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Abstract 
Fay and Train (1995) present a method called successive difference replication that can be used to 
estimate the variance of an estimated total from a systematic random sample from an ordered list.  
The estimator uses the general form of a replication variance estimator, where the replicate 
factors are constructed such that the estimator mimics the successive difference estimator.  In the 
paper, we establish the conditions for successive difference replication to be equivalent to 
successive difference estimator.  We also discuss the impact of using a subset of the replicates as 
an estimator instead of the full set of replicates that is needed for the successive difference 
replication estimator to be equivalent to the successive difference estimator. 
 
Key Words: Successive differences, successive difference replication, systematic random 
sampling 
 

1.  Introduction 
 
Fay and Train (1995) present a method called successive difference replication (SDR) that can be 
used to estimate the variance of an estimated total from a systematic random sample from an 
ordered list.  The estimator uses the general form of a replication variance estimator, where the 
replicate factors are constructed such that it mimics the successive difference (SD) estimator.   
 
We add to the methodology the idea of a connected loop, which helps us understand how row 
assignments work.  We also provide a method for using SDR with a Hadamard matrix that is 
smaller than the sample size.  The method also helps us understand the consequences of using a 
reduced set of replicates with SDR. 
 
The paper begins by reviewing systematic random sampling from an ordered list.  Next, we 
review the SD estimator and how it is suited for variance estimation of systematic random 
samples.  The main section of the paper presents two theorems that provide conditions for the 
SDR estimator to be equivalent to the SD estimator.  The paper ends with empirical examples that 
examine alternative row assignments and the suitability of using of a reduced set of replicates. 
 
1.1 Review of Systematic Sampling 
For the remainder of our discussion sys will be used as shorthand for systematic random sampling 
from an ordered list.  We abbreviate sys this way because systematic sampling from an unordered 
or randomly ordered list, can be shown to be equivalent to simple random sampling (Madow and 
Madow 1944).  For our discussion, we focus solely on equal probability selection and selecting 
sample in only one dimension.  Other names for sys include “linear systematic sampling” 
(Murthy and Rao 1988) and “1-in-a sampling” (Gregoire and Valentine 2008). 
 
The sample design sys is easy to implement and can be very efficient compared with simple 
random sample without replacement sample design (srswor).  To implement sys, we first sort the 
universe by a variable that is known for every unit in the universe.  With a defined sampling 
interval k > 0, we randomly generate r from a uniform distribution on the interval (0, r ].  The 
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units selected are spaced in multiples of the sampling interval from the first selection, i.e, 

 kir * , i = 1, 2, ,.., n and we define  .  as the ceiling function or the next largest integer.   

 
We say that sys can be efficient in the sense that the sample design can produce estimates with 
small sample variances as compared to srswor.  Cochran (1977) relates the efficiency of sys to the 
intra-cluster correlation.  Although the inter-cluster correlation is not the same as a simple 
correlation, both provide a measure the association between the variable of interest and 
variable(s) used to sort the universe prior to sample selection.  If the variable of interest is highly 
associated with the sort variable, the sample design can be very efficient. 
 
The efficiency of sys can also be understood in the context of the term implicit stratification used 
by Megill et al. (1987).  In this way of thinking, the universe as a sorted list is divided into 

 kNn /ˆ   implicit strata.  The first  k  units are in the first strata, the next   1k  to  k2  

units are in the second strata,…, and the last stratum from    knr *1  to N.  The random 

number r, determines the random selection within the first implicit stratum and each of the 
subsequent strata.  Since the universe is sorted, each stratum has units that are similar to each 
other with respect to the sort variable.  This can be efficient when the sort variable and the 
variable of interest are associated, since the implicit stratification would also group units that are 
similar to each other with respect to the variable of interest. 
 
Excellent summaries of sys and estimating variances from sys can be found in Iachan (1982), 
Wolter (1984), Murthy and Rao (1988), and Bellhouse (1988).  In the next section, we review SD 
in preparation of our discussion of SDR. 
 
1.2 Review of Successive Differences 
Wolter (1984; estimator 2) provides a form of the successive difference estimator of the variance 
of an estimated mean ( y ) for a sys sample design as  
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where 
yk  the variable of interest 
k  indexes the units of the ordered sample 

Y and Ŷ  the total of variable yk and the estimator of the total 
N and n the size of the universe and sample 

y  and ŷ  the mean of the variable of interest yk  and the estimator of the mean 

f  the sampling fraction, i.e., Nnf / . 
 
This estimator has been described by Yates (1949; p. 229-231) and recommended by Wolter 
(1984).  Murthy and Rao (1988, eq. 32), provide a sketch of why the estimator works.  The short 
version is that since sys only selects one unit within each implicit stratum, SD’s solution is to 
collapse adjacent implicit strata.  With two units, we can estimate the variance of an implicit 
stratum.  Implicit strata are collapsed and averaged over all possible pairs, and then multiplied by 
n, the number of implicit strata, to give the variance of all the implicit strata.  
 
One SD variance estimator of a total from a sys sample is given by Fay and Train (1995), which 
we will refer to as F&T for the remainder of the paper, as 
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where we define the weighted variable of interest as  kk y
n

N
y 


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

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.  F&T also define a second 

SD estimator, which is made “circular” in that it includes an extra squared difference that links 
the first and last unit from the sorted list.  
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The SD2 estimator can also be expressed in matrix notation quadratic form yCy

  ,  where 

 nyyy


...21y  be defined as the m × 1 weighted observation vector and C is a square matrix 
with 2 for each value of the diagonal, -1 for every value of the superdiagonal and subdiagonal, 
and -1 for the bottom left and top right value.  Here the superdiagonals are defined as the 
diagonals adjacent to the main diagonal.  The exception is a 2 × 2 matrix, which we will see later.  
Example 1 demonstrates.  
 
Example 1:  With n = 4 and k = 4,  
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As a preview to the next section, we mention that in a different paper, Fay (1989) shows that if 
you can represent a variance as a quadratic form yCy

  ,  where C is positive semi-definite square 
matrix, then the estimator can also be expressed as a replication variance estimator.  Although 
SDR does not follow the same prescription given in Fay (1989), the next section does show how 
the SD2 variance estimator can be represented as a replicate variance estimator.  
 

2.  Successive Difference Replication 
 
2.1  Definition of Successive Difference Replication 
F&T present a method called successive difference replication (SDR) to estimate the variance 
from a sample selected with sys.  We show how SDR can be used to produce replicate weights for 
a general replicate variance estimator that is exactly equivalent to the SD2 estimator.  Before we 
define the SDR estimator in the first theorem, we first establish some terms and provide a lemma 
that is used by the theorem. 
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A row assignment scheme, or more simply RA, is an assignment of two rows of a matrix to each 
unit in the sample.  We usually denote the pair of rows as  ii ba ,  for unit i.  A connected loop is 
a RA that does not repeat any of the rows, i.e., ai  ≠ aj  and bi  ≠ bj  for all i and j in the connected 
loop, and is circular, i.e., bi+1 = ai for all i < n and bn  = a1.  For example, one possible connected 
loop for three observations is (1,2), (2,3), (3,1). 
 
A shift matrix S can be used to move either the rows or columns of a matrix.  We will explain 
how to move rows because that is useful to us, but note that moving columns is similar.   A shift 
matrix is a square matrix that has all 0s, except a single 1 in each column.  If we wanted to move 
row p to row q, we would put a 1 in the qth row of the pth column and 0s elsewhere.  We note that 
order is important in applying a shift matrix to another matrix.  The application of S to another 
square matrix A as AS shifts the rows of A and SA shifts the columns of A.  For example, if we 
applied the m = 4 the shift matrix   
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to another square matrix A of the same dimension, i.e., AS = B, the matrix B is a copy of A with 
all its rows shifted one position down and the last row made the first. 
 

Lemma:  Let S1, S2,…, Sc be shift matrices, then   ISSSSSS  CCblock ,...,, 2211 . 

 
Proof.  We first define a general block diagonal matrix A that is formed by the square matrices 
A1, A2, …, AC  as 
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It can be shown that if both A and B are block diagonal matrices and the square matrices A1, 
A2,…, AC have the same dimensions as B1, B2,…, BC , respectively, then 

 CCblock BABABAAB ,...,, 2211 .  For a given shift matrix, we also know that ISS  , 

since S and S’ shift the rows of a given matrix in opposite directions.  With the two previous 
items, the lemma follows. 
 
We also define a one row shift matrix as a shift matrix that either shifts all the rows of another 
matrix down one row and the last row moved to the first or shifts all the rows of another matrix 
up one row and the last row moved to the last.  If SD is a one row shift matrix that moves rows 
down then it has 1s along the upper superdiagonal and a 1 in the bottom left entry of the matrix, 
for example S1.  Similarly, if SU is one row shift matrix that moves rows up, then it has 1s along 
the lower superdiagonal and a 1 in the top entry of the matrix, for example the subsequently 

defined S2.  Note the property that  UD SS  and  DU SS , therefore  DDUU SSSS .  
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We now present the main theorem of the paper that establishes the conditions under which SDR 
is equivalent to SD2. 
 

Theorem 1:  Let n be the sample size of a given sys sample and  nyyy


...21y  be defined as 

the n × 1 weighted observation vector, where the order of the observations reflects the sort order 
of sys. 
(a) Choose a Hadamard matrix of order k  ( IHH k ), where n ≤ k.   

(b) Choose a RA that assigns two rows  ii ba ,  to each unit i in the sample.  Let the RA define C 

connected loops of mc units in each connected loop c.   
(c) Choose the m = n rows of H corresponding to the RA to make the m × k matrix M.  The order 
of the rows of M should correspond to the first row of the RA.  For example, the first row of M 

should be row 1ia  of H, the second row should be row 2ia  of H, etc.   Next define the m × m 

shift matrix as  Cblock SSSS ,...,, 21  where the  mc × mc  one row shift matrices Sc are 

defined to identify the position of the second row ib  of the RA in M.  In general, each shift 

matrix Sc will be a shift-up, shift-down, or a 2 × 2 shift matrix (see the subsequently defined S4). 
 

Define the estimator for each replicate total r as 
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I m is a m × m identity matrix and 1m is a m × 1 vector of 1s.  Then the SDR variance estimator  
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is equivalent to the sum of C different SD2 estimators.  
 
Proof.   The SDR estimator can be written in matrix notation as  
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Because    HM ofrowsofrows  , it can be shown that IMM k' .  With this result, the 
variance becomes  
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The last line follows from the lemma and has a constant value for any choice of H.  By noting the 
block diagonal structure of S, we can write the estimator as 
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where cy


corresponds to the vector of the weighted observations in connected loop c, which is a 

result of partitioning the weighted observation vector as   Cccc  yyyy


...21 .   

The choice of the RA does not change the result, since we know that  ccm SSI2 is constant 

for either an up or down one row shift matrix Sc. 
 
Example 2: We can use the normal Hadamard matrix of order k = 4, 
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to estimate the variance a sys sample of size n = 4.  We chose the RA of the second column of 
Table 1 that forms a single connected loop.  With this choice of Hadamard and RA, it follows that 
M = H4a and S = S1.  Note that a Hadamard matrix is normal if it has 1s in both the first row and 
first column.  
 
The replicate factor for unit 1 of replicate 3 is 7.11

2
1

3,1 f , since 
3,1a  = -1 and  

3,2a  = -1.  

Similarly, the replicate factor for unit 2 of replicate 2 is 3.01
2

1
3,1 f , since 

3,1a  = -1 and 

3,2a  = 1.  In Table 1 and the remainder of the paper, 0.3 and 1.7 are used as shorthand for 
2

11  

and 
2

11  , respectively.  The last four columns of Table 2 show the resultant replicate factors 

for the all units of all replicates.   
 

Table 1: Matrix of Replicate Factors ( rif , ) for Example 1 

  Replicate 
Unit # RA 1 2 3 4 

1 (1,2) 1.0 1.7 1.0 1.7 
2 (2,3) 1.0 0.3 1.7 1.0 
3 (3,4) 1.0 1.7 1.0 0.3 
4 (4,1) 1.0 0.3 0.3 1.0 

 
Using the replicate factors of Table 1, the SDR estimator is equivalent to the SD2 estimator, i.e.,   
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For a large sample size, it is not usually practical to use H, where n < k.  The second theorem 
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shows one way that we can use H with k < n to produce a larger Hadamard matrix H
~

with k  ≥ n 
that will result in the SDR estimator being equivalent to the SD2 estimator.   
 
The second theorem also builds upon and clarifies the instructions F&T give for the case of n > k.  
In F&T’s instructions, they use the term cycle to denote every md  ≤ k units of the sample.  
Theorem 2 does not make conditions on the RA, but otherwise it does follow the set-up of F&T. 
 
Theorem 2:  Let n be the sample size of a given sys sample.   
 
(a) Choose a Hadamard matrix HA of order kA, where n > kA.  
 
(b) Choose a RA that assigns rows to HA to the sample.  Retaining their original order, split the n 
sample units into D cycles.  Each cycle d has md  ≤ kA units.  Within each cycle, the RA defines 
one or more connected loops. 
 
(c) Choose a semi-normal Hadamard matrix HB of order kB and use it to define a larger Hadamard 

matrix H
~

of order k
~

 that is generated from the original HA.  This can be done by applying a 

Welsch construction to HA, i.e., AB

~
HHH  .   

(d) Choose the 



D

d
dmm

1

rows of H
~

 that correspond to the RA to make the m × k
~

 matrix M
~

.  

The order of the rows of M
~

 should correspond to the first row of the RA.  Next define the m × m 

shift matrix as  Dblock SSSS ,...,, 21  where the  md × md  shift matrices Sd are defined to 

identify the position of the second row ib  of the RA in M
~

.   

 

With this prescription, the SDR estimator is defined as        
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is equivalent to the sum of at least D SD2 estimators.  
 
Proof.  The result follows by applying Theorem 1.  The specific value of D follows from the fact 
that each of the D cycles can have one or more connected loops, so there will be a total of at least 
D connected loops. 
 
Example 4: Let n = 14 and choose the non-normal Hadamard HA = H4b of order kA = 4.  The 
number of cycles will be D = 4 and the RA within each cycle is given in the second column of 

Table 3 for each unit.  We define H
~

of k
~

 = 16 using a Welsh construction of the original normal 
Hadamard matrix as  
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Using 16H , we can calculate the replicate factors for 16 replicates as Table 3. 
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In matrix notation, M
~

 includes all the rows of 16

~
HH   except rows 13 and 16.  The rows of M

~
 

are ordered by ai, the first row assigned in the RA.  The shift matrix is defined as 
 4321 ,,, SSSSS block , where the shift matrices corresponding to each cycle are  
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and S1 is as previously defined. 
 

Table 3: Matrix of Replicate Factors ( rif , ) for Example 4 

Unit 
# 

RA 
HA = H4b 

RA  

H
~

= H16 

 
Cycle 

Replicate 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 (1,2) (1,2)  1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0
2 (2,3) (2,3) 1 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7
3 (3,4) (3,4)  1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3
4 (4,1) (4,1)  1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0
5 (1,3) (5,7)  1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3
6 (3,1) (7,5) 2 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7
7 (2,4) (6,8)  0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0
8 (4,2) (8,6)  1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0
9 (1,4) (9,12)  1.0 0.3 1.7 1.0 1.0 0.3 1.7 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0
10 (4,3) (12,11) 3 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3
11 (3,2) (11,10)  1.7 1.0 1.0 0.3 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7
12 (2,1) (10,9)  0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0
13 (2,3) (14,15) 4 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7
14 (3,2) (15,14)  1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3

 
With the replicate factors of Table 3, the SDR estimator is equivalent to the sum of five different 
SD2 estimators, one for each connected loop of the RA, i.e. the following expression with R = 0,  
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There are a few items to note with Example 4.  First, the number of replicates needed is greater 
than the sample size.  This happens when md  is not constant across all cycles.  In example 4, the 
fourth cycle only had two sample units, but we had to use four replicates from each H4b because 
at least one of the cycles used four rows.   
 
To make the example more interesting, we choose a non-normal Hadamard matrix H4b for HA.  
This non-normal Hadamard was generated by starting with the normal Hadamard H4a and 
reversing the procedure for finding a normal Hadamard as described by Hedayat and Wallis 
(1978).  Here we simply changed the sign of all units in the second row and then changed all the 
signs for the second column. 
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If we would have used the normal Hadamard matrix H4a  for both HA and HB, the replicate factors 
for replicates 1, 5, 9, and 13 would have all been 1.0.  We call a replicate where every unit gets a 
value of 1.0 and thereby the replicate estimate is equal to the original estimate, a dead replicate.  
In SDR, there is nothing wrong with dead replicates, it is just the way the replicate factors are 
distributed by the Hadamard matrix.  With a dead replicate, many of the values of 1.0 are in the 
dead replicate, and the other replicates are more mixed with values of 1.7 and 0.3.  All the 
replicates, even the dead replicates, are needed in the estimation.  Section 3.1 will further discuss 
how the distribution of replicate factors is impacted by the choice of H.   
 
The real value of Theorem 2 is in understanding F&T’s original prescription for SDR when n > k.  
In F&T, the RA is applied repeatedly to the m = k - 1 rows of HA (skipping the first row of HA), 
where HA is chosen as a normal Hadamard matrix.  Replicates are then formed using the kA 
columns of HA.  If we apply the larger framework of Theorem 2, we would say that they 

implicitly used a normal HB, which results in AB
~

HHH   and only included the first kA 
replicates in the variance estimator.  Since a subset of the replicates needed for SDR to be 
equivalent to SD2 is used, we say that the resultant estimator is an approximation of the SD2 
estimator. 
 
Example 4 (continued):  If we only used the first four replicates of Table 3, the SDR estimator 
would be equivalent to (4) with  
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Note that R includes the same number of positive and negative terms, which do not cancel 
exactly, but has the result that R is usually close to zero.  Similarly, using replicates 1 to q × kA , 
where q = 1, 2, …, kB, will result with an R that has an equal number of positive and negative 

terms.  Only with all the replicates of H
~

will R = 0. 
 
Example 5:  The Current Population Survey (CPS) has a monthly sample size of roughly n = 
72,000 households per month (U.S. Census Bureau 2006).  CPS has a two-stage sample design, 
where a first-stage sample of Primary Sample Units (PSUs), which are generally counties or 
groups of counties, are selected and then in the second-stage households are selected within the 
sample PSUs.  Some PSUs, generally the metropolitan areas, are selected with certainty, i.e., their 
first-stage probability of selection is 1.0.  With the certainty PSUs, the sys sample can be treated 
as the first-stage sample design in variance estimation, i.e., SDR is applied to produce replicates.  
In the non-certainty PSUs, Balanced Repeated Replication (BRR) [McCarthy 1966] is applied to 
produce replicates.   Roughly 75% of the sample or 54,000 units are in SR PSUs, where SDR is 
applied. 
 
The CPS application of SDR uses a Hadamard matrix with k  = 160 and excludes 2 rows, i.e., m = 
158.  Replicate weights are produced for 160 replicates.  Although it may seem like a logical 
conclusion of the paper, we do not to suggest that CPS should use a Hadamard matrix of order k 
= 54,000 or produce 54,000 sets of replicate weights.  That would result in an unreasonable 
number of replicates.  Instead, we suggest that the subset of 160 replicates used by CPS is large, 
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therefore provides a reasonable approximation to SD2.  Later in the empirical examples, we 
examine the impact of using a reduced set of replicates. 
 
2.2 Row Assignment when n > k  
To this point we have assumed a given RA and have not discussed how to make the RA for a 
given sample, where n > k.  In this section, we review two RAs, and discuss some considerations 
about RAs in general.  The first RA is similar to the RA described by Sukasih and Jang (2003) 
and is intended for use with k < n and Theorem 2. 
 
RA1:  The RA assigns a pair of rows ai and bi to every md  units of the sample, which we call 
cycle d, where md ≤ k.  After md  – 1 cycles, the RA is repeated until all units of the sample are 
assigned a pair of rows. 
 
Step 1: Sort the sample in the order in which it was sorted prior to sample selection. 
Step 2: Initialize the cycle number as d = 1 and the number of connected loops as c = 1 

Step 3: Start the RA at the beginning of a cycle or a connected loop as ca 1 . 

Step 4: Repeat the following RA:   kdab ii ,mod   and ii ba   until all md rows of the cycle 
have been used or the RA becomes a connected loop.  Here, the mod or modulo function is 
defined as … If all md rows of the cycle have been used, start a new cycle: let d = d + 1 and go 
back to step 3.  Otherwise (end of a connected loop, but not the end of a cycle) start a new 
connected loop: let c = c + 1 and go back to step 3. 
Step 5: At the end of d = md – 1 cycles, start over with the first cycle – go back to step 2. 
 
RA1 has the following characteristics:   
- Each of the cycles d = 1, 2,…, md  –1 of the RA, assigns md pairs of rows.  This generates a 

total of  1dd mm pairs of rows.    
- The RA repeats itself after md  –1 cycles.  F&T suggest that after 10 cycles, the RA be 

restarted.  We suggest that all md  –1 cycles be used before restarting the RA.  
- The values of ai and bi are always c units apart. 
- Halfway through the sequence, the pattern repeats itself in reverse order.  If m is even, the 

cycles before and after the (md  + 1)/2th cycle repeat themselves in reserve order. 
 
RA1 differs from the RA of Sukasih and Jang (2003) in that we do not suggest that row 1 be 
skipped, suggest that the RA be repeated after 10 cycles, or require that k –1 be prime.  First, a 
row of all 1s may seem odd, but it is not a problem.  Similar to a column of all 1s in M, which 
made a dead replicate, a row of all 1s will only effect the distribution of the replicate factors.  The 
replicate factors for a unit i that is assigned row 1 (either ai = 1 or bi = 1) will have more replicate 
factors of 1.0 than otherwise.  This is not wrong; it is just how the replicate factors are distributed 
by HA.  The second difference is that we suggest repeating the assignment after m cycles, which 
is when the pattern repeat, instead of a fixed number of 10 cycles.  Lastly, we do not require that 
k-1 be prime, but note that if md = k -1 and k-1 is prime, then every cycle is guaranteed to have 
only one connected loop. 
 

3. Empirical Examples 
 
The questions of interest for the empirical examples are: 
Q1. How well does SDR perform with a subset of all the replicates needed for SDR to be 

equivalent to SD? 
Q2. Which row assignment is better, RA1 or RA2? 
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Q3.  Should we use more or less connected loops? 
 
To address these questions, we applied the SDR variance estimator to several populations.  With 
each population, we selected a sys sample of size n = 64.  Table 6 outlines the three SDR 
estimators we applied. 
 

Table 6: SDR Estimators for the Empirical Examples 
Estimator kA HA kB HB 
1  4 H4a 16 

4a4a HH   
2 16 

4a4a HH   4 
4aH  

3 64 
4a4a4a HHH   1 1 

 
With this construction, the SDR estimators had kB = 1, 4, or 16 cycles, but all used the same 

4a4a4a

~
HHHH  , which is the normal Hadamard matrix of order k

~
= 64.  For the three 

estimators of Table 6, we also varied the row assignment (RA1 and RA2) and the number of 
replicates used by each estimator is either 16, 32, 48 or 64.  With both RA1 and RA2, there is 
only one connected loop within each cycle, so estimators 1, 2, and 3 had kB = 16, 4, and 1 
connected loops, respectively.  The results also include the SD1, SD2, and the srswor variance 
estimators for comparison purposes.   
 
Data sets used.  The ‘A’ populations are borrowed from Wolter’s empirical example. For 
populations A1-A7, we generated 400 finite populations of size N = 64,000.  From each 
population, there were b = 100 possible samples of size n = 64.  The samples are indexed as i = 1, 
2, …, b = 100 and the units within each sample are indexed as j = 1, 2, …, n = 64.  Table 5 
summaries how the variable of interest ij  is generated for each of the ‘A’ populations.  

 
Table 7:  Description of Wolter’s Artificial Populations 

Population Description n b 
ij  ije  

A1 Random 20 50 0 
ije  iid N( 0, 100 ) 

A2 Linear Trend 20 50 i + (j – 1)k 
ije  iid N( 0, 100 ) 

A3 Stratification 
Effects 

20 50 j 
ije  iid N( 0, 100 ) 

A4 Stratification 
Effects 

20 50 j + 10  
 








otherwisej

jεifε
e ijij

ij ,10

10,
 

ij  iid N( 0, 100 ) 

A5 Autocorrelated 20 50 0 eij  = ρ ei-1,j + εij 

  2

1/100,0~1 Nei  

ij  iid N( 0, 100 ), ρ = 0.8 

A6 Autocorrelated 20 50 0 same as A5 with ρ = 0.4 
A7 Periodic 20 50 20 sin{2π/50 

[i + (j – 1)k]} 
ije  iid N( 0, 100 ) 

 
In addition to using the seven ‘A’ populations, we also considered the loblolly pine data from 
Gregoire and Williams (1992).  The variable of interest for the loblolly pine data is tree volume 
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and the sort variable is tree diameter at breast height (dbh).  We used the first 14,336 trees after 
first sorting by dbh making b = 224 possible samples of size n = 64.  
 
Evaluation Measures.  We evaluated the different variance estimators with the three measures 
used by Wolter: expected relative bias (ERB), relative mean squared error (RMSE), and coverage 
ratios.  The first measure, ERB, was used to examine the accuracy of the estimators and is defined 
for a specific estimator θ as  
 

    
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vv
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In our notation Ep and Em refer to the design model expectations, respectively.  With the Loblolly 
pine data, only the design expectation applies.  To examine the variance of the estimators, we also 
measured the RMSE, which is defined as 
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Results.  With respect to Q1, Table A1 shows that increasing the number of replicates had 
minimum impact on the bias.  Only with the linear trend population (A2) did the SDR estimator 
with four connected loops show a consistent trend in reduced bias as the number of replicates 
increased.  The other population and estimator combinations showed no significant decreasing or 
increasing trend as the number of replicates increased.  This is a good result, because it indicates 
that reducing the set of replicates does not increase the bias.  As expected, the RMSEs of the 
estimators in Table A2 did increase as the number of replicates decreased, but surprisingly the 
increase was relatively minor.   
 
When comparing RA1 and RA2 of Q2, the SDR estimator with four connected loops usually had 
smaller biases (Table A1) and the variances (Table A2) with RA1 as compared to RA2.  With 16 
connected loops, both the biases and variances were similar for both RA1 and RA2.  The 
evidence suggests that both the bias and variance are improved, but the impact reduces as the size 
of the connected loops decreases. 
 
Addressing Q3, Table A1 shows that the biases diminished with increasing number of connected 
loops.  The exception was the periodic population (A7).   When the RMSEs of SD1 and SD2 
were not similar as in linear trend population (A2) and the loblolly pine data, increasing number 
of connected loops also reduced the RMSEs.   This is not surprising.  The estimator with one 
large connected loop is equivalent to SD2, so it will often have the largest biases and RMSEs due 

to the term  2
641 ˆˆ yy  .  In the other direction, more connected loops effectively reduces the 

impact of the term  2
641 ˆˆ yy  , so the estimator acts more like SD1, which generally has less 

bias and variance than SD2.  
 

5. Concluding Remarks 
 
The paper provided the conditions for SDR to be equivalent to SD2 and showed how to do this 
when the sample size is both smaller and larger than the chosen Hadamard matrix.  When a 
smaller Hadamard matrix HA is used and replicates are only derived from HA, the paper showed 
how that it results in a reasonable approximation of the SD2 estimator. 
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The empirical examples also showed that using a reduced set of replicates is reasonable, since 
decreasing the number of replicates does not increase the bias of the estimates.  The examples 
also showed that using many connected loops reduces the impact of the squared difference 
between the first and last unit in the sample.  Since SD1 usually has larger biases and RMSEs 
than SD2, SDR estimators that use more rather than less connected loops will have smaller biases 
and RMSEs than SDR estimators with more connected loops. 
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Table A1: Expected Relative Bias 

 
Population 

    
kA 

 
RA 

SDR with… 
SD1 SD2 SRSWOR 16 

replicates 
32 replicates 48 replicates 64 

replicates 
A1 0.009 0.009 -0.001 4 1 0.010 0.009 0.009 0.009 

     2 0.010 0.010 0.010 0.009 
    16 1 0.009 0.008 0.010 0.009 
     2 0.009 0.010 0.010 0.009 
    64 1 or 2 0.009 0.009 0.010 0.009 
          

A2 -0.960 1.417 25.317 4 1 -0.696 -0.840 -0.888 -0.907 
     2 -0.538 -0.768 -0.845 -0.883 
    16 1 0.113 -0.270 -0.500 -0.615 
     2 1.302 0.152 -0.231 -0.423 
    64 1 or 2 1.302 1.379 1.404 1.417 
          

A3 0.015 0.327 3.462 4 1 0.049 0.031 0.025 0.021 
     2 0.070 0.040 0.030 0.025 
    16 1 0.155 0.105 0.075 0.060 
     2 0.314 0.163 0.112 0.086 
    64 1 or 2 0.314 0.324 0.327 0.327 
          

A4 0.006 0.305 3.284 4 1 0.040 0.023 0.017 0.014 
     2 0.060 0.030 0.021 0.017 
    16 1 0.144 0.095 0.066 0.052 
     2 0.291 0.146 0.098 0.075 
    64 1 or 2 0.291 0.299 0.303 0.305 
          

A5 0.064 0.065 0.055 4 1 0.063 0.063 0.063 0.065 
     2 0.068 0.066 0.066 0.065 
    16 1 0.063 0.063 0.063 0.065 
     2 0.065 0.067 0.066 0.066 
    64 1 or 2 0.065 0.066 0.066 0.065 
          

A6 0.093 0.095 0.084 4 1 0.093 0.092 0.093 0.094 
     2 0.092 0.096 0.095 0.094 
    16 1 0.099 0.095 0.094 0.094 
     2 0.093 0.094 0.094 0.093 
    64 1 or 2 0.093 0.096 0.095 0.095 
          

A7 0.112 0.115 20.641 4 1 0.105 0.069 0.112 0.253 
     2 0.004 0.004 0.073 0.310 
    16 1 0.177 0.168 0.462 0.847 
     2 0.002 0.003 0.027 1.248 
    64 1 or 2 0.002 0.003 0.030 0.115 
          

Loblolly -0.294 0.966 5.384 4 1 0.165 0.107 0.111 0.099 
     2 0.198 0.123 0.125 0.105 
    16 1 0.176 0.139 0.133 0.124 
     2 0.960 0.644 0.632 0.535 
    64 1 or 2 0.960 0.954 0.964 0.966 
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Table A2: Relative Mean Squared Errors 
 

Population 
    

kA 
 

RA 
SDR with… 

SD1 SD2 SRSWOR 16 
replicates 

32 replicates 48 replicates 64 
replicates 

A1 0.049 0.049 0.032 4 1 0.176 0.091 0.066 0.054 
     2 0.176 0.095 0.064 0.048 
    16 1 0.141 0.080 0.059 0.048 
     2 0.194 0.096 0.065 0.049 
    64 1 or 2 0.194 0.096 0.064 0.049 
          

A2 0.921 2.008 640.916 4 1 0.485 0.706 0.789 0.823 
     2 0.290 0.590 0.714 0.780 
    16 1 0.013 0.073 0.250 0.378 
     2 1.695 0.023 0.054 0.179 
    64 1 or 2 1.695 1.901 1.972 2.008 
          

A3 0.049 0.176 12.203 4 1 0.195 0.095 0.068 0.054 
     2 0.222 0.103 0.067 0.050 
    16 1 0.207 0.106 0.070 0.055 
     2 0.374 0.144 0.085 0.061 
    64 1 or 2 0.374 0.245 0.199 0.176 
          

A4 0.057 0.170 11.109 4 1 0.192 0.104 0.077 0.063 
     2 0.217 0.110 0.075 0.058 
    16 1 0.208 0.109 0.077 0.063 
     2 0.357 0.144 0.090 0.067 
    64 1 or 2 0.357 0.232 0.191 0.170 
          

A5 0.056 0.056 0.039 4 1 0.192 0.106 0.076 0.063 
     2 0.217 0.111 0.075 0.057 
    16 1 0.161 0.093 0.068 0.057 
     2 0.214 0.111 0.075 0.056 
    64 1 or 2 0.214 0.110 0.074 0.056 
          

A6 0.065 0.066 0.046 4 1 0.211 0.117 0.088 0.072 
     2 0.229 0.120 0.086 0.067 
    16 1 0.185 0.107 0.080 0.067 
     2 0.226 0.117 0.085 0.067 
    64 1 or 2 0.226 0.118 0.084 0.066 
          

A7 0.063 0.062 427.141 4 1 0.219 0.106 0.091 0.143 
     2 0.187 0.098 0.079 0.175 
    16 1 0.229 0.137 0.351 0.828 
     2 0.187 0.097 0.065 1.689 
    64 1 or 2 0.187 0.097 0.065 0.062 
          

Loblolly 0.271 2.477 32.618 4 1 0.977 0.830 0.847 0.827 
     2 1.020 0.830 0.862 0.834 
    16 1 0.843 0.848 0.829 0.840 
     2 2.632 1.700 1.717 1.501 
    64 1 or 2 2.632 2.412 2.439 2.477 
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