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Abstract
In Probability proportional to size (PPS) sampling, the sizes for nonsampled units are not required for the

usual Horvitz-Thompson or Hajek estimates, and this information is rarely included in public use data files.
Previous studies have shown that incorporating information on the sizes of the nonsampled units through
semiparamteric models can result in improved estimates. When the design variables that govern the selection
mechanism, are missing, the sample design becomes informative and predictions need to be adjusted for the
effect of selection. We present a general framework using Bayesian nonparametric mixture modeling with
Dirichlet process priors for imputing the nonsampled size variables, when such information is not available
to the statistician analyzing the data.

Key Words: Bayesian nonparametric modeling; mixture models; Dirichlet process priors; Probability
proportional to size sampling

1. Introduction

We consider probability samples from a finite population of size N < ∞, where each member
of the population has a non-zero probability of inclusion in the sample. We denote the survey (or
outcome) variable of the ith unit to be Yi; i = 1, . . . , N , the inclusion indicator variable of the
ith unit to be Ii, i = 1, . . . , N , and x = (x1, . . . , xN ) the vector of design variables. The aim of
analysis is typically to perform inference about a finite population quantity Q(Y ), from a sample
of size n, where Y = (Y1, . . . , YN ) and selection in the sample is governed by the design variables
x. The design-based and model-based paradigms comprise the two main approaches to survey
inference. The design-based or randomization approach (Cochran, 2009), which automatically
takes features of the survey design into account, is desirable for its lack of reliance on distributional
assumptions. Design-based inferences are based on the distribution of I = (I1, . . . , IN ), while
the outcome variables Y1, . . . , YN are treated as fixed. This traditional approach yields reliable
inferences for large samples, but is generally asymptotic and can be inefficient.

Model-based inference on the other hand, considers both I = (I1, . . . , IN ) and Y = (Y1, . . .
,YN ) to be random variables and inferences are based on the joint distribution of Y and I . This
approach primarily aims at predicting the survey outcome variables for the nonsampled values in
the population. Interpreting nonsampled observations as missing data, Rubin (1976) establishes
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conditions under which the selection method can be ignored for model-based inferences from the
Bayesian, likelihood or sampling theory viewpoints. He shows that under probability sampling,
inferences can be based on the distribution of Y alone, provided the design variables are included
in the model, and the distribution of I given Y is independent of the distribution of Y conditional
on the survey design variables. See Little and Zheng (2007) and Sugden and Smith (1984) for more
detailed discussions. We consider inference from a sample of size nwhich partitions the population
into two sets {S, Sc}, where S denotes the sample and Sc the population units not observed in the
sample. In particular, we consider Bayesian modeling of surveys (Ghosh and Meeden, 1997; Little,
2004), where a prior distribution is specified for the parameters θ, along with a distribution for the
population values Y conditional on θ. We focus our attention to models with non-informative
priors dominated by the likelihood, whose resulting point estimates are similar to those obtained
from frequentist superpopulation modeling. Moreover, the Bayesian methodology enables us to
perform reliable inference in an operationally simple manner.

This study focuses on Bayesian model-based inference of finite population quantities in the
absence of design information on the nonsampled units. We consider situations where the design
variables xi are only available to the analyst for the observed units in the sample. Although,
complete design information x = (xS , xSc) is necessary at the sampling phase, since the traditional
design-based methods only require knowing the design variables for the sampled units, xSc is not
recorded in many public use data sets Pfeffermann et al. (1998). (Sugden and Smith, 1984) derive
conditions where the sampling design becomes informative for model-based inference.

For the remainder of this paper, we restrict our attention to probability proportional to size
(PPS) sampling. In PPS sampling, the size measures xi, i = 1, . . . , N comprise the design vari-
ables, which are known for all units in the population at the time of sampling, and unit i is selected
with probability πi proportional to its size xi. We generally aim at estimating finite population
quantities Q(Y ) of a continuous outcome Y , from a systematic PPS sample of size n, where n is
assumed fixed, in situations where the size measures xi are only reported for the sampled cases,
but the number of nonsampled cases N −n and the population mean of x for those cases is known.

Zheng and Little (2003), showed that incorporating design information on nonsampled units
through spline models can result in improved estimates when the size variables in the entire pop-
ulation are known. These models had the advantage of yielding efficient estimates, while being
robust to model mis-specification. Chen (2009) an her co-authors extended this methodology to
estimating finite population quantiles, again when knowing the size variables in the entire popula-
tion.

Under PPS sampling, the sample design becomes informative (Sugden and Smith, 1984) when
the sizes of the nonsampled units are unknown, and hence the sizes of nonsampled units need to
be adjusted for the effects of selection. We therefore factor the joint distribution of the survey
variables and design variables as

f(x, Y ) = f(x)f(Y |x), (1)

where sampling is ignorable in f(Y |x) (Rubin, 1976), and we are therefore able to base inference
on a model for the conditional density, based on the observed units in the sample. Exploiting this
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factorization, Little and Zheng (2007) proposed estimation of the finite population total when the
size variables are only known for the sampled units, but the mean of the size variables is known in
the population of known size N , and Zangeneh and Little (2011) studied the inferential properties
of such an estimator. A Bayesian bootstrap procedure that adjusts for PPS selection was used
to predict the sizes of the nonsampled units, followed by a penalized spline model to predict the
survey outcome variables of the nonsampled units. As noted by these authors, imputing the sizes
of the nonsampled units plays a crucial role towards model-based inference of finite population
quantities.

Nonparametric methods are desirable to predict the sizes of the nonsampled units, as they are
robust to model mis-specification and impose minimal prior assumptions on the distribution of the
size variables. Moreover multiple imputation based on Bayesian principles is a powerful tool for
missing data problems, due to their ability to propagate imputation uncertainty (Little and Rubin,
1987).

In his seminal paper, Ferguson (1973), introduced a general framework for nonparametric
Bayesian inference via Dirichlet process priors, which is a distribution over the set of probabil-
ity measures. Several authors further studied theoretical properties of such models, but it was not
until after advancements in Bayesian computing, and the development of simulation algorithms
such as the Gibbs sampler (Geman and Geman, 1993; Gelfand and Smith, 1990), that this theory
gained widespread attention, due to computational feasibility.

Bayesian nonparametric mixture models have been flourishing in many areas of statistics and
is an active area of research. However, minimal attention has been payed to such methodology by
survey statisticians. We present a general Bayesian nonparametric framework, which encompasses
the Bayesian bootstrap as a special case, for imputing the sizes of nonsampled units under PPS
sampling.

2. Methods

2.1 Dirichlet Process Mixture modeling

Since the sizes for the nonsampled units are unknown, the sampling design becomes informative
Sugden and Smith (1984), and therefore the draws of the sizes of nonsampled cases need to be
corrected for the effects of selection. Our general framework is based on considering two separate
exchangeable models for the sampled and nonsampled units. We denote f(xi|i = 1, θi) to be the
distribution of the ith size variable i = 1, ..., n with underlying parameter vectors θi; i = 1, ..., n.
Note that the data points are overparametrized, making the modeling approach nonparametric (Jor-
dan, 2005). Formally, we have the following hierarchical model

Xi|θi ∼ f(xi|i = 1, θi)

θi|G ∼ G

G|α,G0 ∼ DP (α,G0),
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in which each of the (Xi, θi) pairs are independent given G. Modeling the predictive posterior
distribution of observed size variables via a Dirichlet process mixture (DPM) model, the posterior
distribution of a hypothetical future observation from the sampled units is

(Xn+1|1, θ, data) ∼
∫
P (Xn+1|θn+1)dP (θn+1|1, θ) (2)

where

(θn+1|1, θ) ∼
α

α+ n
G0(θn+1) +

α

α+ n

n∑
i=1

δθi(θn+1),

with δθi denoting a point mass at θi.
By assuming a discrete distribution for Xi and a Dirichlet/multinomial distribution for θ, we

get the Bayesian bootstrap model (Rubin, 1981; Aitkin, 2008), while a normal distribution for Xi

and a Normal/Inverse Wishart distribution for θ gives rise to a Dirichlet process mixture of normals
(DPMN) (Escobar and West, 1995).

2.2 Relationship between posterior predictive distribution of sampled and nonsampled units

Let X1, ..., XN be the set of all size variables in the population, Tx =
∑N

i=1Xi denote the popu-
lation mean of the sizes, and Ii = 1(unit i in sample) be the inclusion indicator variable of the ith
unit in the population. We denote the parameter vector corresponding to the entire population to be
θ, and define f(x, e|θ) to be the joint density of (Xi, Ii) given Tx and indexed by the parameters θ,
and let f(x|θ) = f(x, 0|θ) + f(x, 1|θ) be the marginal density of the size variables. Then, accord-
ing to the sampling design, we have f(x, 1|θ) = cxf(x|θ) for some positive constant c. Since the
(unconditional) chance of selection is n/N ,

n

N
=

∫
f(x, 1|θ)dν(x) = c

∫
xf(x|θ)dν(x) = cE(X) = c

Tx
N
.

Thus c = n/Tx and so f(x, 1|θ) = nxf(x|θ)/Tx and

f(x, 0|θ) = f(x|θ)− f(x, 1|θ) =
Tx − nx
Tx

f(x|θ). (3)

On the other hand

f(x|1, θ) =
f(x, 1|θ)
E(Ii|θ)

=
Nxf(x|θ)

Tx
, (4)

therefore from (3) and (4), we have

f(x|0, θ) =
f(x, 0|θ)

1− E(Ii|θ)
=
Tx − nx
Tx

1

1− n/N
f(x|θ) =

1

N − n

(
Tx
x
− n

)
f(x|1, θ). (5)
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Note that the conditional density described in (5) is unstable for values of x close to zero. To
overcome this issue, and due to the positivity of size variables, we model the natural logarithms of
the size variables instead. Thus, (5) can be re-expressed as

f̃(x?|0, θ) =
1

N − n

(
Tx
ex?
− n

)
f̃(x?|1, θ), (6)

where x? = log(x), and f̃(x?|1, θ) is modeled as a DPM as explained above.

2.3 Imputing size variables for nonsampled units using Dirichlet process mixture of normals

We follow the approach of Escobar and West (1995), which models f̃(x?|1, θ) as a Dirichlet pro-
cess mixture of normals with unknown means, unknown variances, unknown number of clusters,
and unknown precision α . We model

Xi|µi,Σi ∼ N(µi,Σi), i = 1, ..., n

(µi,Σi)|G ∼ G

G|α,G0 ∼ DP (αG0),

with the baseline distribution chosen as the conjugate normal/inverse Wishart prior for the mean
and covariance matrix,

G0 = N

(
µ|m1,

1

k0
Σ

)
IW (Σ|ν1, ψ1).

With calculations similar to those presented in Escobar and West (1995), we find the posterior
predictive distribution of a hypothetical future observation from the sampled units to be

(Xn+1|1, θ) ∼
α

α+ n
Tν1+1−p(m1,M) +

1

α+ n

K∑
j=1

njN(µ?j ,Σ
?
j ), (7)

where Tν1+1−p(m1,M) denotes a multivariate t-distribution with ν1 + 1− p degrees of freedom,
where p is the dimension of x (in this case p = 1), mode m1 and scale factor M = 1+k0

(ν1−p+1)k0
ϕ1.

Also, µ?j and Σ?
j , j = 1 . . .K are distinct values of the cluster means and variances under the

normal/inverse Wishart conjugate priors for G0, where K < n.
Combining (5) and (7), we have

(X?
n+1|0, θ) ∼

1

N − n

(
Tx
ex?
− n

)
α

α+ n
Tν1+1−p(m1,M) (8)

+
1

N − n

(
Tx
ex?
− n

)
1

α+ n

K∑
j=1

njN(µ?j ,Σ
?
j ).
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Therefore, the probability density function of the sizes for the logarithm of the nonsampled values
is

f(x?|0, θ) =
1

N − n
1

α+ n

K∑
j=1

nj(2π)−p/2|Σ?
j |−1/2

(
Tx
ex?
− n

)
e−

1
2

(x?−µ?j )tΣ?j
−1(x?−µ?j )(9)

+
1

N − n
α

α+ n

(
Tx
ex?
− n

)
Γ(ν1+1

2 )

Γ(p2)

1

(ν1 + 1− p)p/2πp/2
|M |−1/2

×
(

1 +
1

ν1 + 1− p
+ (x? −m1)tM−1(x? −m1)

)− ν1+1
2

.

We use importance sampling to draw random variables with density given in (9). This procedure is
summarized in Algorithm 1:

Algorithm 1 DPMN model for imputing nonsampled sizes.
1. Fit a DPM mixture of normals model to the logarithms of the observed size variables XS .
2. For each of θ(1), ..., θ(D) obtained from fitting the model in step 1.

2.1. Compute the density given in Equation (9).
2.2. Use importance sampling to draw N − n random variables x?(d)

n+1, ...x
?(d)
N , with density (9).

2.3. Exponentiate the draws x?(d)
n+1, ...x

?(d)
N , to obtain draws of the nonsampled units.

3. Simulation Study

We performed a simulation study to access the performance of our proposed algorithm for different
choices of ν1, as well as in comparison with the adjusted Bayesian bootstrap for PPS (Little and
Zheng, 2007; Zangeneh and Little, 2011). We considered two variants of each model: (A) unscaled
(B) predictions of size variables scaled, so that they sum to their known population total. We
simulated the size variables from a gamma distribution with shape parameter 2 and rate parameters
1 and 2. We also considered populations of size 250, 500 and 1, 000 and sampling fractions of 10
and 20 percent, and took systematic PPS samples of size n = r × N in each iteration. Density
estimation for observed size variables was performed using the method of Escobar and West (1995)
for fitting the Dirichlet process mixture of normals implemented in the R package DPpackage
(Jara et al., 2011).

In order to asses how well each imputation method captures the shape of the distribution, we
augmented the drawn nonsampled sizes to the true sampled sizes and calculated summary measures
for each set of draws; a total of 100 sets of draws were recorded in each iteration. The B methods
all scale the predicted sizes to average to their true mean in the population, therefore these methods
all estimate the population mean without error. Moreover, since PPS sampling oversamples larger

Section on Survey Research Methods – JSM 2011

3434



units, the maximum of the size variables will be captured in the sample with very high probability,
and hence the Bayesian bootstrap estimates the maximum with very high precision, as it assigns
point masses to the observed data (Zangeneh and Little, 2011). We therefore restrict our attention
to the estimates of the population quantiles and the population variance. Table 1 shows the root
mean square errors for the Bayes estimates of the quantiles and variance under square error loss for
the population of sizes generated from a Gamma distribution with shape parameter 2 and scale pa-
rameter 1, Gamma(2, 1). Table 2 shows the same summaries for the sizes following a Gamma(2, 2)
distribution. Finally, Table 3 displays the coverage and average width of 95% credible intervals of
the estimated population quantiles and variance for the Gamma(2, 2) population of size N = 250,
with a sampling rate of 20%.

Based on our simulations, we see that the Dirichlet process mixture of normals performs better
at estimating the population quantiles when the population and sample sizes are small. However,
as the sample size increases, the scaled Bayesian bootstrap begins to show better performance.
We also notice that scaling significantly improves the estimates of the quantiles, but may distort
the estimate of the variance. Finally, we do not see the degrees of freedom of the distribution of
the underlying base measure to play a significant role in estimating the population quantiles and
variance.

4. Discussion

In this paper, we presented a general framework to impute the nonsampled size variables in PPS
sampling using Bayesian nonparametric mixture models. We focused on two special cases of such
models; the Dirichlet process mixture of normals and the Bayesian bootstrap, and compared their
performances in simulation studies. The Bayesian bootstrap makes weaker parametric assumptions
on the base distribution G, and hence is superior in large samples, where enough data is available.
Our simulations also confirmed that, for large samples, the Bayesian bootstrap performs as well
as, and sometimes better than, the DPMN models; however for small sample scenarios, the DPMN
performs better in imputing the nonsampled size variables. The Bayesian bootstrap is appealing
due to its simplicity and computational efficiency, however considering the current computational
advancements in Bayesian nonparametrics, other forms of DPMs, such as the DPMN model studied
in this paper, could also be integrated in survey inference.
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Table 1: Root mean square errors of the posterior means of quantiles and variance from 

their true population value (as a percentage of the true population quantity) for the 

Gamma distribution with shape parameter 2 and rate parameter 1. 

 

  

BB DPMN.5 DPMN.10 DPMN.20 

  

A B A B A B A B 

N = 250  

r = 0.1 

q.05 56.12 45.86 37.30 24.41 40.08 27.75 44.69 31.45 

q.25 26.02 11.35 22.79 9.36 23.85 10.82 25.78 12.34 

q.50 19.02 5.04 16.47 3.86 16.22 3.21 16.42 2.51 

q.75 13.14 6.91 14.58 6.75 14.41 7.21 13.96 7.48 

q.95 11.17 7.89 10.69 5.83 10.72 5.91 10.79 6.12 

var 25.61 25.38 19.88 23.94 20.26 21.52 21.68 21.79 

N = 250 

r = 0.2 

q.05 25.64 22.62 13.45 9.04 14.26 10.18 16.65 11.86 

q.25 12.13 9.40 10.27 5.84 10.53 6.15 11.82 6.90 

q.50 7.05 3.70 7.77 2.68 7.55 2.58 7.69 2.39 

q.75 9.77 3.80 7.69 2.08 7.71 1.91 8.22 1.87 

q.95 7.20 6.92 6.37 5.21 6.27 4.90 6.43 4.61 

var 16.95 17.01 17.31 15.66 15.95 15.85 13.96 13.89 

N = 500 

r = 0.1 

q.05 32.86 28.06 18.92 14.07 21.72 16.62 25.32 19.70 

q.25 12.61 8.83 10.24 5.58 10.92 6.18 12.17 6.96 

q.50 7.93 3.50 6.45 1.71 6.59 1.96 7.26 2.40 

q.75 6.43 5.45 4.38 3.21 3.83 3.40 3.92 3.82 

q.95 4.01 5.65 3.17 4.82 2.70 4.50 2.68 4.22 

var 10.61 19.35 11.51 18.24 10.80 16.77 10.50 16.62 

N = 500 

r = 0.2 

q.05 21.62 20.13 20.74 17.31 20.90 17.90 23.10 19.29 

q.25 9.98 7.00 8.22 4.24 8.31 4.35 8.97 4.74 

q.50 6.73 3.36 6.00 1.92 6.28 2.07 6.59 2.10 

q.75 4.97 3.36 4.10 2.80 4.39 2.88 4.20 3.01 

q.95 2.83 3.87 3.85 4.00 3.63 3.53 3.63 3.21 

var 12.22 13.88 11.04 12.87 11.38 12.56 11.99 13.54 

N =1000 

r = 0.1 

q.05 24.47 21.03 17.85 13.03 19.09 14.25 20.11 15.11 

q.25 9.99 5.75 11.02 5.87 11.37 6.29 11.83 6.64 

q.50 7.96 3.12 7.19 1.70 7.30 1.79 7.27 1.65 

q.75 5.31 3.53 5.52 3.54 5.44 3.60 5.13 3.67 

q.95 4.58 3.76 4.22 3.66 4.16 3.68 3.77 3.41 

var 11.25 14.48 10.36 13.93 11.08 14.62 10.72 14.38 

N =1000 

r = 0.2 

q.05 12.62 11.36 16.01 13.18 16.36 13.27 16.26 13.54 

q.25 5.64 2.71 7.59 3.86 7.97 4.00 7.95 4.25 

q.50 6.10 2.46 5.18 0.90 5.28 0.89 5.43 1.12 

q.75 3.87 1.71 3.97 2.09 3.86 2.14 3.87 2.17 

q.95 2.89 2.14 2.80 1.72 2.90 1.69 2.77 1.57 

var 4.94 5.64 5.49 6.76 5.47 6.85 6.04 7.34 
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Table 2: Root mean square errors of the posterior means of quantiles and variance from 

their true population value (as a percentage of the true population quantity) for the 

Gamma distribution with shape parameter 2 and rate parameter 2. 

 

  

BB DPMN.5 DPMN.10 DPMN.20 

  

A B A B A B A B 

N = 250  

r = 0.1 

q.05 28.26 24.90 10.25 8.83 12.37 9.93 14.45 12.06 

q.25 9.38 5.75 7.24 4.64 8.08 4.74 8.53 5.48 

q.50 6.18 3.70 5.85 1.95 6.49 2.09 6.61 2.51 

q.75 6.31 4.39 7.41 4.23 7.31 4.77 6.88 5.10 

q.95 9.87 7.28 8.16 5.76 7.91 4.99 8.15 5.15 

var 24.38 22.70 33.12 32.63 27.34 25.68 23.89 19.77 

N = 250 

r = 0.2 

q.05 20.08 19.18 12.33 8.68 12.81 9.42 15.37 11.60 

q.25 6.55 3.49 7.26 1.82 6.97 1.76 7.37 2.18 

q.50 6.99 2.01 6.75 0.80 6.47 0.79 6.75 0.80 

q.75 8.36 3.59 6.93 2.42 6.79 2.57 6.72 2.83 

q.95 3.81 3.93 4.88 3.49 4.58 3.14 4.41 2.56 

var 12.78 10.99 60.56 26.02 10.25 8.42 11.70 10.46 

N = 500 

r = 0.1 

q.05 13.19 10.91 7.59 6.65 6.23 5.23 6.71 5.21 

q.25 5.83 3.58 5.80 3.86 6.21 4.32 7.20 5.15 

q.50 4.88 4.10 4.80 3.01 4.08 2.53 3.89 2.38 

q.75 4.69 2.85 3.95 0.89 3.59 1.01 3.58 1.20 

q.95 7.89 6.68 5.49 3.94 5.15 3.76 5.44 4.22 

var 16.93 15.03 19.03 17.10 16.17 14.31 16.64 14.76 

N = 500 

r = 0.2 

q.05 7.30 6.06 13.31 13.02 12.17 12.09 10.84 11.05 

q.25 5.44 2.76 4.91 2.50 4.99 2.43 4.98 2.34 

q.50 5.19 2.98 4.41 2.23 4.76 2.29 4.90 2.34 

q.75 3.02 2.08 2.92 1.78 3.15 1.67 3.19 1.52 

q.95 3.81 4.80 2.26 3.22 2.48 3.39 2.23 3.25 

var 8.64 9.98 9.03 10.25 8.87 10.01 8.23 9.23 

N =1000 

r = 0.1 

q.05 6.93 4.85 9.89 8.06 9.55 7.43 8.50 6.23 

q.25 7.44 3.87 6.57 2.60 6.98 2.92 7.35 3.29 

q.50 5.52 1.94 5.08 0.94 5.25 1.09 5.41 1.19 

q.75 4.70 2.06 4.00 0.74 4.07 0.70 4.09 0.63 

q.95 4.41 4.49 4.37 4.04 4.06 3.60 3.92 3.14 

var 7.62 10.04 6.98 9.59 6.54 9.39 6.61 9.26 

N =1000 

r = 0.2 

q.05 7.81 5.19 8.43 6.47 7.96 6.13 7.75 5.56 

q.25 6.72 3.33 5.66 2.38 5.39 2.18 5.70 2.20 

q.50 5.03 1.86 4.73 1.65 4.55 1.68 4.94 1.77 

q.75 2.86 1.72 2.89 1.20 2.78 1.05 2.94 1.04 

q.95 2.80 3.77 2.03 2.87 1.95 2.76 1.97 2.77 

var 5.98 8.17 4.99 7.61 4.73 7.07 4.79 7.29 
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Table 3: Coverage and average width (AW) of 95% credible intervals of estimates of the 

quantiles and variance of the size population for the Gamma(2,2) population with  

N = 250 and r= .1 

 

  

BB DPMN.5 DPMN.10 DPMN.20 

  

A B A B A B A B 

q.05 
coverage 0.56 0.82 1.00 0.98 1.00 1.00 1.00 0.98 

AW 0.41 0.45 0.45 0.34 0.45 0.33 0.43 0.31 

q.25 
coverage 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.98 

AW 0.68 0.53 0.51 0.27 0.48 0.25 0.46 0.24 

q.50 
coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AW 0.83 0.53 0.57 0.18 0.53 0.17 0.51 0.17 

q.75 
coverage 1.00 1.00 1.00 0.94 0.98 0.96 0.98 0.82 

AW 1.02 0.67 0.68 0.21 0.63 0.21 0.61 0.21 

q.95 
coverage 0.92 0.98 1.00 0.98 1.00 0.98 1.00 0.94 

AW 1.48 1.37 1.13 0.84 1.02 0.80 0.94 0.74 

var 
coverage 0.98 0.98 1.00 0.98 0.98 0.98 1.00 1.00 

AW 0.55 0.55 0.59 0.64 0.54 0.55 0.47 0.48 

 

Section on Survey Research Methods – JSM 2011

3440


