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Estimation of Poverty at the School District Level Using
Hierarchical Bayes Modeling*
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Abstract

Direct estimates of the poverty level for more than 25% of the school-districts in the U.S.,
are generally not available from the American Community Survey (ACS) data that are
compiled annually. The Small Area Income and Poverty Estimates (SAIPE) program has
depended on coalescing information from the decennial census, the Internal Revenue Service
(IRS), from linking IRS records to Census geography, and from poverty estimates at the
county level, to produce poverty estimates for every school district. Income data from the
decennial census in particular played an important role, but are no longer available starting
from the 2010 census. This research is part of the Census Bureau’s effort to consider
alternative estimation procedures. We consider Hierarchical Bayes models that combine
information from the ACS, and from the IRS, to obtain annual estimates of most current
and most relevant poverty rates.
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1. Introduction

In this paper, we explore the estimation of school district poverty rates for related
school-age children in families. Poverty estimates at the school district level are
part of the Census Bureau data products that are ultimately used to allocate federal
funds under Title I of the ‘No-Child-Left-Behind Act of 2001’ for education programs
to aid disadvantaged children.

The Small Area Income and Poverty Estimates (SAIPE) program at the U.S.
Census Bureau strives to deliver estimates that are more precise and more reliable
than estimates from single-year American Community Survey (ACS) direct esti-
mates. The aim for single year ACS estimates is to provide reliable data for areas
with population size of 65,000 or more. A substantial number of small school dis-
tricts have very few samples or even no sample since the total sample size is fixed
by the survey budget. Figure [1| shows the number of the 2009 ACS sample cases
in school districts among those with sample sizes less than 30. For example, 1,861
school districts (or 13% of the total 13,204 school districts) each have less than 5
children in the ACS sample.

Although the five-year ACS data are designed to produce estimates at all levels
of geography including school districts under 65,000 total population, these 5-year
estimates target an average over a 5-year period in the population, not an annual
most current, most relevant measure of poverty.

The SATPE program has used a synthetic technique called the ” minimum change’
method to create estimates of the number of related school-age (5-17) children in
poverty for school districts. This minimum change method combines IRS tax data,

9

*This report is released to inform interested parties of ongoing research and to encourage dis-
cussion of work in progress. Any views expressed on statistical, methodological, technical, or
operational issues are those of the authors and not necessarily those of the U.S. Census Bureau.

1U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233

$JPSM, University of Maryland, and U.S. Census Bureau, 4600 Silver Hill Road, Washington,
DC 20233

2832



Section on Survey Research Methods — JSM 2011

Census 2000 data, and the official county poverty estimates to obtain estimates
of school district poverty shares. Poverty shares are the proportions of the num-
bers of poor school-age children in each school district that was wholly or partially
contained in that county.

There are two concerns with the current minimum change method. First, it relies
on the decennial census that, starting in 2010, no longer includes long form data
collection on income and detailed population and housing characteristics. The ACS
for a far smaller sample than the decennial census long form is now the main source
for this kind of information on an annual basis. Secondly, an appreciable number
of tax returns cannot be assigned to the school districts in which the addresses,
appearing on the tax returns, are located. To this degree we are unable to geocode
many IRS tax records and therefore unable to use them for prediction. The county
geocoding rate however, could be useful.

The SAIPE program is researching new ways to estimate poverty at the school
district level. We began our research evaluating a reweighting method of Schirm
and Zaslavsky (1997) whereby we distribute the weight for a person among other
school districts based on the similarity of the sample person with those in the other
school districts. Schirm and Zaslavsky have shown that a redistribution of weights
could substantially improve the precision by allowing the use of many more obser-
vations in the estimation of a school district. However, our reweighting algorithm
converged only for a subset of school districts. For many of the others, we were un-
able to find intial values that would lead to the successful conclusion of our two-step
optimization procedure. Therefore we put the reweighting approach aside, for now,
and began working on this Hierarchical Bayesian estimation effort, which became
the focus of our paper.

The rest of the paper is organized as follows. Sections and further discuss
the current methodology and issues therein. Section [2] presents the models tested.
Section [3] details the Hierarchical Bayesian aspect of the estimation. In section [4]
we discuss the results, and in section 5| we outline some future research.

1.1 The Geocoding Problem

There are difficulties in determining the school district to which some individual tax
returns should be assigned. Most addresses are “city-style”, which usually means
there is a house number and street name; these addresses can nearly always be
designated to be in a particular census block, and therefore a particular school
district. The inability to designate which school district an address is in, i.e. low
geocoding rate, is usually due either to “rural route”-style addresses and P.O. boxes
(where the location of the addressee’s residence is not known precisely enough to
assign it to a block), or to new housing/developments which have not made it into
the Census Bureau’s map databases yet. Usually information that is coded to the
block level is combined for all the blocks within a county or school district.

This geocoding problem takes some predictive power away from the IRS data.
However, the geocoding rates, which are at the county level, may, in and of them-
selves contribute some information on the poverty level of the county as a whole
and of the school districts within. In fact the degree to which the county is rural or
urban may portend it’s poverty level.
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1.2 The Minimum Change Method

The current SAIPE estimation method for school districts relies on the “Minimum
Change” algorithm, see Maples and Bell (2007). A rough description of this al-
gorithm is that it allocates the exemptions from each county’s non-geocoded tax
returns to the school districts in that county, in such a way as to minimize the change
in the shares from the previous census. It sets the proportion of poor school-age
related children in each school district as (i) the tax share if those tax shares are
greater than Census 2000 shares, or (ii) the tax share plus a portion of the non-
geocoded tax records: the non-geocoded tax records are distributed according to
the distribution of the Census 2000 shares that remain that are greater than the
corresponding tax shares. The algorithm also insures that the assignments are done
in such a way that the shares add up to 100%.

2. Model

Our proposed models relate the single-year ACS school district direct estimates, to
the school district IRS tax data and the county geocoding rate. The total IRS tax
exemptions provide a variable related to population, while the poor exemptions,
which are the exemptions on returns with adjusted gross income below the poverty
threshold, provide a variable related to poverty. The county non-geocoding rate
is the proportion of the county tax records, which cannot be assigned to their
respective school districts.

Let 6; denote the true poverty rate in school district 7 and let 1; denote the
observed estimated poverty rate in school district i. y; = (ACS estimated number
in poverty)/(ACS estimated number in poverty universe). For 2009, we have ACS
data for 13,204 school districts.

We attempted two different sampling models that relate the true poverty rate
0; to covariates just mentioned: the school district tax poverty rate and the county
non-geocoding rate.

Let 3 denote a vector of three regression coefficients, including an intercept, so
that 8 = (5o, f1, B2), xi = (1,21, x42) are the covariates.

The linking models, that relate the true poverty rate to the covariates, have a
parametric structure specifying a linear relationship between 6, x, and 5. In one of
the models we consider a logit link, in the other we consider the identity link after
an arcsin transformation on the observed rate. This transformation has the effect
of stabilizing the variance.

2.1 Sampling Model I
W;e m(;del the poverty rate y; via the normal distribution, with mean 6; and variance
0;(1—6;

ng

p(yildi) ~ N <0i7 M) (1)
n;
n; is the effective sample size: n; = n;/deff;, where n; is the ACS sample size
for school district . The model assumes 71; known.
The design effect deff; reflects the effect of the complex sample design (Kish,
1965). For now, we approximate deff; by a design effect for a stratified simple
random sample with a negligible sampling fraction in all strata. The deff for a
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school district is the deff for the county that contains it. Let ¢; be the county that
contains school district 1.

deff; = ng, Z Wéh/ncih
h

Wcz‘h = ch‘h/Ncm ch'h = Ejeh Wig ch' = Zheci NCJH Ne; = Eh Neih-
wj; is the weight for child j in household h, which is in county ¢;. n,;, is the number
of children in household h in county ¢;.

The Wcih, N¢,n, and N, are sample estimates of the corresponding popu-
lation quantities. The approach using the population quantities was discussed in
Liu & al. (2007). Ongoing work on design effects, (Lahiri (2010) unpublished re-
port,) which uses the results discussed in Hawala and Lahiri (2010), will provide
better estimates for the design effect.

Let

e model I(a) - linking model

logit (6;) ~ N (x/8, 77) (2)

e model I(b) - linking model

logit(0) = B +u (3)
u ~  t0,7,v)

where ¢(0, 7, v) is the t-distribution with v degrees of freedom, and precision
parameter 7

2.2 Sampling Model II

We obtain alternative models by making a variance stabilizing transformation, as
suggested by Carter and Rolph (1974), and initially studied by Box and Cox (1964).
We set z; = arcsine (\/@), and

e model II(a) - Normal sampling model

p(l0)  ~ /\/(m 1) (@)

4TLZ'

e model II(b) - ¢-distribution sampling model

p(zilbs)  ~  t(m, &, vz) (5)
We set the precision parameter §; = iff’g , to keep the same variance 4%” as in model

II(a). In both cases II(a) and II(b) we use the following linking model
m o~ N(x8, 7'2) (6)

In both models II(a) and II(b), the true rates we're estimating are §; = sin?(;).
For all four models we call the parameters 3, 7, and v the structural parameters.
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3. Hierarchical Bayes Analysis

In this section, we apply Hierarchical Bayes (HB) analysis to the models intro-
duced in Section 2. Estimates of the posterior mean and variance of parameters are
obtained from Markov Chain Monte Carlo (MCMC) simulation.

3.1 Prior Distributions

In a hierarchical Bayesian framework, we assume independent diffuse prior distri-
butions for the hyperparameters. Let 8 have a (locally) uniform distribution with
p(B) x 1. Independently, for models I(a), II(a), and II(b) we set 72 ~ Unif(a,b,),
whereas for model I(b) wet set T% ~ Unif(ar,b;). Here Unif denotes the uniform
distribution and a,, b, are known positive constants. The constants are set to be
large to reflect vague knowledge about the parameters.

The degrees of freedom v for the t-distribution was treated as an unknown
random variable in the model. We assume a uniform prior over the following degrees
of freedom 2, 4, 6, 8, 10, 12, 15, 20, 30, and 50. The value 2 was not used for the

prior on v, in model II(b).

3.2 Posterior Estimates

The posterior distribution of the poverty rate and the variance parameter 7 can be
approximated by MCMC simulations, which we ran using a combination of BUGS
and R in our application. We produced 3 parallel Markov chains.

Estimates of the posterior means, and standard deviations of the structural
parameters: the regression coefficients 3, the variance parameter 7, and the degrees
of freedom v are given in the Appendix. See Tables 2] and [3]

4. Discussion

In the context of estimating poverty rates in U.S. school districts, one of the major
problems with direct survey estimates is the prevalence of districts with very small
sample sizes (less than 30), see figure We are proposing hierarchical Bayesian
models to produce more reliable estimators than the direct survey (ratio) estimator.

We explored a few models in succession, adjusting the assumptions along the
way as some computation results suggested. All the figures and tables are placed
in the appendix.

Results for the deviance information criterion (DIC) (Spiegelhalter et al., 2002),
which is often used for comparing non-nested models, are given in Table 1] Model
II(a), with the smallest DIC, seems to perfom best among the 4 models considered.
Model II(a) may not be the true model but it is closer to it than the other three
models. These results show that the arcsine transformatioin with a linear link
function provides a better fit than no transformation with a logit link.

In table [2| and table [3] we provide the posterior means of the structural param-
eters along with their posterior standard deviations.

The 95% credible intervals for the coefficient of the non-geocoding rate bs are:
for model I(a) (—0.5426, —0.0338), for model I(b) (0.0466,0.6664), for model II(a)
(—0.2379,0.0341), and for model II(b) (—0.2628,0.0084). We notice that, in all four
models, b3 is small. It is not significantly different from zero for models II(a), and
II(b) indicating that the non-geocoding rate could be taken out without much loss
to the accuracy of the estimated poverty rates.

.
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Figure [5| shows how Model II(a) resulted in estimates that are close to the
direct estimates, specifically for large areas, where we tend to believe the direct
survey estimates. The use of the ¢ distribution in level 2 of model I(b) (figure {4)),
replacing the normal distribution of model I(a), corrected the bias in the average
posterior mean. If we average out the posterior means across all the small areas
and subtract the average of the direct estimates, we get the bias for model I(a):
0.4247 — 174 = .2507, vs for model I(b) .2077 — .174 = .0337. However, both
models I(a) and I(b) show a very poor fit to the direct estimates and the posterior
variance is very small, in the order of 107°. In both figure [3{and ﬁgurethe shaded
histogram is tightly clustered around the mean.

We wish to further confirm that the combination of the variance stabilizing
arcsine transformation performed on the direct survey estimates of the poverty
rates, and the use of Hierarchical Bayes estimator outperforms other model choices,
even in the absence of covariates with strong predictive power. Figure|2|shows weak
correlations between the direct estimate and the covariates. Moreover, we wish to
motivate the use of the direct estimates from the ACS-5-year data, into our model
checking strategy, as well as a predictor in our models.

5. Future Research

We are pursuing several research tracks. Direct estimates of sampling variances are
unreliable for many of the small areas. A Generalized Variance Function (GVF)
method was proposed in Hawala-Lahiri (2010) for states. We will be extending this
work to the counties. Another track we are pursuing is estimating a Bayesian beta
regression model that specifically models the probability of observing a rate of zero
or a one.

As more data become available, namely, five consecutive years of ACS data and
SAIPE program input data (including IRS data), we will consider a hierarchical
time series model that combines all the available information. This method will
borrow strength from prior years of ACS, other small areas, and covariates.

5.1 GVF model for the sampling variance

One problem with the sampling model we used is that é\z is very imprecise when
the sample size n; is small, or when 6; is either close to 0 or close to 1. We have
some ongoing work to estimate a generalized variance function that will be used to
estimate the sampling variance of 6;,

5.2 Zero-one-inflated Bayesian beta regression

We are also conducting a zero-one-inflated Bayesian beta regression modelling effort.
This is being done at the county level for the time being, but we hope to extend it
to the school district level. This latter model takes into account the non-negligible
number of survey estimates of rates that turn out as zero or one.

5.3 Time Series Model

A more realistic model, is a hierarchical time series model, as in Datta et. al (2002).
This model would borrow strength from past years of ACS data, other small areas
and covariates. Let

yit + ACS survey weighted proportion for school district ¢ and year t.
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X;¢ : a vector of covariates available for school district ¢ and year t.
ng - the effective sample size for school district ¢ and year t.
Areas are grouped in K groups Gy, by population size, k € 1,..., K

Nt

Loyl ~ N(em, M)

2. g(0i)0ie1  ~ N (XBr+ ane,  Th)

3. aiglaiz—1 o~ N(Oéi,t—la 0;3t)

We will likely transform the observed rates y;. As was shown, the arcsine
transformation seems to be beneficial. We will also likely use the t-distribution in
level 1, and we will estimate the parameters in a similar manner, as we did for

models II(b).
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A. Appendix: Figures and Tables

Figure 1: Number of school districts by ACS-2009 number of related children
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Figure 3: Observed and Estimated Rates - Model I(a)
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Figure 4: Observed and Estimated Rates - Model I(b)
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Figure 5: Observed and Estimated Rates - Model II(a)
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Figure 6: Observed and Estimated Rates - Model II(b)
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Table 1: Deviance Information Criterion (DIC)

summary
Model I(a) 3817
Model I(b) 1677
Model II(a)  —1096
Model II(b) —817.7

Table 2: Models I(a), I(b) - Posterior Means and Standard Deviations of
structural parameters

Model bl b2 b3 T 14
I(a) - Means —0.5682 5.3313 —0.2882 5.5294

I(a) - St. Devs  1.2236  0.1568 0.1208  2.6446

I(b) - Means —3.7442  6.0828  0.3565  1.8322 15.73
I(b) - St. Devs  2.2451  0.2042  0.1581 4.389 139

Table 3: Models II(a), II(b), - Posterior Means and Standard Deviations of
structural parameters and v,

Model bl bQ bg T Uy
II(a) - Means —0.0014 1.5081 —0.1019 5.2866

II(a) - St.Devs 0.0338 0.1302 0.0694  0.1947

II(b) - Means —0.0047 1.5208 —-0.1272 28.64 19.11
II(b) - St. Devs  0.0339  0.1313  0.0692 2.106 11.85
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