized residuals to be in the interval [-4,4], with values that would otherwise be 

outside this range truncated appropriately. 

 Since categorical predictors do not lend themselves to scatterplots, the residual 

plots for categorical variables are replaced by side-by-side boxplots, with one boxplot for 

each value of the predictor. We have described above how the synthetic values of the 

predictors are found; the synthetic value of a residual in this case is chosen by selecting at 

random an observation from the original dataset with the desired value of the categorical 

predictor, using this as an initial value of the synthetic residual, and then adding 

homoscedastic random noise as before. 

 For logistic regression, whether binary or multinomial, diagnostic plots are also 

given, following the method in Reiter and Kohnen [2005]. 

 

3.2.2 Testing Residuals for Normality 
Another useful diagnostic for a linear regression is a test of the normality of the residuals. 

This may be done in the MAS by using a normal Q-Q plot, or by choosing from a number 

of available test statistics, such as the Anderson-Darling statistic. The MAS produces 

both the Q-Q plot and the numerical output. Since a direct Q-Q plot of the actual 

residuals poses a potential disclosure risk, the plot uses synthetic residuals rather than real 

residuals. However, because the synthetic residuals include normal noise, we would 

expect them to look more normal than the real residuals. Allowing the test statistics to use 

real residuals seems reasonable, as it is difficult to see how an individual observation 

could be revealed by looking at these. Hence we make the following recommendation: 

use the test statistics to determine normality, but use the Q-Q plot to assess the nature of 

the deviation from normality, if any. 

 

4. Additional Features 

 
Among the additional features being developed are histograms and scatterplots of 

numerical data. Each of these poses a disclosure risk if unperturbed. 

 

4.1 Histograms 
Histograms do not seem to be a major disclosure risk, except when outliers are present. 

The Drop q Rule already gives some protection against disclosure; we modify the method 

used to create the histogram so that there is further protection. The main concern with a 

histogram is that it may be used to find outlier values of the variable being plotted. 

 We begin by removing from the distribution any extreme outliers. When this has 

been done, we use a kernel density function to find a smoothed estimate of the 

distribution of the variable. We then draw a sample from the smoothed distribution equal 

in size to the original dataset. The smoothing can be thought of as a horizontal 

perturbation in the histogram, since it may move some of the probability mass caused by 

one observation from that observation’s bin to nearby bins. Drawing the sample from the 

distribution may be considered a vertical perturbation, as the number of observations in 

each bin (the height of the bin) need not equal the number of observations expected to be 

in the bin based on the smoothed density. Note that because of the smoothing, the bounds 
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of the estimated density will fall beyond the bounds of the observed data, so it is possible 

for the synthetic histogram to extend further than the data itself. However, if there is one 

observation that is somewhat more extreme than the others, but perhaps not so extreme as 

to be excluded as an outlier, it is possible that when drawing from the smoothed 

distribution, none of the sample will come from the area around that observation, so the 

histogram may also extend less far in that direction than the real data. The discreteness of 

the bins of the histogram also acts as a sort of de facto perturbation of the data.  

 To further protect unusual values, we require that any bin in the histogram must 

have a minimum of three observations. Bins with fewer than three observations have 

more observations added to augment them to three. Bins with three observations (after 

the augmentation) are colored red when the histogram is plotted, whereas the other bins 

are colored gray. 

 We are still testing and modifying the method of creating histograms to ensure 

that it does not create a disclosure risk. 

 

4.2 Scatterplots 
We are considering a variety of approaches to the problem of making a disclosure-proof 

scatterplot of two numerical variables. 

 One approach is to use the same method as for synthetic residuals. A possible 

downside to this is that this method treats the two variables in an asymmetric fashion, so 

that a synthetic plot of y versus x need not look like a synthetic plot of x versus y. In the 

case of a residual plot, this asymmetry between the variables is natural, but in a more 

general scatterplot, we may want both variables treated similarly. 

 Another approach is to use a method that starts with the true scatterplot—or, if 

this includes too many points, a subset of the points of the scatterplot—and then moves 

each point a random distance in a random direction. Points that are close to other points 

will be moved only a little, whereas an outlier, even a modest one, will be moved more. 

This is somewhat similar in spirit to the approach of You [2010]. 

 Sparks et al. [2008] use a method of side-by-side boxplots to replace both 

residual plots and ordinary scatterplots. When this method is used, the x variable is split 

into bins and a histogram of the y variables for each x bin is made, then the histograms 

are plotted side by side. If certain precautions are taken, such as Winsorizing the data to 

protect outliers, disclosure risk can be minimized. Sparks et al. argue that in many cases, 

side-by-side boxplots not only have less disclosure risk than scatterplots, but also have 

more utility to the user. 

 

5. Other Approaches 

 
Since the idea of a remote access system has been in existence for several years, a 

number of approaches have been proposed that differ from ours to varying degrees, and 

we survey some of them here. 

 Schouten and Cigrang [2003] present a variant of the idea of a remote access 

system, which allows outstanding versatility, but is also difficult to create and expensive 

and laborious to maintain. Their proposed system allows users to submit queries by 

email, written in any of several statistical programming languages. If a query is approved, 

the user receives the results by email. Before the analysis is performed, an automated 

system determines the legitimacy of the request, with particularly difficult cases handled 

manually. As with the MAS, certain types of output are allowed and certain types are not, 

but since the code is user-generated, rather than generated by the system behind the 

scenes, it is challenging to identify all unallowable queries. This is especially true 
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because, as the authors emphasize, the validity of a query may depend on information 

already released as a result of previous successful queries. The authors write, “Computers 

are simply not fast enough and the construction of a system that fully evaluates the risk of 

disclosure may be too costly and complex and therefore not feasible.” Thus, in a system 

like this, it may be necessary to perform some disclosure avoidance analysis on a query 

after the result of the query has already been returned. This is not ideal, as a query that is 

a disclosure threat might not be identified until its output has already been provided. 

However, such a method could be effective if the users are from large institutions and 

have signed a contract describing their research and pledging to uphold confidentiality. In 

this case, the fear of a user or institution’s jeopardizing its future access to the data may 

serve as a sufficient deterrent to deliberate submission of an invalid query. In this type of 

system, a username and password would be necessary so that individual users' actions 

could be properly tracked. 

 A system of the general variety that Schouten and Cigrang [2003] propose has 

been implemented by the Luxembourg Income Study (LIS), a research institute collecting 

data on income, wealth and various other measurements, founded in 1983 (see LIS 

Micro-data Access [2009a]). The LIS data are an aggregation of household surveys taken 

by various contributing countries. LIS’s remote access system—called LISSY—allows 

registered users to submit their own code via email or an online form, which may be 

written in SAS, SPSS or STATA. Output, when deemed allowable, is returned by email 

and is viewable on the form. The system does not allow certain commands that could be 

used to obtain a disclosure relating to an individual or household. Also prohibited are 

“sequences of commands and/or variables that would end up breaching the rules on data 

confidentiality;” these, as well as requests that give overly long output, are flagged for 

manual analysis or are denied outright. Further specifics are given in LIS – Micro-data 

Access – Job Syntax [2009b]. Schouten and Cigrang [2003] also note that the LIS 

contains an archive of jobs submitted, which can be further evaluated to make sure the 

data are being used properly. 

 Sparks et al. [2008] propose a system—Privacy-Preserving Analytics®—that 

performs a number of methods for disclosure avoidance, including keeping track of the 

regression models a user requests and ensuring that only a limited (although large) 

number are run for each possible response variable. They also ensure that a user does not 

make too many closely related requests. 

 Gomatam et al. [2005] make a distinction between static servers and dynamic 

servers. A static server has a pre-determined set of queries to which it will provide an 

answer. A dynamic server receives a query and makes a decision on whether to provide 

an answer. A dynamic server—such as the one described in Schouten and Cigrang 

[2003]—would keep a running record of all previously answered queries, and whenever a 

new query was submitted, it would be compared against the list to determine whether 

providing an answer would lead to a disclosure risk when the new answer was combined 

with previously provided answers. A dynamic server has the highly undesirable property 

that the order in which queries are submitted by the collective group of users plays a large 

role in determining which queries are answered, and that eventually the server reaches a 

point where no new queries can be answered. Since queries are answered or rejected as 

they are received, the set of queries that are ultimately answered is not the result of a 

careful assessment of which analyses would provide the most utility to legitimate 

researchers while keeping disclosure risk at an acceptable level. Gomatam et al. [2005] 

write that “[w]hether dynamic servers are possible remains an open question.” The MAS 

is at its heart a static server, since it operates under a set of rules that do not depend on 

previous queries. However, it operates in a dynamic fashion, since the rules are checked 

for each new query that is submitted, rather than comparing it to a pre-computed list, as 
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creating such a list would be prohibitive. In a way, the MAS does not fit into the 

framework of Gomatam et al. [2005], as it sometimes will provide regression output that 

is less detailed than the user might have liked instead of refusing output altogether. 

 Another approach to protecting privacy from a query-accepting statistical 

database is to suppress from any tables any cells that are deemed a disclosure risk, either 

directly or indirectly. Adam and Worthmann [1989] discuss this possibility and note that 

in certain systems, cell suppression is not a feasible solution to the disclosure problem. 

 

5. Future Work 

 
The MAS will continue to be developed within DataFERRETT. We will soon be testing 

the software itself and the confidentiality rules within the MAS beta prototype to ensure 

that they properly uphold disclosure avoidance standards. In addition, we plan to draft a 

set of confidentiality rules for cross-tabulations, and to add different types of statistical 

analyses within the system, such as descriptive statistics and significance tests. We also 

plan to modify the system to deal better with missing values. In addition, we will explore 

other intruder tactics and determine what rules must be put into place to prevent their 

success. 
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