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We propose a new method of handling missing values in longitudinal data under the lin-
ear mixed model assumption. The new method combines the complete-data linear mixed model
with benchmark equations that involve both the complete and incomplete data. Simulation stud-
ies show that the new method improve the efficiency of inference when a significant proportion
of the data are missing.
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1 Introduction

Mixed linear models are widely used in longitudinal studies (e.g., Laird & Ware 1982, Diggle
et al. 1996). It is not uncommon that some of the data, either the responses or the covariates, are
missing at certain time points. Standard treatments of the missing values include the throwing-out
strategy, in which an entire record (including the response and covariates) is thrown out if at least
one value is missing, imputation and modeling the missing data mechanism. See, for example,
Diggle et al. (1996, chapter 13), Little and Rubin (2002). However, with the exception of the
throwing-out method, which is obviously very inefficient, these strategies are not simple and often
require knowledge, and assumptions, beyond the linear mixed models.

In this paper, we propose a simple approach to missing values in longitudinal studies incorpo-
rating the linear mixed models. Suppose that for theith subject,i = 1, . . . ,m, the datayit, xitk, 1 ≤
k ≤ p are supposed to be collected at the time pointst ∈ Ti, whereyit is the response and
xitk, 1 ≤ k ≤ p are the covariates. However, due to the missing data, only a subset of the sup-
posed values are collected. Our basic model is a (conditional) linear mixed model that assumes
that, given the complete covariatesxitk, 1 ≤ i ≤ m, t ∈ Ti, 1 ≤ k ≤ p, the complete responses
yit, 1 ≤ i ≤ m, t ∈ Ti satisfies

yit = x′itβ + z′itui + eit, (1)

wherexit = (xitk)1≤k≤p, β is a vector of unknown fixed effects,zit is a knownb × 1 vector,ui is
a b-dimensional vector of subject-specific random effects, andeit is an error. Writeyi = (yit)t∈Ti ,
Xi = (x′it)t∈Ti , Zi = (z′it)t∈Ti andei = (eit)t∈Ti . Then, (1) can be expressed as

yi = Xiβ + Ziui + ei, (2)

i = 1, . . . ,m. It is assumed that theui’s and ei’s are independent withui ∼ N(0, Gi) and
ei ∼ N(0, Ri), where the covariance matricesGi andRi depend on some vectorψ of variance
components. The expression (2) and the assumptions below are the same as the longitudinal linear
mixed model discussed in Datta and Lahiri (2000) and Jiang (2007).

Due to the missing data, only some of the equations (1) are practically usable—namely, those
in which none of theyit, xitk, 1 ≤ k ≤ p are missing. The question is how to use the data more
efficiently in case some of theyit, xitk, 1 ≤ k ≤ p are missing. Here, we are not interested in the
cases in which no data is available, so assume that at least one of the recordsyit, xitk, 1 ≤ k ≤ p
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is collected. As noted, throwing out the entire records because of one or more missing values is
inefficient. To make more efficient use of the data we make the following assumption that has
something to do with the marginal distributions of the responses and covariates. LetIt,0 = {1 ≤
i ≤ m, yit is observed} andIt,k = {1 ≤ i ≤ m,xitk is observed}, 1 ≤ k ≤ p, andmt,k = |It,k|
(hereafter|S| denotes the cardinality of the setS), 0 ≤ k ≤ p. Define

ȳ·t =
{

0, if mt,0 = 0,
m−1

t,0

∑
i∈It,0

yit, if mt,0 > 0,

x̄·tk =

{
0, if mt,k = 0,
m−1

t,k

∑
i∈It,k

xitk, if mt,k > 0, 1 ≤ k ≤ p. (3)

Furthermore, letIt = ∩p
k=0It,k andmt = |It|. It is the subset of indexesi such that there are no

missing values amongyit, xitk, 1 ≤ k ≤ p. Defineȳa
·t, x̄

a
·tk, 1 ≤ k ≤ p the same way as (3) except

with It,k andmt,k replaced byIt andmt, 0 ≤ k ≤ p, respectively. Here the superscript a refers to
“all-observed”. LetT denote the set of indext such that at least one of the valuesyit, xitk, 1 ≤ k ≤ p
is not missing. We are not interested in the cases in which no observation, either the response or
the covariates, is available, so assume thatT 6= ∅. Let Ta = {t ∈ T,mt 6= 0}. The additional
assumption we make is that

E

(
1
|Ta|

∑
t∈Ta

ȳa
·t

)
= E

(
1
|Ta|

∑
t∈Ta

ȳ·t

)
,

E

(
1
|Ta|

∑
t∈Ta

x̄a
·tk

)
= E

(
1
|Ta|

∑
t∈Ta

x̄·tk

)
, 1 ≤ k ≤ p; (4)

in other words, the mean of the all-observed average is equal to the mean of the observed average
for the response and each covariate. Note that, here,|Ta| is considered a random variable, so cannot
be canceled from the two sides of the equations.

To see that (4) is a reasonable assumption, consider the following special case. LetMit be the
(p+1)-dimensional vector whose first component is1 if yit is missing, and0 otherwise, and whose
(k + 1)th component is1 is xitk is missing, and0 otherwise,1 ≤ k ≤ p. Mit is the vector of
indicators for the missing values for the giveni andt. LetM denote the arrayMit, 1 ≤ i ≤ m, t ∈
Ti. Suppose that the following hold:

(i) The complete data is independent ofM .
(ii) The marginal means ofyit andxitk, 1 ≤ k ≤ p are finite and do not depend oni.

It is shown in Appendix that conditions (i) and (ii) imply (4).
Now, let us see how (4) can help. LetSa = {(i, t) : t ∈ Ta, i ∈ It}. For each(i, t) ∈ Sa, (1)

holds, whereyit, xitk, 1 ≤ k ≤ p are all observed. It follows that

1
|Ta|

∑
t∈Ta

ȳa
·t =

1
|Ta|

∑
t∈Ta

1
mt

∑
i∈It

yit

=
1
|Ta|

∑
t∈Ta

1
mt

∑
i∈It

(
p∑

k=1

xitkβk + z′itui + eit

)

=
p∑

k=1

(
1
|Ta|

∑
t∈Ta

x̄a
·tk

)
βk + · · · , (5)
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where· · · has mean zero. Thus, by taking expectations on both sides, and observing (4), we get

E

(
1
|Ta|

∑
t∈Ta

ȳ·t

)
=

p∑
k=1

E

(
1
|Ta|

∑
t∈Ta

x̄·tk

)
βk. (6)

Equation (6) leads to a method-of-moments equation, by removing the expectation signs, that is,

1
|Ta|

∑
t∈Ta

ȳ·t =
p∑

k=1

(
1
|Ta|

∑
t∈Ta

x̄·tk

)
βk. (7)

Although (7) is similar to (5) without the term· · · , the difference is that the averages inside the
summations are now taken over larger data sets. The factor|Ta|−1 can now be canceled from both
sides of the equation. The result is what we call abenchmarkequation, or simply benchmark:∑

t∈Ta

ȳ·t =
p∑

k=1

(∑
t∈Ta

x̄·tk

)
βk. (8)

The idea is to fit the linear mixed model (1) for the all-observed data, that is, with(i, t) ∈ Sa,
subject to the benchmark (8). This may not work, however, ifp = 1 (because thenβ is completely
determined by the benchmark). Nevertheless, in most applications we havep > 1.

A simple numerical procedure is developed in section 2 for fitting the linear mixed model sub-
ject to the benchmark. In section 3 we discuss estimation of the variations of the benchmarked
maximum likelihood estimators. In section 4 we carry out a simulation study to investigate the gain
of efficiency by the benchmarking. Technical derivations are deferred to Appendix.

2 Computation

Let I denote the subset of indexesi such that(i, t) ∈ Sa for at least onet, andTa,i = {t ∈ Ti :
(i, t) ∈ Sa}, i ∈ I, so thatSa = ∪i∈I{(i, t) : t ∈ Ta,i}. Defineỹi = (yit)t∈Ta,i , X̃i = (x′it)t∈Ta,i ,
Z̃i = (z′it)t∈Ta,i andẽi = (eit)t∈Ta,i . Then we have the all-observed version of (2):

ỹi = X̃iβ + Z̃iui + ẽi, i ∈ I, (9)

whereβ and theui’s are the same as in (2), thẽei’s are independent with̃ei ∼ N(0, R̃i), R̃i being
dependent onψ, and theui’s and ẽi’s are independent, conditional on the complete covariates.
It follows that, conditional on the complete covariates,ỹ = (ỹi)i∈I ∼ N(X̃β, Ṽ ), whereX̃ =
(X̃i)i∈I andṼ = diag(Ṽi, i ∈ I) with Ṽi = Z̃iGiZ̃

′
i + R̃i. The conditional log-likelihood function

based oñy is given by

l = −1
2
{n log(2π) + log(|Ṽ |) + (ỹ − X̃β)′Ṽ −1(ỹ − X̃β)}

= −n
2

log(2π)− 1
2

∑
i∈I

{log(|Ṽi|) + (ỹi − X̃iβ)′Ṽ −1
i ((ỹi − X̃iβ)}, (10)

wheren = dim(ỹ). The estimators of the parametersβ andψ are obtained by maximizing (10)
subject to the benchmark constraint (8). Writeg = (gk)1≤k≤p with gk =

∑
t∈Ta

x̄·tk andh =∑
t∈Ta

ȳ·t. Using the method of Lagrange multipliers, we consider

L = l + λ(g′β − h), (11)
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whereλ is the Lagrange multiplier, and find a stationary point ofL without a constraint. To do the
latter, we first let∂L/∂β = X̃ ′Ṽ −1ỹ − X̃ ′Ṽ −1X̃β + λg = 0. This gives

β = (X̃ ′Ṽ −1X̃)−1(X̃ ′Ṽ −1ỹ + λg), (12)

assuming existence of the inverse matrices. We then plug (12) into the equation∂L/∂λ = g′β−h =
0 to obtain a solution forλ as a function ofψ:

λ̃ =
h− g′(X̃ ′Ṽ −1X̃)−1X̃ ′Ṽ −1ỹ

g′(X̃ ′Ṽ −1X̃)−1g
. (13)

We then plug (13) back to (12) to obtain a solution forβ as a function ofψ:

β̃ = (X̃ ′Ṽ −1X̃)−1(X̃ ′Ṽ −1ỹ + λ̃g). (14)

Finally, we replaceβ by β̃ in the equations

∂l

∂ψr
= −1

2

{
tr

(
Ṽ −1 ∂Ṽ

∂ψr

)
− (ỹ − X̃β)′Ṽ −1 ∂Ṽ

∂ψr
Ṽ −1(ỹ − X̃β)

}
= 0,

1 ≤ r ≤ q, whereψr is therth component ofψ andq = dim(ψ), to obtainq equations that only
involveψ. By solving the latter equations we obtain the estimator ofψ, denoted bŷψ. The estimator
of β, β̂, is obtained by replacingψ in (14) byψ̂ (note that̃λ also depends onψ). β̂ andψ̂ are called
the benchmarked maximum likelihood estimators (BMLE). An estimator ofλ, λ̂, is also obtained
by replacingψ by ψ̂ in (13). Althoughλ̂ may not be of direct interest, it is needed in the estimation
of the standard errors. See the next section.

3 Estimation of variation

Recall that the BMLE,̂θ = (β̂,′ ψ̂′, λ̂)′, is a solution to∂L/∂θ = 0. It is easy to show thatL can
be expressed asL = c+

∑m
i=1 Li, wherec is a constant and

Li = λ
∑
t∈Ta

{
p∑

k=1

βkm
−1
t,k1(i∈It,k)xitk −m−1

t,0 1(i∈It,0)yit

}

−1
2
1(i∈I){log(|Ṽi|) + (ỹi − X̃iβ)′Ṽ −1

i (ỹi − X̃iβ)}. (15)

We assume that the following assumptions hold in addition to assumptions (i) and (ii) in section 1:
(iii) (yi, Xi), i = 1, . . . ,m are independent.
(iv) The total number of the time pointst is bounded.

By arguments similar to White (1982), it can be shown that, under assumptions (i)—(iv) and some
additional regularity conditions (identifiability, moments, etc.), the BMLE is root-m consistent in
the sense that

√
m(θ̂− θ) is bounded in probability, whereθ = (β′, ψ′, λ)′ is the unique solution to

E(∂L/∂θ) = 0 so thatβ andψ are the true parameters for the linear mixed model. In the following,
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partial derivatives such as∂L/∂θ are understood as evaluated atθ. By Taylor expansion, we have

0 =
∂L

∂θ

∣∣∣∣
θ̂

≈ ∂L

∂θ
+
(
∂2L

∂θ∂θ′

)
(θ̂ − θ)

≈ ∂L

∂θ
+ E

(
∂2L

∂θ∂θ′

)
(θ̂ − θ).

Hereafter,≈ means that the remaining term is of lower order, in a suitable sense. Thus, we have
E(∂2L/∂θ∂θ′)(θ̂ − θ) ≈ −∂L/∂θ, or

θ̂ − θ ≈ −
{

E
(
∂2L

∂θ∂θ′

)}−1
∂L

∂θ
. (16)

Write Σ = Var(θ̂). It follows by (16) that

Σ ≈
{

E
(
∂2L

∂θ∂θ′

)}−1

Var
(
∂L

∂θ

){
E
(
∂2L

∂θ∂θ′

)}−1

. (17)

It is shown in Appendix that the right side of (17) can be further approximated by

Σ̂ =

(
m∑

i=1

Q̂i

)−1( m∑
i=1

P̂i

)(
m∑

i=1

Q̂i

)−1

, (18)

whereP̂i = p̂ip̂
′
i with p̂i = (∂Li/∂θ)|θ=θ̂ andQ̂i = (∂2Li/∂θ∂θ

′)|θ=θ̂. Detailed expressions for
the partial derivatives are also given in Appendix. We call (18) the “sandwich” estimator ofΣ.

It should be pointed out that the “breads” of the “sandwich” are well defined, that is, the matrix∑m
i=1 Q̂i is nonsingular, at least asymptotically. From the expressions (A.4) in Appendix, we have

E
(
∂2L

∂θ∂θ′

)
= −

 A 0 C
0 B 0
C ′ 0 0

 ,

whereA,B are nonsingnular matrices andC is a nonzero vector. It follows that I 0 0
0 I 0

−C ′A−1 0 I

E
(
∂2L

∂θ∂θ′

) I 0 −A−1C
0 I 0
0 0 I

 = −

 A 0 0
0 B 0
0 0 −C ′A−1C

 ,

which is nonsingular; therefore,E(∂2L/∂θ∂θ′) is nonsingular. In fact, we have

lim inf λmin

{
1
m

E
(
∂2L

∂θ∂θ′

)}
> 0

(λmin denotes the smallest eigenvalue), under regularity conditions. Then, because
∑m

i=1 Q̂i ≈
E(∂2L/∂θ∂θ′) (see subsection A.3),

∑m
i=1 Q̂i is nonsingular asymptotically.

In particular, the standard error ofβ̂k is obtained by the square root of thekth diagonal element
of Σ̂, 1 ≤ k ≤ p, and the standard error of̂ψs is obtained by the square root of the(p+s)th diagonal
element ofΣ̂, 1 ≤ s ≤ q.
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Table 1:Simulated Mean, Variance and MSE: Scenario (1)

Parameter True Mean Variance MSE
Value AMLE BMLE AMLE BMLE AMLE BMLE

β0 0.20 0.189 0.192 0.227 0.211 0.227 0.211
β1 0.10 0.099 0.098 0.158 0.156 0.158 0.156
β2 0.20 0.200 0.201 0.168 0.167 0.168 0.167
β3 0.50 0.518 0.511 0.300 0.285 0.300 0.285
β4 0.50 0.496 0.495 0.080 0.078 0.080 0.078
σ2 0.25 0.212 0.223 0.116 0.114 0.117 0.115
τ2 0.09 0.079 0.079 0.032 0.032 0.032 0.032

4 Simulation studies

We first compare finite sample performance of the BMLE with that of the “all-observed” max-
imum likelihood estimator (AMLE) in terms of the mean squared error (MSE). The AMLE is ob-
tained by using only the complete data records, that is, those in which there are no missing values for
either the response or the covariates (in other words, the response and covariates are all observed).
Consider the following linear mixed model:

yit = β0 + β1xit1 + β2xit2 + β3xi + β4xit4 + ui + eit, (19)

i = 1, . . . ,m, t = 1, 2, 3, wherexit1 and xit2 are two indicators of the time points such that
xitk = 1(t=k+1), k = 1, 2 (t = 1, 2, 3 correspond to the baseline measure and two measures at
different time points after the treatment);xi, i = 1, . . . ,m are generated independently from a
Bernoulli(0.5) distribution, thexit4’s are generated independently from aN(0, 1) distribution and
are independent with thexi’s; theui’s andeit’s are generated independently such thatui ∼ N(0, σ2)
and eit ∼ N(0, τ2). The true parameters areβ0 = 0.2, β1 = 0.1, β2 = 0.2, β3 = 0.5, β4 =
0.5, σ = 0.5 and τ = 0.3. Next, we generate, independent from the data, the missing value
indicators. These are expressed asMi andMitk, i = 1, . . . , 25, t = 1, 2, 3, k = 0, 4 such that
Mi ∼ Bernoulli(p2) andMitk ∼ Bernoulli(pk), k = 0, 4. The responseyit is missing iffMit0 = 1;
xi is missing iffMi = 1; andxit4 is missing iffMit4 = 1. (The reason that there are noMit1 and
Mit2 is becausexit1 andxit2 are always observed; alsoMit3 = Mi becausexit3 = xi, which does
not depend ont.) Two scenarios of thepk’s are considered: (1)p2 = 0.1, p0 = p4 = 0.3; (2)
p2 = 0.2, p0 = p4 = 0.5. The simulated means, variances and MSEs for the parameter estimation
based on500 simulations are reported in Tables 1 and 2. It is seen that the gain of BMLE over AMLE
much more substantial under Scenario (2) than under Scenario (1). This makes sense because more
missing data are expected when thep’s are larger; therefore, more information can be recovered by
using the BMLE. In particular, under Scenario (2), the percentage MSE reduction by BMLE is in
the range of 30-50% for most of theβ parameters. Another interesting observation is that there is
apparently no gain by BMLE for estimatingτ2 under either scenarios.

We next compare the performance of AMLE and BMLE in terms of testing the hypothesis
H0 : β3 = 0.5 versusH1 : β3 > 0.5. The covariate corresponding toβ3 is an indicator, which may
be the characteristic of treatment and control in practice. Thus, such a test is of practical interest.
A standard test statistic is the t-statistic, obtained by dividing the difference between the estimator
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Table 2:Simulated Mean, Variance and MSE: Scenario (2)

Parameter True Mean Variance MSE
Value AMLE BMLE AMLE BMLE AMLE BMLE

β0 0.20 0.164 0.172 0.497 0.369 0.498 0.370
β1 0.10 0.139 0.132 0.511 0.360 0.512 0.361
β2 0.20 0.235 0.230 0.354 0.343 0.355 0.344
β3 0.50 0.536 0.506 0.685 0.470 0.686 0.470
β4 0.50 0.492 0.499 0.269 0.199 0.269 0.199
σ2 0.25 0.177 0.189 0.153 0.146 0.158 0.149
τ2 0.09 0.100 0.101 0.065 0.066 0.065 0.066

Table 3:Size and Power of (Large Sample) t-Test

Scenario Size Power
AMLE BMLE AMLE BMLE

(1) 0.066 0.056 0.846 0.832
(2) 0.086 0.050 0.630 0.562

and value of the parameter underH0 by the standard error (SE) of the estimator. The SE is the
square root of the corresponding diagonal element of the estimated asymptotic covariance matrix
(EACM). For both AMLE and BMLE, the EACM is in the form of (18), except that theLi’s are
different. TheLis for BMLE is given by (15), while theLi for AMLE is given by (15) without the
first term (the one multiplied byλ). The t-statistic is then compared with the asymptotic critical
value of the standard normal distribution. As the test is appropriate under large sample, we increase
the number of subjects tom = 50. We consider the size and power of the t-test under the level
of significanceα = 0.05. The power is considered at the alternativeβ3 = 1.0, with the rest of
the parameters unchanged. It appears that the BMLE t-test is more accurate in size, although its
power is somewhat lower at the alternative. It may be argued, however, that the higher power of
the AMLE t-test is due to its overrejecting. To see this, we adjust the critical values of the AMLE
t-test so that it has the same sizes as the BMLE t-test, that is, 0.056 under Scenario (1) and 0.050
under Scenario (2). The adjusted critical values are 1.754 and 1.977, respectively (as compared to
the nominal critical value of 1.645). With the adjusted critical values, the simulated powers of the
AMLE t-test drop to 0.814 and 0.516, under (1) and (2), which are both lower than the simulated
powers of the BMLE t-test.

Also note that both tests have higher power under Scenario (1) than under Scenario (2); and
the difference between the two tests is more significant under Scenario (2) than under Scenario (1).
These are, of course, reasonable.

Research is underway to implement our method in real-data applications.
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Appendix

A.1 That conditions (i) and (ii) of section 1 imply (4)

We haveE(|Ta|−1
∑

t∈Ta
ȳa
·t) = E{E(|Ta|−1

∑
t∈Ta

ȳa
·t|M)} = E{|Ta|−1

∑
t∈Ta

E(ȳa
·t|M)},

and, similarly, fort ∈ Ta we haveE(ȳa
·t|M) = m−1

t

∑
i∈It

E(yit|M) = µt0, whereµt0 = E(yit) =
E(yit|M). Thus, we haveE(|Ta|−1

∑
t∈Ta

ȳa
·t) = E(|Ta|−1

∑
t∈Ta

µt0). On the other hand, note
thatmt 6= 0 impliesmt,0 > 0, thus, by a similar argument, it can be shown thatE(ȳ·t|M) = µt0;
hence, similarly,E(|Ta|−1

∑
t∈Ta

ȳ·t) = E(|Ta|−1
∑

t∈Ta
µt0). By the same arguments, it can be

shown that the rest of the equations in (4) hold.

A.2 Partial derivatives

Recall thatLi is defined by (15). We have

∂Li

∂β
= λ

[∑
t∈Ta

m−1
t,k1(i∈It,k)xitk

]
1≤k≤p

+ 1(i∈I)X̃
′
iṼ

−1
i (ỹi − X̃iβ),

∂Li

∂ψs
= −1

2
1(i∈I)

{
tr

(
Ṽ −1

i

∂Ṽi

∂ψs

)
− (ỹi − X̃iβ)′Ṽ −1

i

∂Ṽi

∂ψs
Ṽ −1

i (ỹi − X̃iβ)

}
, 1 ≤ s ≤ q,

∂Li

∂λ
=

∑
t∈Ta

{
p∑

k=1

βkm
−1
t,k1(i∈It,k)xitk −m−1

t,0 1(i∈It,0)yit

}
.

By the above expressions and assumptions (i) and (ii), we have

E
(
∂Li

∂β

∣∣∣∣M) = λ

[∑
t∈Ta

m−1
t,k1(i∈It,k)µtk

]
1≤k≤p

,

whereµtk = E(xitk). It follows that

m∑
i=1

E
(
∂Li

∂β

∣∣∣∣M) = λ

[∑
t∈Ta

µtk

]
1≤k≤p

. (A.1)

Similarly, it can be shown that

E
(
∂Li

∂ψ

∣∣∣∣M) = 0, 1 ≤ i ≤ m, (A.2)

m∑
i=1

E
(
∂Li

∂λ

∣∣∣∣M) =
∑
t∈Ta

{
p∑

k=1

βkµtk − µt0

}
(A.3)

[recallµt0 = E(yit)].
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Furthermore, we have

∂2Li

∂β∂β′
= −1(i∈I)X̃

′
iṼ

−1
i X̃i,

∂2Li

∂β∂ψs
= −1(i∈I)X̃

′
iṼ

−1
i

∂Ṽi

∂ψs
Ṽ −1

i (ỹi − X̃iβ), 1 ≤ s ≤ q,

∂2Li

∂β∂λ
=

[∑
t∈Ta

m−1
t,k1(i∈It,k)xitk

]
1≤k≤p

,

∂2Li

∂ψr∂ψs
= −1

2
1(i∈I)

{
2(ỹi − X̃iβ)′Ṽ −1

i

∂Ṽi

∂ψr
Ṽ −1

i

∂Ṽi

∂ψs
Ṽ −1

i (ỹi − X̃iβ)

−(ỹi − X̃iβ)′Ṽ −1
i

∂2Ṽi

∂ψr∂ψs
Ṽ −1

i (ỹi − X̃iβ)− tr

(
Ṽ −1

i

∂Ṽi

∂ψr
Ṽ −1

i

∂Ṽi

∂ψs

)

+tr

(
Ṽ −1

i

∂2Ṽi

∂ψr∂ψs

)}
, 1 ≤ r, s ≤ q,

∂2Li

∂ψ∂λ
= 0, and

∂2Li

∂λ2
= 0.

The expressions, the linear mixed model, and the assumptions imply

E
(
∂2L

∂θ∂θ′

)
= −

 A 0 C
0 B 0
C ′ 0 0

 , (A.4)

whereA = E(
∑

i∈I X̃
′
iṼ

−1
i X̃i), C = −E(

∑
t∈Ta

µtk)1≤k≤p and

B =
1
2

[
E

{∑
i∈I

tr

(
Ṽ −1

i

∂Ṽi

∂ψr
Ṽ −1

i

∂Ṽi

∂ψs

)}]
1≤r,s≤q

.

Note thatA,B are positive definite matrics in typical situations. Furthermore, if the linear mixed
model includes an intercept, which means thatxit1 = 1 and thereforeµt1 = 1, and there is a positive
probability thatTa 6= ∅, then the vectorC is guaranteed not to be a zero vector.

A.3 That the right side of (17) can be approximated by (18)

First, we haveVar(∂L/∂θ) = Var{E(∂L/∂θ|M)} + E{Var(∂L/∂θ|M)}. By (A.1)—(A.3)
and assumptions (ii) and (iv), we see thatE(∂L/∂θ|M) is a bounded random vector. It follows that
Var{E(∂L/∂θ|M)} = O(1). On the other hand, assumptions (i) and (iii) imply that, givenM ,

Section on Survey Research Methods – JSM 2011

3332



Nguyen and Jiang

∂Li/∂θ, 1 ≤ i ≤ m are independent. Thus, we have

Var
(
∂L

∂θ

∣∣∣∣M) = Var

(
m∑

i=1

∂Li

∂θ

∣∣∣∣∣M
)

=
m∑

i=1

Var
(
∂Li

∂θ

∣∣∣∣M)

=
m∑

i=1

E
(
∂Li

∂θ

∂Li

∂θ′

∣∣∣∣M)+
m∑

i=1

E
(
∂Li

∂θ

∣∣∣∣M)E
(
∂Li

∂θ′

∣∣∣∣M)
= S1 + S2.

Now, again by the results of subsection A.2, it can be shown that

S2 =

 λ2
∑m

i=1 ξiξ
′
i 0 λ

∑m
i=1 ηiξ

′
i

0 0 0
λ
∑m

i=1 ηiξ
′
i 0

∑m
i=1 η

2
i

 ,

whereξi = [
∑

t∈Ta
m−1

t,k1(i∈It,k)µtk]1≤k≤p and

ηi =
∑
t∈Ta

{
p∑

k=1

βkm
−1
t,k1(i∈It,k)µtk −m−1

t,0 1(i∈It,0)µt0

}
.

It is now easy to show that the elements ofS2 are bounded random variables. For example, we have

m∑
i=1

η2
i =

∑
t,t′∈Ta

p∑
k,l=1

βkβlm
−1
t,km

−1
t,l m

−1
t,l µtkµtl|It,k ∩ It,l|

−2
∑

t,t′∈Ta

p∑
k=1

βkm
−1
t,km

−1
t,0µtkµt0|It,k ∩ It,0|

+
∑

t,t′∈Ta

m−1
t,0µ

2
t0,

which is a bounded random variable by assumptions (i) and (iv). Note that|It,k∩It,l| ≤ mt,k∧mt,l.
Therefore, combining the results, we haveVar(∂L/∂θ) = E(S1)+O(1) =

∑m
i=1 E(pip

′
i)+O(1) =

E(
∑m

i=1 pip
′
i) +O(1) ≈

∑m
i=1 p̂ip̂

′
i, wherepi = ∂Li/∂θ.

Similarly, we haveE(∂2L/∂θ∂θ′) = E(
∑m

i=1Qi) ≈
∑m

i=1 Q̂i, whereQi = ∂2Li/∂θ∂θ
′.
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