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Abstract

Itis well known that cancer incidence rates are heterogenaoross geographical regions. The aim
of this paper is to supplement the existing tools for analgzancer rates from the Surveillance,
Epidemiology, and End Results (SEER) database that ara¢a@btel the change points over time.

Subsequently, the model can cluster the geographicalgiginebased on the magnitude and direc-
tion of changes of the disease risk. The proposed model tefiadge-points over time and cluster
spatial locations is based on Dirichlet process priors wiveg consider temporal functions as the
random quantities arising from the Dirichlet process pribhrough the analysis of age adjusted
lung cancer mortality rates from 1969 to 2006, the proposedahnicely characterized local data

features, namely, the local change points, the rate of awrand clusters of states that exhibited
similar trends of cancer incidence rates. The procedurgtend this model to include covariates

therefore enabling selection of meaningful covariatesafse discussed.

Key Words: Joinpoint analysis; Disease mapping; Bayesian nonparasieDirichlet process
priors.

1. Introduction

Statistical methods for analyzing disease incidence ortatiyr data over geographical
regions and time have gained considerable interest in rgeams due to increasing con-
cerns of public health, health disparity and legitimateovese allocations. Cancer is a
major threat to public health in the United States and in tlhedv Cancer accounts for
nearly one-quarter of deaths in the United States, exceendlydby heart disease (ACS,
www.cancer.org). Among many things, the ACS publishes tirmads of age-adjusted
cancer death rates for different cancer types, and forrdiftesub-populations defined by
geographic and socio-demographic characteristics. Hervéve impact of cancer surveil-
lance is not uniformly effective over geographical regisee, for example, Figure 1 which
displays cancer trends for four different US states and vieeadl trend for the nation.

One of the scientific objectives of monitoring cancer ratewidetect changes in the
trend over time and identify clusters of sub-populationsng@rally a set of geographical
sub-regions) that are affected by changes (increase ceats)in risk. Also, if covariates
have changes in trend over time, it is interesting to undadshow those covariates affect
the cancer rates over time. A carefully developed procethateaddresses these issues can
help administrators find key information for the preventadrcancer.

Several joinpoint models that identify time points asstedawith a significant change
in disease trend have been developed by several authorsQ&da et al. (1992), Kim et al.
(2000, 2004), Tiwari et al. (2005) and Ghosh et al. (2009he Models developed by Kim
et al. (2000, 2004), for example, are used in cancer sttistiview and implemented in
the software of the National Cancer Institute (NCI) (RiealeR002). One important ques-
tion is whether the rates of cancer incidence before and thiéejoinpoint is significantly
different (statistically speaking) from each other. Inetlwords, we wish to determine if
there is a significanthange point in the cancer incidence rates before and after the join-
point. Another important concern not addressed by joinpoindeling is whether there
are groups (or, clusters) of states exhibiting similar ¢geapoints of cancer incidence rates
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Figure 1. Age-adjusted incidence rates of lung cancer from 1969 @5 Z0r four states
and the entire US: Florida (a), Arizona (b), Missouri (cdiema (d) and entire US (e).

but with significant variations between and within groupss well known that the cancer
rates in the US vary widely by geographical area. Figure @gone such illustration based
on age-adjusted lung cancer mortality rates for four st&tksida, Arizona, Missouri and
Indiana. It is evident that Florida and Arizona share theesahmnge-point and rates of
change in each time segment while Missouri and Indiana éxtiiterent levels of these
attributes. Figure 1 also demonstrates that Florida andofd have different levels of
variability around its mean value over time. When we arereggted in grouping states by
the rates of change, variability is nuisance with respetiiécclustering criteria. However,
the omission of such variability from the model may resultnefficient estimation. The
presence of heterogeneity among states can also give adirgjeimpression for the rates
of change corresponding to the overall US. Figure 1 panelofethe entire nation does
not reveal the two distinct types of change-points exhibitethe first four panels by the
four different states. This indicates that a more efficietingation procedure is possible
by taking into account local geographical effects.

Third, itis also of interest if we can find some relationshgtvMeeen each specific cancer
trend and aggregated cancer trend. Changes in trend owefdirall cancer types might be
different from changes in trend over time for a specific camgge. Then, which specific
cancer rate affects an aggregated cancer rate can be addwyeregression type models
that incorporates detecting the changes and groupingstitecommon changes over time
and rate of changes. For example, Figure 2 shows mortatiyg @& all Malignant cancers
and several specific cancer types. Starting from early $998bst of cancer mortality
rates are decreasing including all cancer type except lamdrintrahepatic Bile Duct and
Pancreas for the state of Florida.
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Figure 2: Age-adjusted incidence rates of all cancer and each spesificer type from
1969 to 2006 for Florida.

To address the above scientific questions, we first develaphenge-point model to
detect changes in multiple time series in presence of rggarity. Our proposed model
does not assume connectedness at the joinpoint but is apkerflarm the analysis more
locally at this expense. The proposed model is also ableuster geographical regions
which have similar rates. Additional model flexibility forauping is obtained by including
model parameters that represent local data character{bicexample, variability around
the mean trend in Figure 1), which are allowed to vary from &itsite. We also incorporate
the unknown number of change-points into the estimatioerse) to be inferred from the
posterior probabilities.

Our approach is to make use of the Dirichlet Process (DP)aodetbgy in an innovative
way to cluster spatio-temporal data. We note that Ghosh é2@09) used DP to perform
a non-parametric Bayesian analysis of joinpoints wherebtdeeline distributionzg is a
distribution onR for the errors; this is not for the purpose of clustering loutabustify the
analysis with respect to non-normality. Our innovative wéawsing the DP is to consider
realizations fromG, that are in more general object spaces; in this case, it isghee
of all functions over time that represent change points irceatrends. The advantage of
extending DPs in this manner is two-fold: First, the chapges are included as unknown
model parameters with a prior distribution governediy This entails that the uncertainty
involved in their estimation is taken into account in theengince, and therefore, represents
an improvement over the methodology of Ghosh et al. (2008) @evious approaches
by others. Second, even for more general object spacesttivesic property of DPs that
assign unit mass to all discrete probability distributicas be utilized to enable clustering
of sites with respect to similar cancer trends. For eachait¢he spatial domain, we
have (only one) change-point function. DP-based clusieisnobtained for the sites on
the spatial domain based on similar change-point functidnsorporating other aspects
of variability via parameters to enhance model flexibilitith@ut affecting the DP-based
clustering is also an important contribution of this paper.

A primary inferential objective in the analysis of diseas¢ads the summarization and
explanation of spatial and spatio-temporal patterns aatie (i.e., disease mapping); see,
for example, Elliot et al. (2000), Banerjee et al. (2004) aad/son (2009) for details and
further references. Also of interest is the spatial smogthiemporal prediction of disease
risk and the detection of extremes. Models for inferencenia area have been mostly
limited by parametric elicitation of dependence struduiar pooling spatial information.
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On the other hand, the proposed DP-based methodology isffiggrametric constraints,
and its capability of pooling information via data drivemigiering can greatly enhance the
analysis of spatial and spatio-temporal patterns. As astithtion, we infer the cluster of
US states which correspond to the highest drop in cancedgrienSection 4. We are also
able to demonstrate statistical significance of the higtlegh compared to other clusters
of US states. These types of inference can potentially helipypmakers identify factors
in the top states that contributed to the highest drop, abhdegjuently, be implemented as
policy or programs in the other states.

The rest of the paper is organized as follows. Section 2 glvedsletails of the data
and application while Section 3 presents the proposed ehpoimt model and associated
Bayesian inference. Section 4 gives two specific model ftatimns for the cancer data
and demonstrates the superiority of incorporating siteiipezariability. Section 5 gives a
possible extension to incorporate covariate informat®ection 6 gives discussion.

2. A Change Point Model for Cancer Incidence Rates

Cancer incidence rates are obtained from the Surveilldfageemiology, and End Results
(SEER) program (seer.cancer.gov) of the National InsgtinftCancer (NCI). The SEER
program is an authoritative source of information on cameeidence and survival in the
US. The SEER program currently collects and publishes canoetality and survival data
from population-based cancer registries covering apprately 26 percent of the popula-
tion. An age-adjusted incidence/mortality rate is a priymaeasure for monitoring cancer
trends over time and over geographical locations sinceeras@ disease where age is a
determining factor. An age-adjusted rate is a weightedameepf the age-specific (crude)
rates, where the weights are the proportions of person®indiresponding age groups of
a standard population. The potential confounding effeeigef is reduced when comparing
age-adjusted rates computed using the same standard fopulBeveral sets of standard
population data are available in SEER which include the 2080standard population as
well as the standard US populations for the years 1940, 11991, 1970, 1980, and 1990.
The age-adjusted rate using age grodpbirough B is calculated using the following for-
mula:

= count; stdmil;
aarates_p = Z x 100,000 x Z:B— , D)

by pop; 4 Stdmil;

wherecount;, pop; and stdmil; are, respectively, the number of incidence/mortality due
to a cancer, the population and the choice of a standard gigulin the age group.
Nineteen age groups and the 2000 US standard populatiomaselered in this study.

We consider lung cancer age-adjusted mortality rates fré69 ko 2006 for the 48
contiguous states in continental United States (excludilagka and Hawaii) and Wash-
ington D.C. Thus, observations are the age-adjusted lungecanortality rates for =
1969, 1970, - - - ,2006 ands = 1,2, --- ,49. Four states and overall USA plots were given
in Figure 1 as an example. It is clear from the panels in Fidutbat there is at least
one change-point in the rate of change (i.e., slope) of larger mortality rates for the
four states. There are several specific aims of this paperwteéd like to determine (i)
all possible change-points of slopes of lung cancer moytadites corresponding to each
state, (ii) determine simultaneously if the slopes exhdioine clustering over the states
(i.e., different states have identical slope values), @nddentify clusters with the highest
changes in slope over time, and (iv) whether this higheshghas significant compared
to the other remaining clusters. To model exponential gnawtdecay of the age-adjusted
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rates, we model the logarithm of the age-adjusted rates iagar lfunction of time as is
done in Ghosh et al. (2011), Clegg et al. (2009) and Ghosh €2@D9). Slopes over the
different time segments capture the essential growth pasitive or negative) pattern of
cancer incidence/mortality rates. The change-point madetlevelop subsequently is in
terms of these slopes and the variability of the observatazound the log mean trend.

2.1 Change Point Likelihood Based on Observables

The subsequent discussion applies to both cancer incidentenortality rates, and there-
fore, we refer to them as just rates. Uét; denote the logarithm of the observed can-
cer rate at sites and timet for the collection of sites = 1,2,--- , NV and time points
t=Uy,Us+ 1,Up + 2,--- ,U;. Assume that a site hask change-points in terms of the
slope of the log rates; thus, in Figuredimay be Florida withk = 1 change points. For
fixed k, let [T;_1,T;), 1 = 1,2,--- |k + 1 be the time intervals where no changes in the
disease trend occur (i.e., no change point). To extractltdpe sand the variability of the
observations around the mean trend in each segment, weleotisé following regression
model on eaclHil;_1,T;):

Wst = Oé+,8t+€t, (2)

fort =Tj_1,Tj_1 +1,--- ,T; — 1 with ¢ iid N (0, 02) for the observed data ifi;_;, T});
thus, in (2), the log rates are modeled as a linear functidime with intercept and slope

and 3, respectively, and? represents the unknown error variance around the mean linea
trend. The dependence erand! is suppressed for the moment. The following results are
well known in regression analysis:

@,8)" ~ N((a,p)7T, oc*(xTXx)7), and 3)
RSS
o2 ~ XCZFL_Tlfl_27 (4)

wherea andﬁ are the least squares estimatorsxadnd 5 (which are also the maximum
likelihood estimates (MLEs) under the normal error modé&l}sS is the residual sum of

squares given by
Ti—1

RSS= Y (Wa—a-pt), )

t=T; 1

X2 is the chi-square distribution withdegrees of freedom, and is (7} — 7j_1) x 2 matrix
whose first and second columns is the vector of onesad7; 1,71 +1,--- ,1;— 1)T,
respectively. Also, in (3) and (4), the statistie, 3) is independent oRS'S. We emphasize
here that the number of joinpoints, the time interval§7;_1,7;), 1 = 1,2,--- Jk + 1
ando? are all parameters that are unknown, to be inferred from whsesjuent Bayesian
analysis. The purpose of introducing these unknown paeméiere is to describe the
likelihood given the unknown parameters at site

Bi, RSS;| By, kb1, 07 X f (6)

independently fof = 1,2,--- .k + 1. In (6), fll(ﬁl | 02) is the normal pdf with meag,
and variancer? - v wherev is the(2, 2)-th entry of (X7 X)~1; the explicit form offy; is

(B By o?) = éexp{—L@—ﬁl)?}. @)
27 vo?

2vol2
1
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The densityfs (RSS; | o) in (6) iso? times the chi-square density with, = 7;—T;_1 —2
degrees of freedom whose explicit form is given by

R, |
2 1 RSS; 2 _RSS[ i
JulRSSi|o1) = 20m /2T (my/2) \ of &P 207 J o}’ ®

Subsequently, we consider the site-wise functions
0s(t) =pa T 1 <t<T—1 9)

wherefy; is the true but unknown slope in the interya]_,, 7;) at sites. Thus, the func-
tions 0(t) are step-functions of with £ change points at time%;, [ = 1,2,--- ,k.
Denote the set of all observables by = {Y 4,1l = 1,2,--- Jks, s = 1,2,--- /N
whereY , = (le,Rsssl) with le and RSS, as in (6) for each sitg, andk; is the
number of joinpoints for site. Let 3 denote the collection of all true slope parameters
Bsi, L =1,2,-+ ks, s =1,2,--- | N }. Also, denote by, T' ando to be the collection

of parameterg, 7;,0 =1,2,--- k+1 ando—l2 for all the N sites. Assuming independence
between théV sites, the likelihood is given by

N ks
fV 18, K. T.0) =] I] £} * 15 (10)
s=1 [=1

where fl(f) and fz(f) are f1; and f,; corresponding to site.

As mentioned in the Introduction, the change point analysie is different from join-
point modeling. The latter assumes that the cancer incaleaies are continuous at the
joinpoints but with different slopes to the left and righttog joinpoint. In our case, we
make no assumption on the continuity of the regression atirtie points7;. However,
at this expense, the current formulation allows us to inffergnt slopes for the different
sites, and therefore, enable clustering of these slopesilasthe DP-methodology. The
proposed model also allows the unknown number of chang&gaind clusters to be in-
ferred concurrently with parameters based on Bayesiareposiprobabilities (details in
the subsequent sections).

3. Bayesian Inference Using Functional DP Priors

3.1 Functional DP Prior

Let ® denote the set of all step functiofs as described in the previous section. We
introduce the functional DP as a prior on space of all distiims on®. The DP =
DP(apGy) depends on two hyper-parameters, namely,> 0 the precision parameter,
and G the baseline (or centering) distribution @é. Recall that a randomly generated
distribution ' from D P(anGy) is almost surely discrete and admits the representation

F=>) wdy, (11)
i=1

whered, denotes a point mass atw; = n1, w; = 1; };_:11(1 — ), fori =23, .- with

01,60 --- iid from Gy (Sethuraman, 1994). Traditionall§; was assumed to be scalar or
vector-valued taking values iRP. To model the observational process via change-points,
we conceptually extend;s in (11) to function®; = {6;(t) : t = Up,Up + 1,--- ,U; }.

The notation®, 6(¢) and#, therefore, will be taken to denote, respectively, a funttihe
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value of6 evaluated at timéand a possible realization taken 8¢t). These notations will
be used throughout the paper subsequently. For an integef, 8 with k change-points
has the form

o(t)y=0, if Ti<t<T, (12)

forl =1,2,--- Jk+1withUy =Ty < Ty < --- Ty < Tpy1 = Uy as seen earlier. The
notationF” ~ D P(apGy) in this context will be taken to mean

F=> widg, (13)
i=1

whered» is now a point mass on the step functienw;s are as before, and tiégs are iid
from a distributionGGy on ®. To specifyG, the baseline distribution 08, it is convenient
to utilize a hierarchical structure: (1) L& ~ Poisson(\). (2) Fix an integerv > 0.
Given K =k, let

1 1
(n1,- -+ ,ngr1) ~ Multinomial (no, R s 1> )
whereng = U; —Up— (k+1)w = n—1— (k+1)w. (3) DefineT; recursively agy = Uy,
Ti=n+Ti_1+wforl=12--- k+ 1. GivenTy,--- , T, generatd, - - - , 051 iid
from the (univariate or multivariate) density; on R?, and set

O(t) =0, if 11 <t <T, (14)
forl = 1,--- ,k+ 1. Note thatT}, < t < Ty forl = k + 1, K is the number of
change-pointsy;s fori = 1,--- , K are the time points when a change is made anid

the number of time points in the intervdl;_,,7;) for{ = 1,--- , K + 1. Note that again,
for i = K + 1, the interval becomef 'k, Tx+1]. By introducingw > 0, we avoid zero-
length interval since each time internd}, 7. 1) is at leastw units. From the hierarchical
specification above, it follows that the infinitesimal measis given as

e N T(ng + 1 1\
Go(d8s) = ( ol > (Hk (I?(Niil) <k+1> )gﬂo(Ql)dQl- (15)

i=1

3.2 Incorporating Site-specific Variability

The prior development thus far has been on the change poictidnsé ;. The variance pa-
rameters;?l represent the extent of variability of the log rates aroumarean trend. Note
from Figures 1 (a) and (b) that although Florida and Arizoaaghthe same cancer trends,
the variability around this common mean trend is differamtthe two states. This neces-
sitates the incorporation of’, as site specific parameters independent of the clusterng. |
fact, we demonstrate in Section 4, the exclusion of suchideretion (that is, allowing to

be common for all the sites in a cluster but different for tifeedent time segments) results
in poor clustering of cancer trends. Thus, for additionatifigity, the likelihood compo-
nent ofY ; incorporates a site-specific variability parametes agl foralll =1,2,--- |k
(that is, one common site-wise variance parameter), fdreac 1,2, --- , N. For the sub-
sequent Bayesian analysis, the paramefere =, where= is its parameter space, are
assumed to be iid from the pdf. Note that¢; can be different for eack, and therefore,
are not subject to site-based clustering as the changeéfpoictionsé,. The infinitesimal
measure in (15) is now extended to include the site-wisenpatiersé; and is given by

~ e_>‘ k n "o as
Co(dB, de,) :( A ) (H{f ;(j;li 3 (kil) ) (E wowl)del) (£ de,
- (16)
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In what follows, it will be useful to make the following deftiun: For fixed8;, the in-
finitesimal measure

6(0s,dE,) = dg_ x m1(&s) d&s a7)

is the product of the point mass measuredgrand the infinitesimal measurg (£5) d&;.
Based on the likelihood in (10), the complete hierarchicatlet specification can now
be stated as follows:

Y|B> KT o ~ f (18)
0, “4 F and (19)
F ~ DP(O[() Go) (20)

Note that the set3, K, T', o) is in one-to-one correspondence with,, 0z, --- ,0x,&)
Where£ = (517527 to >£N)

3.3 Bayesian Inference Methodology

To infer 8s, the standard practice in DP posterior analysis is to iategoutF from the
hierarchical specification of (18)-(20) (see, for examey et al. (1998)). The likeli-
hood corresponding to the observab¥sn (18) is given by/(Y [61,05,--- ,0x, &) =
Iy, ]_[’“Jrl (Y5165, &) where the subscripton k is suppressed.

The conditional posterior distribution of the pé&ft,, &;) given the other pair@_, £_,)
can be derived as

k+1

(0s, & 105, &) o [[F(¥s1l00 &)
=1
QS,Oéé(dOm dés) + Zs/;és q878/5(08/7 dgs’)

_ , 21
qs,0 + Zs’;ﬁs qs,s’ ( )

. Go(dby, d&,) 1
"+ N—-1 "ag+N-1

> 60y, dEy)|
/#S

where the second line is obtained from the first after nomatibn. The quantitieg, o and
s, N (21) have the expressions

k+1

gs, = f s, |9 > gs G (dosa d£ ) and (22)
0 0//;11_[1 l l 0
k*+1
t = [T 7016 €000, d8,0), (23)
= =1

wherek* is the number of change-points éyy.. The distribution

Ys,l | 917 58) GO(dO& dés)

k+1
éa(d057d§s) = - Hl:l f( 450

is that of (6,&s) when a new realization off, &) (i.e., not belonging to any of the
previous clusters) has to be generated. An alternative iayitng (21) in terms of the
distinct clusters is

qs oGO(dOS, dfs) + Z 1 Nj qs,j 59
(04, &0y, €_,) = = (24)
4s,0 + ZJ 1 Njds,g
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wheref;, j = 1,2,--- ,N* are the distinct change-point functions for the different
clusters,N; is the number of sites’ for which 6 is equal tof;, andg ; is ¢« in (23)
with 8 (t) replaced byd;(t). Note thathZ1 N; = N — 1 since the site is left out.

Expression (24) explicitly demonstrates the clusteringabédity of DP. The current
value off, can be selected to be one of the othgrwith probabilitij'V:*1 Njqs,5/(4s0+
Z;-V:*l Nj g, ;), this positive probability being the reason for possiblestéring of sites
in terms of@;. Expression (24) also allows for a né#{ to be generated from the pos-
terior distribution G; this is the likely scenario if the temporal observationssié s,
W, ={Wg,t=UyUy+1,---,U; }, strongly support a different change-points func-
tion compared to the existin@, functions fors’ # s. We note that the above treatment
is similar to Gelfand et al. (2005) who extend&dto a realization of a random field by
replacing it with a surface function on a spatial domain. Ideer, Gelfand et al. (2005)
do not consider joinpoint extensions as is done here; sedlasrelated discussion in the
Introduction.

The DP prior introduces two other hyper-parameters, namglgnd A, into the infer-
ential framework. In our analysis, is fixed at a known value. We take the prior aro
bemy. The priorsrg, w1 andms are taken to be

m0(0;) x 1, m(0%) =i gamma(a;,b;) and my(\) = gamma(as, by), (25)

whereganma andi ganma are the Gamma and inverse Gamma distributions with shape
and scale paramete(s, b;) and (a2, b2), respectively. The above choices are conjugate
to their respective likelihoods enabling the posteriorbadmbtained in closed forms. The
reader is referred to the Discussion section of this papethf® motivation of using a flat
prior for 6; from the conjugacy perspective. It turns out that using armomnormal prior
for 6; does not allow the integrals in o to be computed in closed form.

For a complete update of all the unknown parameters, plefseto Dass et al. (2010).

3.4 Inference based on Posterior Samples

After convergence is established, we tdkeamples from the posterior distribution to make
inference on all unknown quantities. L&}, b = 1,2,--- , B be B samples of the poste-
rior obtained from the Gibbs sampler. Componentstpfinclude NV realizations of step
functionséd, andg (or equivalently3, K, T, o). Thus, marginal posterior inference can be
carried out for each of these components. For example, ¢oéhft) for a particular sites
and time point;, we extract alf,(¢) components from each*, b = 1,2,--- ,B. TheB
realizations oP;(¢) are then used to compute the posterior mean, variance afidexce
interval. A similar procedure also works féf* where we can obtain marginal probabilities
of N* = n* for all non-negative integers*. Results for simulation experiments and real
data are given in the subsequent sections.

A more challenging inference problem is to obtain resultstifi@ clustering tenden-
cies, for example, the “average” clusters. Note that theuubf the Gibbs sampler at
each iteration is a clustering of th€ states, and therefore, it is difficult to obtain a sum-
mary posterior measure, such as mean and variance, forubtiihg of sites. To get
some idea about average clustering tendencies reflectduelyyosterior distribution, the
following methodology is developed: For every pair of siteg s2) in {1,2,--- , N}, de-
fine Dy(s1,s2) = 1if s; ands, belong to the same cluster i, and0, otherwise, for
b=1,2,---,B. Subsequently, we construct the average distance meastwedn the
sitess; ands, using

dist(s1,82) =1 — D(s1, $2)
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Number of clusterg 4 5 6 7 8
Posterior Prob | 0.0688 | 0.5153 | 0.3820 | 0.0335 | 0.0003

Table L:
Posterior probabilities of number of clusters for Model 1

whereD(s1, s3) = Zle Dy(s1,s2)/B. Based onlist, an agglomerative clustering algo-
rithm is performed with the maximum number of clusters thadd in the algorithm fixed
at the value ofNV* for which the posterior probability has the maximum valude Tlus-
tering outputs from this procedure match with our expectsshario. Subsequent sections
give results based on real and validation data.

4. Analysis of Cancer Incidence Rates Revisited

We consider two specific choices of models. The site-spe@fi@ability model is given by
Model 1 below. In Model 2, we assume thetis cluster-dependent (not site-specific), that
is, 02 is same over all states in the same cluster (but differenttferdifferent clusters).
Based on previous discussion, we can write these two modétslaws:

Model 1: Y g = (8, RSS)”, 61 = 1, & = o

Model 2: Ysl = (,Bl,RSSl)T, 91 = (,81,0’12),

suppressing the subscripbn Bl andRSS;.

Note that Model 2 is not a subset of Model 1 or vice versa. In Madal? is common to
all sites within a cluster but can vary for the different timeervals|7;_1, 7;). In Model 1,
one commonr?2 is assumed for each site which does not change within eaehstgment.

The Appendix of Dass et al. (2010) gives the model specificasgions used for the
Bayesian inference. We run three Gibbs chains for 10,008tites. The convergence is
established after 5,000 iterations and we take 2,000 sarfmalm each chain after conver-
gence so that total 6,000 samples are used for further poséeralysis. Specific values of
hyper-parameters are setdp = b; = 1 for 71, ap = be = 1 for my. ag is set tol/100.
The number of clusters of states based on the highest pospedbability is found to be
N* = 5; see Table 1 for posterior probabilities. Using the postegstimate ofV*, we use
the clustering methodology explained in section 3.4 totelustates into 5 groups.

As mentioned in Introduction, we expect Florida and Arizaadelong to the same
cluster while Indiana and Missouri to belong in another. sTisi what is revealed from
the analysis. Marginal posterior analysis on the numberhahge-points for each state
revealed that one change-point corresponds to the highelsalmlity. Further, the pos-
terior probabilities of the time intervals correspondirmynio change-point and a single
change-point are given in Table 2 for each of the four staf&g entries in Table 2 is the
marginal posterior probabilities corresponding to the trs@mificant partitions of the inter-
val [1969, 2006] based on output of the Gibbs sampler. Note that both ArizoxdaRéorida
showed one change-poirif; = 1989 while for Missouri and Indiana, the change-point
wasT; = 1987. Corresponding to these change-points, the mean poséstionates ob
(site-wise) andgb; (cluster-wise) is given in Table 3.

Next, we demonstrate the superiority of Model 1 over Modela®dal on predictive
analysis. A new realization dfVy;, W, is obtained by sampling from the normal dis-
tribution with meana; + 3t and variancer? where 3, ando? are posterior realizations
from the Gibbs chain and,; is given from the data for the corresponding time interval an
site. TheB values of W}, are then used to construct the 95% credible predictivevater
The confidence bands generated are shown in Figure 3 in thmalriscale. A similar
procedure is repeated for Model 2 to obtain the confidencdsahown in Figure 4. The
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Change-Points | Arizona | Florida | Indiana| Missouri
No Change-Points | 0.0293 | 0.0042 0 0
Ty = 1994 0 0 0 0.0010
T, = 1993 0.0010 | 0.0002 | 0.0002 | 0.0002
Ty = 1992 0.0147 | 0.0355 0 0.0005
Ty = 1991 0.0657 | 0.1723 | 0.0018 | 0.0028
T, = 1990 0.0768 | 0.1533 | 0.0147 | 0.0172
T = 1989 0.5807 | 0.6033 | 0.0188 | 0.0200
T, = 1988 0.0662 | 0.0258 | 0.0778 | 0.0975
Ty = 1987 0.0432 | 0.0007 | 0.7205 | 0.7212
T, = 1986 0.0042 0 0.1345 | 0.1285
Ty = 1985 0.0010 0 0.0030 | 0.0032
Two Change-Points| 0.1033 0 0.0113 | 0.0025
Three Change-Points 0.0118 | 0.0045 | 0.0172 | 0.0055

Table 2
Posterior probabilities of a change-point for Model 1

State O Change-Point(s (51, B2)
Arizona | 0.0416 T = 1989 0.0209, —0.0107
Florida | 0.0182 T) = 1989 0.0196,—0.0118
Indiana | 0.0297 T, = 1987 0.0297, 0.00008
Missouri | 0.0292 T, = 1987 0.0295, 0.00006

—~
~—

—~
~—

A/_\
~— —

Table 3.
Posterior outputs for Model 1

Florida Arizona

60 70
60 70

50
50

40
40

T T T T T T T T
1975 1985 1995 2005 1975 1985 1995 2005

Missouri Indiana

1975 1985 1995 2005 1975 1985 1995 2005

() (d)

Figure 3: Examples of states belonging to different clusters fromithplementation of
the change-point methodology. The bands around the olubealges (age-adjusted cancer
rates) are the 95% predictive credible intervals based odelib.
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Florida _ Arizona

1975 1985 1995 2005 1975 1985 1995 2005

Missouri

Indiana

T T T T T T T T
1975 1985 1995 2005 1975 1985 1995 2005

() (d)

Figure 4. The bands around the observed values (age-adjusted categy are the 95%
predictive credible intervals based on Model 2.

Cluster| Posterior Mean ofl; — 51 | 95% Credible Interva
1 —0.0370 (—0.0397, —0.0336)
2 —0.0318 (—0.0341, —0.0298)
3 —0.0316 (—0.0385, —0.0294)
4 —0.0314 (—0.0337,—0.0298)
5 —0.0307 (—0.0329, —0.0291)

Table 4
Clusters (from the agglomerative procedure) with the tsgdeop in cancer incidence
rates measured in terms 6f — ;.

better model will be the one that detects at least one chpam-and that gives narrower
confidence bands. Note that change-points are not detewtkithe width of the predictive
confidence bands are too large for Model 2. These resultsdtelihat there is significant
evidence from the data to suggest heterogeneous (i.esmtafic) variability around the
mean within clusters.

Next, the cluster with the highest drop in cancer incidemte is identified. The differ-
encefss — 51 in Table 4 is computed using posterior samples for each df thesters based
on Model 1. Table 4 also gives the corresponding 95% crediddevals of the 5 clusters
for 55 — 31. Note that the top cluster has a drop in rates that is significdifferent from
clusters 2, 4 and 5. States in this cluster consists of Cador&eorgia, Oregon and Vir-
ginia. One subsequent investigation may, therefore, badwtify the underlying reasons
for the highest drop in cancer rates, and to identity and eémgint effective policies or
programs in these states to the other states in the nation.

5. Regression model with Change points and Clustering

In this section, we consider a possible extension to inckmeriates which also have
change points over time. Suppose that we have U; — Uy + 1 time points given by the
index:t = Uy, Uy + 1,Up + 2, --- , Uy andp variables onV spatial sites given by:gj)(t),
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the value of thg’—th variable at site and time point forj =1,---,p. y,(t) is aresponse
variable ats = 1,--- , N andt = Up, Uy + 1,Up + 2, - -- , U;. With cancer datay,(t) is

all malignant cancer mortality rate anr&’ ) is a mortality rate of a specific cancer type.

We first consider a DP change-point model on em&’ﬁ t) independently for each
which is specified in Section 3. The likelihood ®f(¢) is assumed to be

k+1 T;—

(2m) 20 " exp ]~y > Z 2ot) = b5 = Ot = Ting + 1)

slltTll

whered; , is an intercept for thé-th interval which is nuisance to the problem of rates of
change#, ; and7; ; were used instead 6f and7; to emphasize dependence on sit©ur
approach is to assume that the rate of change, @it every time point is governed by a

linear combination of the rates of changezéf)(t). That is, we have

p
ps(t) = oo+ Y _ ;09 (1), (26)
j=1
wherep(t) is the rate of change af, at timet. Note that we assume thaty, - - - , o)

is same oves. Then, we have a regression type model for the rate of chasgscting;j

with significanta; will enable us to find a subset of covarlateéf ), which contributes
to the rate of changes of,.

We further assume the following likelihood fgr= (y,,--- ,y ) to obtain the overall
likelihood:

2

t
<ys — H0o,s — / Hs (u)du> )
Uo

N 1 Ui
= H(Qﬂ')—n/%-s_” exp{ — 2—7_2 Z (ys( ) — Ho,s — ao(t — Uo)

s t=Up

wherer? is a site-specific variability foy, andp s is a site-specific intercept term, which
is nuisance to the problem. Léﬁ” be the label of the-th site forj-th « variable, i.e.
2 () such that

Zw 9(]

independently for allj, Whereog)(-) i Gy and w&j) is a transformed weight from

the Beta distribution. That isp; = n1, w, = 0, [} (1 —n;) andn; are i.i.d. from
Beta(1,v). Then, the overall likelihood is

N
H(QW) M2 exp { 5.2 <ys — po,s — ao(t — Uo)

s=1 S t= U()
- oN i
_Z%/ OLJm ) }
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LT ot

l <
=T, Lo

2
()
- el L(J)( Tlflngj) + 1)) }wLJ(Sj)

k
p N

><H (2m) -n/2 exp{ 223 Z:

j=1s=1

O] (t) — 51(73’5)

S

N
X H H m(wl?) H dGo(09) () x mo (e, - - - ,0p) X HTF(‘LLQyS).
s=1

j=1lu=1

With these distributional assumptions o’ andy,, we can derive conditional distri-
bution of all parameters so that we can develop a Bayesianeinfial procedures. Posterior
analysis will give us change points and clustering of sthdegach covariate as well as a
subset of covariates which contribute a rate of changg, of

6. Discussion

In this paper, we propose change-point models for spatipéeal data that can detect
change-points over time and group spatial sites into skersters with respect to their
change-point functions. Clustering is achieved by usingr&iidet process prior on the
space of step functions over time. The model was developethatyze state-wise age
adjusted rates to find local change-points and clusterthe similar changes.

Our analysis based on predictive distribution demonstitzée Model 1 is superior to
Model 2. Thus, model flexibility is achieved far more by ingorating site specific pa-
rameters which are nuisance to the clustering compared dim@axtra parameters for
clustering. The latter action may in fact distort true utyleg trends as evidenced by
Figure 4.

For the real application, we find that state-level and nafidevel age-adjusted lung
cancer mortality rates show a clear change-point arouredl@80s to early 1990s. Some
states like Florida and Arizona follow similar patterns agional level rates while some
states like Missouri and Indiana show different patterosnfithe national level rates (see
Figure 1). In particular, Missouri and Indiana have smate of changes after the change-
point compared to Florida and Arizona as well as nationadllésee Table 3). Indeed, we
can argue that lung cancer mortality rates have not changexh mfter 1990s for these
states, while the national level seems to significantly ese. This further indicates that
we need different attention on each individual state. Aaep#ivenue for this line of research
is to incorporate covariate information into the clustgrmechanism as we briefly intro-
duced in Section 5 and authors are currently working on refimodels and developing an
algorithm.
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