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Abstract
It is well known that cancer incidence rates are heterogeneous across geographical regions. The aim
of this paper is to supplement the existing tools for analyzing cancer rates from the Surveillance,
Epidemiology, and End Results (SEER) database that are ableto find the change points over time.
Subsequently, the model can cluster the geographical subregions based on the magnitude and direc-
tion of changes of the disease risk. The proposed model to findchange-points over time and cluster
spatial locations is based on Dirichlet process priors where we consider temporal functions as the
random quantities arising from the Dirichlet process prior. Through the analysis of age adjusted
lung cancer mortality rates from 1969 to 2006, the proposed model nicely characterized local data
features, namely, the local change points, the rate of changes, and clusters of states that exhibited
similar trends of cancer incidence rates. The procedure to extend this model to include covariates
therefore enabling selection of meaningful covariates arealso discussed.

Key Words: Joinpoint analysis; Disease mapping; Bayesian nonparametrics; Dirichlet process
priors.

1. Introduction

Statistical methods for analyzing disease incidence or mortality data over geographical
regions and time have gained considerable interest in recent years due to increasing con-
cerns of public health, health disparity and legitimate resource allocations. Cancer is a
major threat to public health in the United States and in the world. Cancer accounts for
nearly one-quarter of deaths in the United States, exceededonly by heart disease (ACS,
www.cancer.org). Among many things, the ACS publishes timetrends of age-adjusted
cancer death rates for different cancer types, and for different sub-populations defined by
geographic and socio-demographic characteristics. However, the impact of cancer surveil-
lance is not uniformly effective over geographical regions; see, for example, Figure 1 which
displays cancer trends for four different US states and the overall trend for the nation.

One of the scientific objectives of monitoring cancer rates is to detect changes in the
trend over time and identify clusters of sub-populations (generally a set of geographical
sub-regions) that are affected by changes (increase or decrease) in risk. Also, if covariates
have changes in trend over time, it is interesting to understand how those covariates affect
the cancer rates over time. A carefully developed procedurethat addresses these issues can
help administrators find key information for the preventionof cancer.

Several joinpoint models that identify time points associated with a significant change
in disease trend have been developed by several authors (See, Carlin et al. (1992), Kim et al.
(2000, 2004), Tiwari et al. (2005) and Ghosh et al. (2009)). The models developed by Kim
et al. (2000, 2004), for example, are used in cancer statistics review and implemented in
the software of the National Cancer Institute (NCI) (Ries etal. 2002). One important ques-
tion is whether the rates of cancer incidence before and after the joinpoint is significantly
different (statistically speaking) from each other. In other words, we wish to determine if
there is a significantchange point in the cancer incidence rates before and after the join-
point. Another important concern not addressed by joinpoint modeling is whether there
are groups (or, clusters) of states exhibiting similar change-points of cancer incidence rates
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Figure 1: Age-adjusted incidence rates of lung cancer from 1969 to 2006 for four states
and the entire US: Florida (a), Arizona (b), Missouri (c), Indiana (d) and entire US (e).

but with significant variations between and within groups. It is well known that the cancer
rates in the US vary widely by geographical area. Figure 1 gives one such illustration based
on age-adjusted lung cancer mortality rates for four states: Florida, Arizona, Missouri and
Indiana. It is evident that Florida and Arizona share the same change-point and rates of
change in each time segment while Missouri and Indiana exhibit different levels of these
attributes. Figure 1 also demonstrates that Florida and Arizona have different levels of
variability around its mean value over time. When we are interested in grouping states by
the rates of change, variability is nuisance with respect tothe clustering criteria. However,
the omission of such variability from the model may result ininefficient estimation. The
presence of heterogeneity among states can also give a misleading impression for the rates
of change corresponding to the overall US. Figure 1 panel (e)for the entire nation does
not reveal the two distinct types of change-points exhibited in the first four panels by the
four different states. This indicates that a more efficient estimation procedure is possible
by taking into account local geographical effects.

Third, it is also of interest if we can find some relationship between each specific cancer
trend and aggregated cancer trend. Changes in trend over time for all cancer types might be
different from changes in trend over time for a specific cancer type. Then, which specific
cancer rate affects an aggregated cancer rate can be answered by regression type models
that incorporates detecting the changes and grouping states with common changes over time
and rate of changes. For example, Figure 2 shows mortality rates of all Malignant cancers
and several specific cancer types. Starting from early 1990’s, most of cancer mortality
rates are decreasing including all cancer type except Liverand Intrahepatic Bile Duct and
Pancreas for the state of Florida.
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Figure 2: Age-adjusted incidence rates of all cancer and each specific cancer type from
1969 to 2006 for Florida.

To address the above scientific questions, we first developeda change-point model to
detect changes in multiple time series in presence of heterogeneity. Our proposed model
does not assume connectedness at the joinpoint but is able toperform the analysis more
locally at this expense. The proposed model is also able to cluster geographical regions
which have similar rates. Additional model flexibility for grouping is obtained by including
model parameters that represent local data characteristics (for example, variability around
the mean trend in Figure 1), which are allowed to vary from site to site. We also incorporate
the unknown number of change-points into the estimation scheme, to be inferred from the
posterior probabilities.

Our approach is to make use of the Dirichlet Process (DP) methodology in an innovative
way to cluster spatio-temporal data. We note that Ghosh et al. (2009) used DP to perform
a non-parametric Bayesian analysis of joinpoints where thebaseline distributionG0 is a
distribution onR for the errors; this is not for the purpose of clustering but to robustify the
analysis with respect to non-normality. Our innovative wayof using the DP is to consider
realizations fromG0 that are in more general object spaces; in this case, it is thespace
of all functions over time that represent change points in cancer trends. The advantage of
extending DPs in this manner is two-fold: First, the change-points are included as unknown
model parameters with a prior distribution governed byG0. This entails that the uncertainty
involved in their estimation is taken into account in the inference, and therefore, represents
an improvement over the methodology of Ghosh et al. (2009) and previous approaches
by others. Second, even for more general object spaces, the intrinsic property of DPs that
assign unit mass to all discrete probability distributionscan be utilized to enable clustering
of sites with respect to similar cancer trends. For each siteon the spatial domain, we
have (only one) change-point function. DP-based clustering is obtained for the sites on
the spatial domain based on similar change-point functions. Incorporating other aspects
of variability via parameters to enhance model flexibility without affecting the DP-based
clustering is also an important contribution of this paper.

A primary inferential objective in the analysis of disease data is the summarization and
explanation of spatial and spatio-temporal patterns of disease (i.e., disease mapping); see,
for example, Elliot et al. (2000), Banerjee et al. (2004) andLawson (2009) for details and
further references. Also of interest is the spatial smoothing, temporal prediction of disease
risk and the detection of extremes. Models for inference in this area have been mostly
limited by parametric elicitation of dependence structures for pooling spatial information.
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On the other hand, the proposed DP-based methodology is freeof parametric constraints,
and its capability of pooling information via data driven clustering can greatly enhance the
analysis of spatial and spatio-temporal patterns. As an illustration, we infer the cluster of
US states which correspond to the highest drop in cancer trends in Section 4. We are also
able to demonstrate statistical significance of the highestdrop compared to other clusters
of US states. These types of inference can potentially help policy makers identify factors
in the top states that contributed to the highest drop, and subsequently, be implemented as
policy or programs in the other states.

The rest of the paper is organized as follows. Section 2 givesthe details of the data
and application while Section 3 presents the proposed change point model and associated
Bayesian inference. Section 4 gives two specific model formulations for the cancer data
and demonstrates the superiority of incorporating site specific variability. Section 5 gives a
possible extension to incorporate covariate information.Section 6 gives discussion.

2. A Change Point Model for Cancer Incidence Rates

Cancer incidence rates are obtained from the Surveillance,Epidemiology, and End Results
(SEER) program (seer.cancer.gov) of the National Institute of Cancer (NCI). The SEER
program is an authoritative source of information on cancerincidence and survival in the
US. The SEER program currently collects and publishes cancer mortality and survival data
from population-based cancer registries covering approximately 26 percent of the popula-
tion. An age-adjusted incidence/mortality rate is a primary measure for monitoring cancer
trends over time and over geographical locations since cancer is a disease where age is a
determining factor. An age-adjusted rate is a weighted average of the age-specific (crude)
rates, where the weights are the proportions of persons in the corresponding age groups of
a standard population. The potential confounding effect ofage is reduced when comparing
age-adjusted rates computed using the same standard population. Several sets of standard
population data are available in SEER which include the 2000US standard population as
well as the standard US populations for the years 1940, 1950,1960, 1970, 1980, and 1990.
The age-adjusted rate using age groupsA throughB is calculated using the following for-
mula:

aarateA−B =

B∑

i=A

[(
counti
popi

)
× 100, 000 ×

(
stdmili∑B

i=A stdmili

)]
, (1)

wherecounti, popi andstdmili are, respectively, the number of incidence/mortality due
to a cancer, the population and the choice of a standard population in the age groupi.
Nineteen age groups and the 2000 US standard population are considered in this study.

We consider lung cancer age-adjusted mortality rates from 1969 to 2006 for the 48
contiguous states in continental United States (excludingAlaska and Hawaii) and Wash-
ington D.C. Thus, observations are the age-adjusted lung cancer mortality rates fort =
1969, 1970, · · · , 2006 ands = 1, 2, · · · , 49. Four states and overall USA plots were given
in Figure 1 as an example. It is clear from the panels in Figure1 that there is at least
one change-point in the rate of change (i.e., slope) of lung cancer mortality rates for the
four states. There are several specific aims of this paper: Wewould like to determine (i)
all possible change-points of slopes of lung cancer mortality rates corresponding to each
state, (ii) determine simultaneously if the slopes exhibitsome clustering over the states
(i.e., different states have identical slope values), and (iii) identify clusters with the highest
changes in slope over time, and (iv) whether this highest change is significant compared
to the other remaining clusters. To model exponential growth or decay of the age-adjusted
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rates, we model the logarithm of the age-adjusted rates as a linear function of time as is
done in Ghosh et al. (2011), Clegg et al. (2009) and Ghosh et al. (2009). Slopes over the
different time segments capture the essential growth rate (positive or negative) pattern of
cancer incidence/mortality rates. The change-point modelwe develop subsequently is in
terms of these slopes and the variability of the observations around the log mean trend.

2.1 Change Point Likelihood Based on Observables

The subsequent discussion applies to both cancer incidenceand mortality rates, and there-
fore, we refer to them as just rates. LetWst denote the logarithm of the observed can-
cer rate at sites and timet for the collection of sitess = 1, 2, · · · , N and time points
t = U0, U0 + 1, U0 + 2, · · · , U1. Assume that a sites hask change-points in terms of the
slope of the log rates; thus, in Figure 1,s may be Florida withk = 1 change points. For
fixed k, let [Tl−1, Tl), l = 1, 2, · · · , k + 1 be the time intervals where no changes in the
disease trend occur (i.e., no change point). To extract the slope and the variability of the
observations around the mean trend in each segment, we consider the following regression
model on each[Tl−1, Tl):

Wst = α+ βt+ ǫt, (2)

for t = Tl−1, Tl−1 + 1, · · · , Tl − 1 with ǫt iid N(0, σ2) for the observed data in[Tl−1, Tl);
thus, in (2), the log rates are modeled as a linear function oftime with intercept and slopeα
andβ, respectively, andσ2 represents the unknown error variance around the mean linear
trend. The dependence ons andl is suppressed for the moment. The following results are
well known in regression analysis:

(α̂, β̂)T ∼ N
(
(α, β)T , σ2(XTX)−1

)
, and (3)

RSS

σ2
∼ χ2

Tl−Tl−1−2, (4)

whereα̂ and β̂ are the least squares estimators ofα andβ (which are also the maximum
likelihood estimates (MLEs) under the normal error model),RSS is the residual sum of
squares given by

RSS =

Tl−1∑

t=Tl−1

(Wst − α̂− β̂ t)2, (5)

χ2
ν is the chi-square distribution withν degrees of freedom, andX is (Tl−Tl−1)×2 matrix

whose first and second columns is the vector of ones andtl ≡ (Tl−1, Tl−1+1, · · · , Tl−1)T ,
respectively. Also, in (3) and (4), the statistic(α̂, β̂) is independent ofRSS. We emphasize
here that the number of joinpoints,k, the time intervals[Tl−1, Tl), l = 1, 2, · · · , k + 1
andσ2 are all parameters that are unknown, to be inferred from the subsequent Bayesian
analysis. The purpose of introducing these unknown parameters here is to describe the
likelihood given the unknown parameters at sites:

β̂l, RSSl |βl, k, tl, σ
2
l

ind
∼ f1l × f2l (6)

independently forl = 1, 2, · · · , k + 1. In (6), f1l(β̂l |σ2
l ) is the normal pdf with meanβl

and varianceσ2
l · v wherev is the(2, 2)-th entry of(XTX)−1; the explicit form off1l is

f1l(β̂l |βl, σ
2
l ) =

1√
2π v σ2

l

exp

{
−

1

2 v σ2
l

(β̂l − βl)
2

}
. (7)
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The densityf2l(RSSl |σ
2
l ) in (6) isσ2

l times the chi-square density withml = Tl−Tl−1−2
degrees of freedom whose explicit form is given by

f2l(RSSl |σ
2
l ) =

1

2(ml/2)Γ(ml/2)

(
RSSl

σ2
l

)ml
2
−1

exp

{
−
RSSl

2σ2
l

}
1

σ2
l

. (8)

Subsequently, we consider the site-wise functions

θs(t) = βsl if Tl−1 ≤ t ≤ Tl − 1 (9)

whereβsl is the true but unknown slope in the interval[Tl−1, Tl) at sites. Thus, the func-
tions θs(t) are step-functions oft with k change points at timesTl, l = 1, 2, · · · , k.
Denote the set of all observables byY = {Y sl, l = 1, 2, · · · , ks, s = 1, 2, · · · , N
whereY sl ≡ (β̂sl, RSSsl) with β̂sl andRSSsl as in (6) for each sites, andks is the
number of joinpoints for sites. Let β denote the collection of all true slope parameters
βsl, l = 1, 2, · · · , ks, s = 1, 2, · · · , N }. Also, denote byK, T andσ to be the collection
of parametersk, Tl, l = 1, 2, · · · , k+1 andσ2

l for all theN sites. Assuming independence
between theN sites, the likelihood is given by

f(Y |β, K, T , σ ) =

N∏

s=1

ks∏

l=1

f
(s)
1l × f

(s)
2l (10)

wheref (s)
1l andf (s)

2l aref1l andf2l corresponding to sites.
As mentioned in the Introduction, the change point analysishere is different from join-

point modeling. The latter assumes that the cancer incidence rates are continuous at the
joinpoints but with different slopes to the left and right ofthe joinpoint. In our case, we
make no assumption on the continuity of the regression at thetime pointsTl. However,
at this expense, the current formulation allows us to infer different slopes for the different
sites, and therefore, enable clustering of these slopes based on the DP-methodology. The
proposed model also allows the unknown number of change-points and clusters to be in-
ferred concurrently with parameters based on Bayesian posterior probabilities (details in
the subsequent sections).

3. Bayesian Inference Using Functional DP Priors

3.1 Functional DP Prior

Let Θ denote the set of all step functionsθs as described in the previous section. We
introduce the functional DP as a prior on space of all distributions onΘ. TheDP ≡
DP (α0G0) depends on two hyper-parameters, namely,α0 > 0 the precision parameter,
andG0 the baseline (or centering) distribution onΘ. Recall that a randomly generated
distributionF from DP (α0G0) is almost surely discrete and admits the representation

F =

∞∑

i=1

ωi δθi , (11)

whereδz denotes a point mass atz, ω1 = η1, ωi = ηi
∏i−1

k=1(1− ηk), for i = 2, 3, · · · with
θ1, θ2 · · · iid from G0 (Sethuraman, 1994). Traditionally,θi was assumed to be scalar or
vector-valued taking values inRp. To model the observational process via change-points,
we conceptually extendθis in (11) to functionsθi ≡ { θi(t) : t = U0, U0 + 1, · · · , U1}.
The notationsθ, θ(t) andθ, therefore, will be taken to denote, respectively, a function, the
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value ofθ evaluated at timet and a possible realization taken byθ(t). These notations will
be used throughout the paper subsequently. For an integerk ≥ 0, θ with k change-points
has the form

θ(t) = θl if Tl−1 ≤ t < Tl, (12)

for l = 1, 2, · · · , k + 1 with U0 ≡ T0 < T1 < · · ·Tk < Tk+1 ≡ U1 as seen earlier. The
notationF ∼ DP (α0G0) in this context will be taken to mean

F =

∞∑

i=1

ωi δθi
, (13)

whereδz is now a point mass on the step functionz, ωis are as before, and theθis are iid
from a distributionG0 onΘ. To specifyG0, the baseline distribution onΘ, it is convenient
to utilize a hierarchical structure: (1) LetK ∼ Poisson(λ). (2) Fix an integerw > 0.
GivenK = k, let

(n1, · · · , nk+1) ∼ Multinomial

(
n0,

1

k + 1
, · · · ,

1

k + 1

)
,

wheren0 = U1−U0−(k+1)w = n−1−(k+1)w. (3) DefineTl recursively asT0 = U0,
Tl = nl + Tl−1 + w for l = 1, 2, · · · , k + 1. GivenT1, · · · , Tk, generateθ1, · · · , θk+1 iid
from the (univariate or multivariate) densityπ0 onRd, and set

θ(t) = θl if Tl−1 ≤ t < Tl, (14)

for l = 1, · · · , k + 1. Note thatTk ≤ t ≤ Tk+1 for l = k + 1, K is the number of
change-points,Tls for l = 1, · · · ,K are the time points when a change is made andnl is
the number of time points in the interval[Tl−1, Tl) for l = 1, · · · ,K + 1. Note that again,
for l = K + 1, the interval becomes[TK , TK+1]. By introducingw > 0, we avoid zero-
length interval since each time interval[Tl, Tl+1) is at leastw units. From the hierarchical
specification above, it follows that the infinitesimal measure is given as

G0(dθs) =

(
e−λλk

k!

)(
Γ(n0 + 1)

∏k
i=1 Γ(ni + 1)

(
1

k + 1

)n0

)
k+1∏

l=1

π0(θl) dθl. (15)

3.2 Incorporating Site-specific Variability

The prior development thus far has been on the change point functionsθs. The variance pa-
rametersσ2

sl represent the extent of variability of the log rates around the mean trend. Note
from Figures 1 (a) and (b) that although Florida and Arizona have the same cancer trends,
the variability around this common mean trend is different for the two states. This neces-
sitates the incorporation ofσ2

sl as site specific parameters independent of the clustering. In
fact, we demonstrate in Section 4, the exclusion of such consideration (that is, allowingσ to
be common for all the sites in a cluster but different for the different time segments) results
in poor clustering of cancer trends. Thus, for additional flexibility, the likelihood compo-
nent ofY sl incorporates a site-specific variability parameterξs = σ2

sl for all l = 1, 2, · · · , k
(that is, one common site-wise variance parameter), for each s = 1, 2, · · · , N . For the sub-
sequent Bayesian analysis, the parametersξs ∈ Ξ, whereΞ is its parameter space, are
assumed to be iid from the pdfπ1. Note thatξs can be different for eachs, and therefore,
are not subject to site-based clustering as the change-point functionsθs. The infinitesimal
measure in (15) is now extended to include the site-wise parametersξs and is given by

G̃0(dθs, dξs) =

(
e−λλk

k!

)(
Γ(n0 + 1)

∏k
i=1 Γ(ni + 1)

(
1

k + 1

)n0

)(
k+1∏

l=1

π0(θl) dθl

)
π1(ξs) dξs.

(16)
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In what follows, it will be useful to make the following definition: For fixedθs, the in-
finitesimal measure

δ(θs, dξs) = δθs
× π1(ξs) dξs (17)

is the product of the point mass measure onθs and the infinitesimal measureπ1(ξs) dξs.
Based on the likelihood in (10), the complete hierarchical model specification can now

be stated as follows:

Y |β, K, T , σ ∼ f (18)

θs
iid
∼ F, and (19)

F ∼ DP (α0 G0). (20)

Note that the set(β, K, T , σ) is in one-to-one correspondence with(θ1,θ2, · · · ,θN , ξ)
whereξ = (ξ1, ξ2, · · · , ξN ).

3.3 Bayesian Inference Methodology

To infer θs, the standard practice in DP posterior analysis is to integrate outF from the
hierarchical specification of (18)-(20) (see, for example,Dey et al. (1998)). The likeli-
hood corresponding to the observablesY in (18) is given byℓ(Y |θ1,θ2, · · · ,θN , ξ) =∏N

s=1

∏k+1
l=1 f(Y s, l |θs, ξs) where the subscripts onk is suppressed.

The conditional posterior distribution of the pair(θs, ξs) given the other pairs(θ−s, ξ−s )
can be derived as

(θs, ξs |θ−s, ξ−s) ∝

k+1∏

l=1

f(Y s, l | θl, ξs)


α0

G̃0(dθs, dξs)

α0 +N − 1
+

1

α0 +N − 1

∑

s′ 6=s

δ(θs′ , dξs′)


 ,

=
qs,0G̃

∗
0(dθs, dξs) +

∑
s′ 6=s qs,s′δ(θs′ , dξs′)

qs,0 +
∑

s′ 6=s qs,s′
, (21)

where the second line is obtained from the first after normalization. The quantitiesqs,0 and
qs,s′ in (21) have the expressions

qs,0 = α0

∫

S

∫

Ξ

k+1∏

l=1

f(Y s, l | θl, ξs) G̃0(dθs, dξs), and (22)

qs,s′ =

∫

Ξ

k∗+1∏

l=1

f(Y s, l | θl, ξs) δ(θs′ , dξs′), (23)

wherek∗ is the number of change-points inθs′ . The distribution

G̃∗
0(dθs, dξs) =

α0
∏k+1

l=1 f(Y s, l | θl, ξs) G̃0(dθs, dξs)

qs,0

is that of (θs, ξs) when a new realization of(θs, ξs) (i.e., not belonging to any of the
previous clusters) has to be generated. An alternative way of writing (21) in terms of the
distinct clusters is

(θs, ξs |θ−s, ξ−s ) =
qs,0G̃

∗
0(dθs, dξs) +

∑N∗

j=1 Nj qs,j δθj

qs,0 +
∑N∗

j=1 Nj qs,j
, (24)
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whereθj , j = 1, 2, · · · , N∗ are the distinct change-point functions for theN∗ different
clusters,Nj is the number of sitess′ for which θs′ is equal toθj , andqs,j is qs,s′ in (23)
with θs′(t) replaced byθj(t). Note that

∑N∗

j=1Nj = N − 1 since the sites is left out.
Expression (24) explicitly demonstrates the clustering capability of DP. The current

value ofθs can be selected to be one of the otherθs′ with probability
∑N∗

j=1 Nj qs,j/(qs,0+∑N∗
j=1 Nj qs,j), this positive probability being the reason for possible clustering of sites

in terms ofθs. Expression (24) also allows for a newθ∗
s to be generated from the pos-

terior distributionG∗
0; this is the likely scenario if the temporal observations atsite s,

W s = {Wst, t = U0, U0 + 1, · · · , U1 }, strongly support a different change-points func-
tion compared to the existingθs′ functions fors′ 6= s. We note that the above treatment
is similar to Gelfand et al. (2005) who extendedθl to a realization of a random field by
replacing it with a surface function on a spatial domain. However, Gelfand et al. (2005)
do not consider joinpoint extensions as is done here; see also the related discussion in the
Introduction.

The DP prior introduces two other hyper-parameters, namelyα0 andλ, into the infer-
ential framework. In our analysisα0 is fixed at a known value. We take the prior onλ to
beπ2. The priorsπ0, π1 andπ2 are taken to be

π0(θl) ∝ 1, π1(σ
2) = igamma(a1, b1) and π2(λ) = gamma(a2, b2), (25)

wheregamma andigamma are the Gamma and inverse Gamma distributions with shape
and scale parameters(a1, b1) and(a2, b2), respectively. The above choices are conjugate
to their respective likelihoods enabling the posteriors tobe obtained in closed forms. The
reader is referred to the Discussion section of this paper for the motivation of using a flat
prior for θl from the conjugacy perspective. It turns out that using a common normal prior
for θl does not allow the integrals inqs,0 to be computed in closed form.

For a complete update of all the unknown parameters, please refer to Dass et al. (2010).

3.4 Inference based on Posterior Samples

After convergence is established, we takeB samples from the posterior distribution to make
inference on all unknown quantities. LetX ∗

b , b = 1, 2, · · · , B beB samples of the poste-
rior obtained from the Gibbs sampler. Components ofX ∗

b includeN realizations of step
functionsθs andξ (or equivalently,β,K,T ,σ). Thus, marginal posterior inference can be
carried out for each of these components. For example, to inferθs(t) for a particular sites
and time pointt, we extract allθs(t) components from eachX ∗

b , b = 1, 2, · · · , B. TheB
realizations ofθs(t) are then used to compute the posterior mean, variance and confidence
interval. A similar procedure also works forN∗ where we can obtain marginal probabilities
of N∗ = n∗ for all non-negative integersn∗. Results for simulation experiments and real
data are given in the subsequent sections.

A more challenging inference problem is to obtain results for the clustering tenden-
cies, for example, the “average” clusters. Note that the output of the Gibbs sampler at
each iteration is a clustering of theN states, and therefore, it is difficult to obtain a sum-
mary posterior measure, such as mean and variance, for the clustering of sites. To get
some idea about average clustering tendencies reflected by the posterior distribution, the
following methodology is developed: For every pair of sites(s1, s2) in {1, 2, · · · , N}, de-
fine Db(s1, s2) = 1 if s1 ands2 belong to the same cluster inX ∗

b , and0, otherwise, for
b = 1, 2, · · · , B. Subsequently, we construct the average distance measure between the
sitess1 ands2 using

dist(s1, s2) = 1− D̄(s1, s2)
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Number of clusters 4 5 6 7 8

Posterior Prob 0.0688 0.5153 0.3820 0.0335 0.0003

Table 1:
Posterior probabilities of number of clusters for Model 1

whereD̄(s1, s2) =
∑B

b=1 Db(s1, s2)/B. Based ondist, an agglomerative clustering algo-
rithm is performed with the maximum number of clusters threshold in the algorithm fixed
at the value ofN∗ for which the posterior probability has the maximum value. The clus-
tering outputs from this procedure match with our expected scenario. Subsequent sections
give results based on real and validation data.

4. Analysis of Cancer Incidence Rates Revisited

We consider two specific choices of models. The site-specificvariability model is given by
Model 1 below. In Model 2, we assume thatσ2 is cluster-dependent (not site-specific), that
is, σ2 is same over all states in the same cluster (but different forthe different clusters).
Based on previous discussion, we can write these two models as follows:
Model 1: Y sl = (β̂l, RSSl)

T , θl = βl, ξs = σ2

Model 2: Y sl = (β̂l, RSSl)
T , θl = (βl, σ

2
l ),

suppressing the subscripts on β̂l andRSSl.
Note that Model 2 is not a subset of Model 1 or vice versa. In Model 2,σ2

l is common to
all sites within a cluster but can vary for the different timeintervals[Tl−1, Tl). In Model 1,
one commonσ2

s is assumed for each site which does not change within each time segment.
The Appendix of Dass et al. (2010) gives the model specific expressions used for the

Bayesian inference. We run three Gibbs chains for 10,000 iterations. The convergence is
established after 5,000 iterations and we take 2,000 samples from each chain after conver-
gence so that total 6,000 samples are used for further posterior analysis. Specific values of
hyper-parameters are set toa1 = b1 = 1 for π1, a2 = b2 = 1 for π2. α0 is set to1/100.
The number of clusters of states based on the highest posterior probability is found to be
N∗ = 5; see Table 1 for posterior probabilities. Using the posterior estimate ofN∗, we use
the clustering methodology explained in section 3.4 to cluster states into 5 groups.

As mentioned in Introduction, we expect Florida and Arizonato belong to the same
cluster while Indiana and Missouri to belong in another. This is what is revealed from
the analysis. Marginal posterior analysis on the number of change-points for each state
revealed that one change-point corresponds to the highest probability. Further, the pos-
terior probabilities of the time intervals corresponding to no change-point and a single
change-point are given in Table 2 for each of the four states.The entries in Table 2 is the
marginal posterior probabilities corresponding to the most significant partitions of the inter-
val [1969, 2006] based on output of the Gibbs sampler. Note that both Arizona and Florida
showed one change-point,T1 = 1989 while for Missouri and Indiana, the change-point
wasT1 = 1987. Corresponding to these change-points, the mean posteriorestimates ofσs
(site-wise) andβl (cluster-wise) is given in Table 3.

Next, we demonstrate the superiority of Model 1 over Model 2 based on predictive
analysis. A new realization ofWst, W ∗

st, is obtained by sampling from the normal dis-
tribution with meanαl + βl t and varianceσ2

s whereβl andσ2
s are posterior realizations

from the Gibbs chain andαl is given from the data for the corresponding time interval and
site. TheB values ofW ∗

st are then used to construct the 95% credible predictive interval.
The confidence bands generated are shown in Figure 3 in the original scale. A similar
procedure is repeated for Model 2 to obtain the confidence bands shown in Figure 4. The
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Change-Points Arizona Florida Indiana Missouri
No Change-Points 0.0293 0.0042 0 0

T1 = 1994 0 0 0 0.0010
T1 = 1993 0.0010 0.0002 0.0002 0.0002
T1 = 1992 0.0147 0.0355 0 0.0005
T1 = 1991 0.0657 0.1723 0.0018 0.0028
T1 = 1990 0.0768 0.1533 0.0147 0.0172
T1 = 1989 0.5807 0.6033 0.0188 0.0200
T1 = 1988 0.0662 0.0258 0.0778 0.0975
T1 = 1987 0.0432 0.0007 0.7205 0.7212
T1 = 1986 0.0042 0 0.1345 0.1285
T1 = 1985 0.0010 0 0.0030 0.0032

Two Change-Points 0.1033 0 0.0113 0.0025
Three Change-Points 0.0118 0.0045 0.0172 0.0055

Table 2:
Posterior probabilities of a change-point for Model 1

State σs Change-Point(s) (β1, β2)

Arizona 0.0416 T1 = 1989 (0.0209,−0.0107)
Florida 0.0182 T1 = 1989 (0.0196,−0.0118)
Indiana 0.0297 T1 = 1987 (0.0297, 0.00008)
Missouri 0.0292 T1 = 1987 (0.0295, 0.00006)

Table 3:
Posterior outputs for Model 1
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Figure 3: Examples of states belonging to different clusters from the implementation of
the change-point methodology. The bands around the observed values (age-adjusted cancer
rates) are the 95% predictive credible intervals based on Model 1.
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Figure 4: The bands around the observed values (age-adjusted cancerrates) are the 95%
predictive credible intervals based on Model 2.

Cluster Posterior Mean ofβ2 − β1 95% Credible Interval
1 −0.0370 (−0.0397,−0.0336)
2 −0.0318 (−0.0341,−0.0298)
3 −0.0316 (−0.0385,−0.0294)
4 −0.0314 (−0.0337,−0.0298)
5 −0.0307 (−0.0329,−0.0291)

Table 4:
Clusters (from the agglomerative procedure) with the highest drop in cancer incidence

rates measured in terms ofβ2 − β1.

better model will be the one that detects at least one change-point and that gives narrower
confidence bands. Note that change-points are not detected and the width of the predictive
confidence bands are too large for Model 2. These results indicate that there is significant
evidence from the data to suggest heterogeneous (i.e., site-specific) variability around the
mean within clusters.

Next, the cluster with the highest drop in cancer incidence rate is identified. The differ-
enceβ2−β1 in Table 4 is computed using posterior samples for each of the5 clusters based
on Model 1. Table 4 also gives the corresponding 95% credibleintervals of the 5 clusters
for β2 − β1. Note that the top cluster has a drop in rates that is significantly different from
clusters 2, 4 and 5. States in this cluster consists of Colorado, Georgia, Oregon and Vir-
ginia. One subsequent investigation may, therefore, be to identify the underlying reasons
for the highest drop in cancer rates, and to identity and implement effective policies or
programs in these states to the other states in the nation.

5. Regression model with Change points and Clustering

In this section, we consider a possible extension to includecovariates which also have
change points over time. Suppose that we haven = U1 − U0 + 1 time points given by the
index: t = U0, U0 + 1, U0 + 2, · · · , U1 andp variables onN spatial sites given byx(j)

s (t),
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the value of thej-th variable at sites and time pointt for j = 1, · · · , p. ys(t) is a response
variable ats = 1, · · · , N andt = U0, U0 + 1, U0 + 2, · · · , U1. With cancer data,ys(t) is

all malignant cancer mortality rate andx(j)
s (t) is a mortality rate of a specific cancer type.

We first consider a DP change-point model on eachx
(j)
s (t) independently for eachj

which is specified in Section 3. The likelihood ofxs(t) is assumed to be

(2π)−n/2σ−n
s exp



−

1

2σ2
s

k+1∑

l=1

Tl−1∑

t=Tl−1

(xs(t)− δl,s − θl,s(t− Tl−1,s + 1))2



 ,

whereδl,s is an intercept for thel-th interval which is nuisance to the problem of rates of
change.θl,s andTl,s were used instead ofθl andTl to emphasize dependence on sites. Our
approach is to assume that the rate of change ofys at every time pointt is governed by a

linear combination of the rates of change ofx
(j)
s (t). That is, we have

µs(t) = α0 +

p∑

j=1

αjθ
(j)
s (t), (26)

whereµs(t) is the rate of change ofys at timet. Note that we assume that(α0, · · · , αp)
is same overs. Then, we have a regression type model for the rate of changes. Selectingj
with significantα̂j will enable us to find a subset of covariates,x

(j)
s (t), which contributes

to the rate of changes ofys.
We further assume the following likelihood fory = (y1, · · · ,yN ) to obtain the overall

likelihood:

N∏

s=1

(2π)−n/2τ−n
s exp



−

1

2τ2s

U1∑

t=U0

(
ys(t)− µ0,s −

∫ t

U0

µs(u)du

)2


 ,

=
N∏

s=1

(2π)−n/2τ−n
s exp

{
−

1

2τ2s

U1∑

t=U0

(
ys(t)− µ0,s − α0(t− U0)

−

p∑

j=1

αj

∫ t

U0

θ(j)
s (u)du

)2}
,

whereτ2s is a site-specific variability forys andµ0,s is a site-specific intercept term, which

is nuisance to the problem. LetL(j)
s be the label of thes-th site forj-th x variable, i.e.

x
(j)
s (·) such that

L(j)
s ∼

∞∑

u=1

w(j)
u I(θ(j)

u (·))

independently for allj, whereθ(j)
u (·)

i.i.d.
∼ G0 andw

(j)
u is a transformed weight from

the Beta distribution. That is,w1 = η1, wu = ηu
∏u−1

i=1 (1 − ηi) andηi are i.i.d. from
Beta(1, ν). Then, the overall likelihood is

N∏

s=1

(2π)−n/2τ−n
s exp

{
−

1

2τ2s

U1∑

t=U0

(
ys(t)− µ0,s − α0(t− U0)

−

p∑

j=1

αj

∫ t

U0

θ
(j)

L
(j)
s

(u)du

)2}
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×

p∏

j=1

N∏

s=1

(2π)−n/2σ−n
s,j exp

{
−

1

2σ2
s,j

k
L
(j)
s

+1
∑

l=1

T
l,L

(j)
s

−1
∑

t=T
l−1,L

(j)
s

(
x(j)
s (t)− δ

(j)
l,s

− θ
(j)

l,L
(j)
s

(t− T
l−1,L

(j)
s

+ 1)

)2}
w

(j)

L
(j)
s

×

p∏

j=1

∞∏

u=1

π(w(j)
u )

∞∏

u=1

dG0(θ
(j)
u (·)) × π0(α0, · · · , αp)×

N∏

s=1

π(µ0,s).

With these distributional assumptions onx(j)
s andys, we can derive conditional distri-

bution of all parameters so that we can develop a Bayesian inferential procedures. Posterior
analysis will give us change points and clustering of statesfor each covariate as well as a
subset of covariates which contribute a rate of change ofys.

6. Discussion

In this paper, we propose change-point models for spatio-temporal data that can detect
change-points over time and group spatial sites into several clusters with respect to their
change-point functions. Clustering is achieved by using a Dirichlet process prior on the
space of step functions over time. The model was developed toanalyze state-wise age
adjusted rates to find local change-points and clusters thathave similar changes.

Our analysis based on predictive distribution demonstratethat Model 1 is superior to
Model 2. Thus, model flexibility is achieved far more by incorporating site specific pa-
rameters which are nuisance to the clustering compared to adding extra parameters for
clustering. The latter action may in fact distort true underlying trends as evidenced by
Figure 4.

For the real application, we find that state-level and national level age-adjusted lung
cancer mortality rates show a clear change-point around late 1980s to early 1990s. Some
states like Florida and Arizona follow similar patterns as national level rates while some
states like Missouri and Indiana show different patterns from the national level rates (see
Figure 1). In particular, Missouri and Indiana have smallerrate of changes after the change-
point compared to Florida and Arizona as well as national level (see Table 3). Indeed, we
can argue that lung cancer mortality rates have not changed much after 1990s for these
states, while the national level seems to significantly decrease. This further indicates that
we need different attention on each individual state. Another avenue for this line of research
is to incorporate covariate information into the clustering mechanism as we briefly intro-
duced in Section 5 and authors are currently working on refining models and developing an
algorithm.
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