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Benchmarking the Mixed Linear Model
for Longitudinal Data

THUAN NGUYEN AND JIMING JIANG
Oregon Health and Science University and University of California, Davis

We propose a new method of handling missing values in longitudinal data under the lin-
ear mixed model assumption. The new method combines the complete-data linear mixed model
with benchmark equations that involve both the complete and incomplete data. Simulation stud-
ies show that the new method improve the efficiency of inference when a significant proportion
of the data are missing.
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1 Introduction

Mixed linear models are widely used in longitudinal studies (e.g., Laird & Ware 1982, Diggle
et al. 1996). It is not uncommon that some of the data, either the responses or the covariates, are
missing at certain time points. Standard treatments of the missing values include the throwing-out
strategy, in which an entire record (including the response and covariates) is thrown out if at least
one value is missing, imputation and modeling the missing data mechanism. See, for example,
Diggle et al. (1996, chapter 13), Little and Rubin (2002). However, with the exception of the
throwing-out method, which is obviously very inefficient, these strategies are not simple and often
require knowledge, and assumptions, beyond the linear mixed models.

In this paper, we propose a simple approach to missing values in longitudinal studies incorpo-
rating the linear mixed models. Suppose that forithesubject; = 1, ..., m, the datay;;, T, 1 <
k < p are supposed to be collected at the time points T;, wherey;, is the response and
Tik, 1 < k < p are the covariates. However, due to the missing data, only a subset of the sup-
posed values are collected. Our basic model is a (conditional) linear mixed model that assumes
that, given the complete covariateg,,1 < i < m,t € T;,1 < k < p, the complete responses
yit, 1 < i < m,t € T; satisfies

yit = TpB+ 2hui+ e, (1)

wherez;; = (zik)1<k<p, [ IS @ vector of unknown fixed effects;; is a knownb x 1 vector,u; is
ab-dimensional vector of subject-specific random effects,anis an error. Writey; = (vit)ter;,
X = (2h)ier;, Zi = (2))1er, @ande; = (ei)ier;- Then, (1) can be expressed as

vi = XiB+ Ziu; + e, (2)

i = 1,...,m. Itis assumed that the;'s ande;’s are independent withi; ~ N(0,G;) and

e; ~ N(0, R;), where the covariance matricé§ and R; depend on some vectar of variance
components. The expression (2) and the assumptions below are the same as the longitudinal linear
mixed model discussed in Datta and Lahiri (2000) and Jiang (2007).

Due to the missing data, only some of the equations (1) are practically usable—namely, those
in which none of they;;, ;1,1 < k < p are missing. The question is how to use the data more
efficiently in case some of thg;, ., 1 < k < p are missing. Here, we are not interested in the
cases in which no data is available, so assume that at least one of the nggargs, 1 < k£ < p
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is collected. As noted, throwing out the entire records because of one or more missing values is
inefficient. To make more efficient use of the data we make the following assumption that has
something to do with the marginal distributions of the responses and covariateg,Let{1 <
i < m,y; is observedl andl; , = {1 < i < m,x;y is observed, 1 < k < p, andmy j, = |11 x|
(hereafter S| denotes the cardinality of the s&}, 0 < k < p. Define

B { O7 if meo = 0,

Yt =

-1 .
mt,() i€l o Yit, if mto > 07

0, if my = 07
Tk = - . ’ 1<k <p. 3
" { mt,é iel, , Titks if myp >0, =R=P ®)

Furthermore, lef; = rﬁ:o[t’k andm; = |I;|. I; is the subset of indexessuch that there are no
missing values among;, z;,, 1 < k < p. Defineg?,z%,,1 < k < p the same way as (3) except

with I, ;, andmy ;. replaced byl; andm;, 0 < k& < p, respectively. Here the superscript a refers to
“all-observed”. Letl’ denote the set of indexsuch that at least one of the valugs x5, 1 < k < p

is not missing. We are not interested in the cases in which no observation, either the response or
the covariates, is available, so assume fhat (). LetT, = {t € T,m; # 0}. The additional
assumption we make is that

1 . 1 _
o(m o) - 5(gT).
Al e, &l teTn
1 a 1 _
E sztk = E sztk , 1<k <p; (4)
| T

teTn

in other words, the mean of the all-observed average is equal to the mean of the observed average
for the response and each covariate. Note that, fErgis considered a random variable, so cannot

be canceled from the two sides of the equations.

To see that (4) is a reasonable assumption, consider the following special casé¢;, betthe
(p+ 1)-dimensional vector whose first component i$ y;; is missing, and otherwise, and whose
(k + 1)th component id is x4 is missing, and) otherwise,1 < k& < p. M is the vector of
indicators for the missing values for the giveandt. Let M denote the arrayf;;, 1 < i < m,t €
T;. Suppose that the following hold:

(i) The complete data is independent/df.

(i) The marginal means qjf;; andz;;,, 1 < k < p are finite and do not depend on
It is shown in Appendix that conditions (i) and (ii) imply (4).

Now, let us see how (4) can help. L8 = {(4,%) : t € T,,i € I;}. For each(i,t) € Sa, (1)
holds, wherey;;, ;41,1 < k < p are all observed. It follows that

1 _ 1 1
@Zyi = wzmt;yu

teTs teT, i€l
1 1 & .
= E — E TitkBr + 2jUi + €t
|7l my s —
teTn  tiel, \k=1

p
- Z(@ink>ﬁk+m, (5)

k=1 teTy
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where- - - has mean zero. Thus, by taking expectations on both sides, and observing (4), we get

1 . u 1 _
E <|Ta| Z y-t) = ;E (ITaI Z l‘-tk) B (6)

teT, teT,

Equation (6) leads to a method-of-moments equation, by removing the expectation signs, that is,

1 ) SN _
Il Z Yt = Z IGaml Z Ttk | B (7)
72l teT, k=1 75l teT,

Although (7) is similar to (5) without the term -, the difference is that the averages inside the
summations are now taken over larger data sets. The féGtor' can now be canceled from both
sides of the equation. The result is what we cdleachmarlequation, or simply benchmark:

p
wo= ) (Z w-tk) Bre- 8
teTn k=1 \t€Ta
The idea is to fit the linear mixed model (1) for the all-observed data, that is, (with € S,,
subject to the benchmark (8). This may not work, however,# 1 (because thefd is completely
determined by the benchmark). Nevertheless, in most applications we have

A simple numerical procedure is developed in section 2 for fitting the linear mixed model sub-
ject to the benchmark. In section 3 we discuss estimation of the variations of the benchmarked
maximum likelihood estimators. In section 4 we carry out a simulation study to investigate the gain
of efficiency by the benchmarking. Technical derivations are deferred to Appendix.

2 Computation

Let I denote the subset of indexéesuch that(i, t) € S, for at least one, andNTaﬂ- ={teT;:
(f"t) € Sa}, i € I, sothatS, = Uier{(4,t) : t € To;}. Definey; = (yit)ier, ., Xi = (m'lit)teTa,ﬂ
Z; = (Zzl't)teTa,i andé; = (ei)ter, ;- Then we have the all-observed version of (2):

Gi = XiB+ Zui+&, i€l 9
where/ and theu;’s are the same as in (2), tlags are independent with; ~ N (0, Ri), R, being
dependent onp, and theu;'s andeé;'s are independent, conditional on the complete covariates.
It follows that, conditional on the complete covariatgs= (4;)icr ~ N(X3,V), whereX =
(Xi)ier andV = diag(V;,i € I) with V; = Z;G;Z] + R;. The conditional log-likelihood function
based ory is given by

| = _%pnqua+kgqvp+(g—XﬂyV‘Wﬂ—XﬁH
= Dlog(2m) — 4 o1 + (5= X V7 (s = ) (10)

wheren = dim(gy). The estimators of the parametgtsaandi) are obtained by maximizing (10)
subject to the benchmark constraint (8). Wijte= (gx)1<k<p With g = > ,cq T4 @andh =
> e, Ut~ Using the method of Lagrange multipliers, we consider

L = L+AgB-h), (11)
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where) is the Lagrange multiplier, and find a stationary poin.ofvithout a constraint. To do the
latter, we first leOL /03 = X'V~ — X'V~1X3 + \g = 0. This gives

B o= (XVTIX)THXVTIG+ ), (12)

assuming existence of the inverse matrices. We then plug (12) into the equafion = ¢'5—h =
0 to obtain a solution foA as a function of):

5\ B h_g/(le/—lX)—lX/f/—lg (13)
N JXVIX)Tg

We then plug (13) back to (12) to obtain a solution foas a function ofp:
B = (X'VIX)"UX'V i+ Ng). (14)

Finally, we replace? by /3 in the equations

o _ 1 {tr <v18V>—<@—Xﬂ>’V18VV1(@—5@)} =0,

a’l,z)r 2 8'¢r a’l;Z)T‘

1 < r < g, wherey, is therth component ofy) andg = dim(¢)), to obtaing equations that only
involve 4. By solving the latter equations we obtain the estimatat,afenoted by). The estimator

of 3, 3, is obtained by replacing in (14) by (note that\ also depends on). 3 andy are called
the benchmarked maximum likelihood estimators (BMLE). An estimatok, 6f, is also obtained
by replacingy by ¢ in (13). Although) may not be of direct interest, it is needed in the estimation
of the standard errors. See the next section.

3 Estimation of variation

Recall that the BMLEJ = (3,/4, \)', is a solution t@) L, /96 = 0. Itis easy to show that can
be expressed ds= ¢+ ", L;, wherec is a constant and

p
= a5 {3 it~ midtenom

teT, \k=1
~ 5 Lien o8Vl + (G — K0V~ 5 — X)) (15)

We assume that the following assumptions hold in addition to assumptions (i) and (ii) in section 1:
(i) (i, X;),i=1,...,m are independent.
(iv) The total number of the time pointds bounded.
By arguments similar to White (1982), it can be shown that, under assumptions (i)—(iv) and some
additional regularity conditions (identifiability, moments, etc.), the BMLE is maotonsistent in
the sense thay/m(0 — 6) is bounded in probability, whee= (3’, 4/, \)’ is the unique solution to
E(0L/06) = 0 so that3 and are the true parameters for the linear mixed model. In the following,
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partial derivatives such a&l /06 are understood as evaluated)aBy Taylor expansion, we have

oL
a9 |,

OL 0’L \ -

20 " <0939/> (6-6)
oL 0L\ -
AJ60+E&WW>M—®.

Hereafter~ means that the remaining term is of lower order, in a suitable sense. Thus, we have
E(0?L/0000")(0 — ) ~ —OL/08, or

) 2L \) ' oL

Write &> = Var(f). It follows by (16) that

2L \) oL 2L \)
5~ {E<&m9>} VM(80>{E<&MW>} . 17)

It is shown in Appendix that the right side of (17) can be further approximated by
m -1 m m -1
5 - (z@i) (zﬁi) (z@i) | a9
i=1 i=1 i=1

whereP; = p;p, with p; = (9L;/90)|,_; andQ; = (9°L;/900¢")|,_;. Detailed expressions for
the partial derivatives are also given in Appendix. We call (18) the “sandwich” estimakar of

It should be pointed out that the “breads” of the “sandwich” are well defined, that is, the matrix
> Q; is nonsingular, at least asymptotically. From the expressions (A.4) in Appendix, we have

A 0 C
0L
E<> = -l 0 B 0|,
5006’ (C’OO)

whereA, B are nonsingnular matrices antlis a nonzero vector. It follows that

I 0 0 521 I 0 —-A"lC A0 0
0 I 0 E(aeaa) 0 I 0 =—| 0 B 0 ,
—C'Ab 0 I 00 I 0 0 —-C'A"'C

which is nonsingular; therefor&(9? L/9006') is nonsingular. In fact, we have

o 1 0L
lim inf )\min {mE (8069’) } > 0

(Amin denotes the smallest eigenvalue), under regularity conditions. Then, be@@@@e}i ~
E(9%L/0000¢") (see subsection A.3), ", Q; is nonsingular asymptotically.

In particular, the standard error G is obtained by the square root of thth diagonal element
of 33,1 < k < p, and the standard error of is obtained by the square root of the+ s)th diagonal
elementof, 1 < s < q.

0 =

Q
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Table 1:Simulated Mean, Variance and MSE: Scenario (1)

Parameterr True Mean Variance MSE

Value | AMLE BMLE | AMLE BMLE | AMLE BMLE
Bo 0.20 | 0.189 0.192| 0.227 0.211| 0.227 0.211
51 0.10 | 0.099 0.098| 0.158 0.156| 0.158 0.156
B2 0.20 | 0.200 0.201| 0.168 0.167| 0.168 0.167
B3 0.50 | 0.518 0.511| 0.300 0.285| 0.300 0.285
B 0.50 | 0.496 0.495| 0.080 0.078| 0.080 0.078
o? 0.25| 0.212 0.223| 0.116 0.114| 0.117 0.115
72 0.09 | 0.079 0.079| 0.032 0.032| 0.032 0.032

4 Simulation studies

We first compare finite sample performance of the BMLE with that of the “all-observed” max-
imum likelihood estimator (AMLE) in terms of the mean squared error (MSE). The AMLE is ob-
tained by using only the complete data records, that is, those in which there are no missing values for
either the response or the covariates (in other words, the response and covariates are all observed).
Consider the following linear mixed model:

Vit = Po+ Pixin + Poxio + B3xi + Baiza + ui + ey, (19)

i1 =1,....,m,t = 1,2,3, wherez;;; and z;;» are two indicators of the time points such that
Tk = ly—p41),k = 1,2 (¢ = 1,2,3 correspond to the baseline measure and two measures at
different time points after the treatment);,i = 1,...,m are generated independently from a
Bernoulli(0.5) distribution, ther;;4's are generated independently fromiV40, 1) distribution and
are independent with the’s; theu;’s ande;;'s are generated independently such that N (0, 0?)
ande; ~ N(0,72). The true parameters afy = 0.2,3; = 0.1,3; = 02,83 = 0.5,08; =
0.5,0 = 0.5 and7 = 0.3. Next, we generate, independent from the data, the missing value
indicators. These are expressedidsand M., = 1,...,25,t = 1,2,3,k = 0,4 such that
M; ~ Bernoulli(ps) andM4, ~ Bernoulli(py), k = 0,4. The responsg;; is missing iff Mo = 1;
x; is missing iff M; = 1; andx;4 is missing iff M;;4 = 1. (The reason that there are i, and
Mo is becauser;;; andx;o are always observed; aldd;;; = M; becauser;;s = x;, which does
not depend ort.) Two scenarios of the,'s are considered: (I = 0.1,pg = ps = 0.3; (2)
p2 = 0.2, pg = p4 = 0.5. The simulated means, variances and MSEs for the parameter estimation
based 01500 simulations are reported in Tables 1 and 2. Itis seen that the gain of BMLE over AMLE
much more substantial under Scenario (2) than under Scenario (1). This makes sense because more
missing data are expected when ffeare larger; therefore, more information can be recovered by
using the BMLE. In particular, under Scenario (2), the percentage MSE reduction by BMLE is in
the range of 30-50% for most of thieparameters. Another interesting observation is that there is
apparently no gain by BMLE for estimating under either scenarios.

We next compare the performance of AMLE and BMLE in terms of testing the hypothesis
Hp : B3 = 0.5 versusH; : B3 > 0.5. The covariate corresponding f is an indicator, which may
be the characteristic of treatment and control in practice. Thus, such a test is of practical interest.
A standard test statistic is the t-statistic, obtained by dividing the difference between the estimator
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Table 2:Simulated Mean, Variance and MSE: Scenario (2)

Parameterr True Mean Variance MSE

Value | AMLE BMLE | AMLE BMLE | AMLE BMLE
Bo 0.20 | 0.164 0.172] 0.497 0.369| 0.498 0.370
51 0.10 | 0.139 0.132] 0.511 0.360| 0.512 0.361
B2 0.20 | 0.235 0.230| 0.354 0.343| 0.355 0.344
B3 0.50 | 0.536 0.506| 0.685 0.470| 0.686 0.470
B 0.50 | 0.492 0.499| 0.269 0.199| 0.269 0.199
o? 0.25 | 0.177 0.189| 0.153 0.146| 0.158 0.149
72 0.09 | 0.100 0.101| 0.065 0.066| 0.065 0.066

Table 3:Size and Power of (Large Sample) t-Test

Scenario Size Power
AMLE BMLE | AMLE BMLE
(@H) 0.066 0.056| 0.846 0.832
2 0.086 0.050| 0.630 0.562

and value of the parameter undHp by the standard error (SE) of the estimator. The SE is the
square root of the corresponding diagonal element of the estimated asymptotic covariance matrix
(EACM). For both AMLE and BMLE, the EACM is in the form of (18), except that thgs are
different. TheL;s for BMLE is given by (15), while thé.; for AMLE is given by (15) without the

first term (the one multiplied by). The t-statistic is then compared with the asymptotic critical
value of the standard normal distribution. As the test is appropriate under large sample, we increase
the number of subjects ta = 50. We consider the size and power of the t-test under the level

of significancea = 0.05. The power is considered at the alternatisse= 1.0, with the rest of

the parameters unchanged. It appears that the BMLE t-test is more accurate in size, although its
power is somewhat lower at the alternative. It may be argued, however, that the higher power of
the AMLE t-test is due to its overrejecting. To see this, we adjust the critical values of the AMLE
t-test so that it has the same sizes as the BMLE t-test, that is, 0.056 under Scenario (1) and 0.050
under Scenario (2). The adjusted critical values are 1.754 and 1.977, respectively (as compared to
the nominal critical value of 1.645). With the adjusted critical values, the simulated powers of the
AMLE t-test drop to 0.814 and 0.516, under (1) and (2), which are both lower than the simulated
powers of the BMLE t-test.

Also note that both tests have higher power under Scenario (1) than under Scenario (2); and
the difference between the two tests is more significant under Scenario (2) than under Scenario (1).
These are, of course, reasonable.

Research is underway to implement our method in real-data applications.
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Appendix

A.1 That conditions (i) and (ii) of section 1 imply (4)

We haveE(|T,|™! Doter, Ut) = E{E(|T,|* doter, YHM)} = E{|T,| ! > et B@GIM)},
and, similarly, fort € T, we haveE (73| M) = m; " 3, c; E(yit| M) = pu0, wherepyo = E(yit) =
E(yi|M). Thus, we hav&(|T,| ' >, cr 4%) = E(|Ta| ™" > cr, tu0). On the other hand, note
thatm, # 0 impliesm; o > 0, thus, by a similar argument, it can be shown H&§.|M) = ju0;
hence, similarlyE(|Tu| ™" >,cr. 74) = E(|Tu|™" >_jer, t0). By the same arguments, it can be
shown that the rest of the equations in (4) hold.

A.2 Partial derivatives

Recall thatL; is defined by (15). We have

OL; _ RS U
E ! [Z mt,lil(ielt,k)xitk +1en XiVi (5 — Xif),
teTy 1<k<p
aLz 1 —1 aV ~ -1 8V 1/~ lnd
= —=1 : i — XiB)'V, i —Xif)p, 1<s<gq,
oL; _
o\ - Z {Z 5km zelt k) Litk — mt,(}l(ielt’g)yit} .
teTy =

By the above expressions and assumptions (i) and (i), we have
OL; _
E < M) A [Z mtél(ielt,k)utk] ,

teTy 1<k<p
wherep, = E(z;). It follows that

i OL;
() - 5
=1 teTa 1Sk§p
Similarly, it can be shown that
E<8M ) =0, 1<i<m, (A.2)

e (%) - z{zm—m} (43
i=1

teT, (k=1

[recall o = E(yar)]-
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Furthermore, we have

d*L; e 1o
apop —LaenXiV; X,
82Li e 8‘71 _ ~
aﬁ8¢s - _1(161)XZ/‘/Z lawsv; l(yi - X’Lﬁ)’ 1<s< q,
0%L; .
0BOA - th,kl(ielt,k)witk )
tela 1<k<p
@2Li 1 ~ B av 8‘72 o )
M5 ‘21@61){2(%—&@% 1@ VSV @ = Xi)
~ - 82ik B
- ~Z*Xi 'yl ¢ X —t s —1
-, 0%
t _71 [ 1< <
H(VZ 0, 05 } =he=0
0%L;
DUON = 0, and
0%L;
N2 0.

The expressions, the linear mixed model, and the assumptions imply

A 0 C
0L
E<>:— 0O B 0 |,
5000 (c' 0 0)

whereA = E(3,; X/Vi ' X)), C = —E(3 e, bur)1<k<p and

RS

1<r,s<q

ov, -, oV
g (ws)

Note thatA, B are positive definite matrics in typical situations. Furthermore, if the linear mixed
model includes an intercept, which means that = 1 and therefore:,;; = 1, and there is a positive

probability thatT}, # (), then the vecto€' is guaranteed not to be a zero vector.

A.3 That the right side of (17) can be approximated by (18)

First, we haveVar(9L/06)

= Var{E(0L/d0|M)} + E{Var(dL/d6|M)}. By (A.1)—(A.3)

and assumptions (ii) and (iv), we see thR40L /00| M) is a bounded random vector. It follows that

Var{E(9L/00|M)} =
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0L;/00,1 < i < m are independent. Thus, we have
oL " 0L
Var(ae‘M> = Var(iz1 50 M)
u)

= iVar(
=1
" OL;
M) +§E< 5

i dL; OL;
= E
; ( 00 o0’

= 51+ 5,.

OL;
00

oL;
e (G

)

Now, again by the results of subsection A.2, it can be shown that

(V 2imi & 0 AL, Uiié)

Sy = 0 0 0

)\221 mfé 0 21'11 7712

whereé; = >, cr. m;]il(ieltyk)ﬂtk]lgkgp and

p
n; = Z {Zﬁkmtﬂil(iew)mk - m;oll(z‘elt,o)ﬂto} .

teTs, \k=1

Itis now easy to show that the elementsSefare bounded random variables. For example, we have

m p

2 -1, -1, -1
g n;, = E E @cﬁlmt,kmt,l my futgefiet e e O I
i=1 tt' €Ty k=1

p
_1 _1
—2 Z Z’Bkmt,kmtoﬂtkﬂtout’k mIt,O
t,t' €Ty k=1

-1,2
+ E , My o Ht0>
L' €Ty

which is a bounded random variable by assumptions (i) and (iv). Notéfhat I, ;| < my , Amy.
Therefore, combining the results, we haler (0L/00) = E(S1)+0(1) = 7" E(pip})+0(1) =
EQCL, pipg) + O(1) = 3202 pip;, wherep; = 0L;/09.

Similarly, we haveE(02L/9000') = E(X.7, Qi) =~ Y., Qi, whereQ; = 9%L; /000"

References

[1] Datta, G. S. & Lahiri, P. (2000), A unified measure of uncertainty of estimated best linear
unbiased predictors in small area estimation proble&tejst. Sinical0, 613—-627.

[2] Diggle, P. J., Liang, K. Y., and Zeger, S. L. (1998nalysis of Longitudinal DataOxford
Univ. Press.

3333



Section on Survey Research Methods — JSM 2011

Benchmarking mixed models

[3] Jiang, J. (2007)Linear and Generalized Linear Mixed Models and Their Applications
Springer, New York.

[4] Laird, N. M. & Ware, J. M. (1982), Random effects models for longitudinal dBiametrics
38, 963-974.

[5] Little, R. J. A. and Rubin, D. B. (2002%tatistical Analysis with Missing Datand ed., Wiley,
Hoboken, NJ.

[6] White, H. (1982), Maximum likelihood estimation of misspecified modetgnometrikeb0,
1-25.

3334



