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Abstract
We propose and evaluate a Bayesian beta regression model for U.S. county poverty rates.

Such a rate model could be an improvement to the U.S. Census Bureau’s current small-area
poverty approach of linearly modeling the logarithm of poverty levels. For small areas, some
of which may have estimates of no poverty or all poverty, a zero-one inflated rate model
can usefully account for estimated rates of 0 or 1. Using Bayesian computation techniques,
we estimate the parameters of a zero-one inflated beta regression model. We compare the
results to the Census Bureau’s current small-area model for county poverty estimation.
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1. Introduction

The Small Area Income and Poverty Estimates (SAIPE) program at the U.S. Cen-
sus Bureau uses small area estimation techniques to create model-based estimates
of selected poverty and income statistics. The estimates are intended to be more
timely than direct estimates from the decennial census or five-year American Com-
munity Survey (ACS), as well as more precise and stable than single-year ACS direct
estimates for small areas.

In this paper, we are concerned with estimating the number of related poor chil-
dren aged 5-17 in U.S. counties. These estimates are provided to the Department
of Education and used for allocating federal funding to local programs. In 1998 a
panel of the National Research Council studied alternative county models. In its
report, the panel deems the county model to be at “the heart of the estimation pro-
cedure that develops estimates of school-age children in poverty to allocate federal
funds under Title I of the Elementary and Secondary Education Act for education
programs to aid disadvantaged children.”

The existing county-level approach is based on a Fay-Herriot ‘log-level’ model,
i.e. a model on the natural log of the number of related poor children in each
area. The model combines single-year ACS direct estimates with regression predic-
tors from administrative data records including Internal Revenue Service (IRS) tax
data and Supplemental Nutrition Assistance Program (SNAP) (‘food stamp’) data.
This Fay-Herriot model is described in more detail on the Small Area Income and
Poverty Estimates website (U.S. Census Bureau, 2010). The current SAIPE model
is tractable and well-established, but it is worth considering alternative models that
may have advantages over the current approach.

In particular, some counties have ACS direct estimates of zero related children
in poverty. Since log(0) is undefined, these counties must be dropped from the
estimation procedure, with a resulting loss of information and efficiency. During
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four out of the five years from 2005 to 2009, over 5% of counties had ACS direct
estimates of zero related children in poverty.

Furthermore, Census Bureau staff have found other concerns with the log-level
model, including biased direct variance estimates on the log scale (Huang and Bell,
2009), and have suggested considering modeling poverty rates rather than poverty
counts.

The model we propose to account for both of these issues is a zero-one inflated
Beta (ZOIB) regression model. The Beta distribution allows us to model poverty
rates directly on a continuous range between 0 and 1 exclusive; and a multinomial
component allows us to add the 0 and 1 endpoints to our model. The ZOIB model
details are discussed in section 2.

This hierarchical model is difficult to solve by classical/analytical methods but
lends itself well to Bayesian treatment by Markov Chain Monte Carol (MCMC)
methods. Furthermore, posterior distributions give us a lot of information and allow
for useful model-checking approaches. The computational details are discussed in
section 3.

Finally, section 4 presents our model evaluation results, which we briefly sum-
marize here:

• We conduct a simulation study to check coverage rates for credible intervals
(CIs) (the Bayesian analogue of confidence intervals) in order to evaluate
whether the MCMC approach is working, finding that our 95% CIs do indeed
cover the true value around 95% of the time.

• We summarize posterior point estimates and compare them to ACS direct
estimates as well as SAIPE estimates under the current official model.

• We compare the predicted expected frequency of 0s and 1s to the number
actually observed in the data, finding that they are similar.

• We partition counties into several groups, by county size, and evaluate the
average mean square error (AMSE) for each group of counties, finding that
the AMSEs are of similar order of magnitude to the current SAIPE model
AMSEs for the largest counties, while smaller counties still have some room
for improvement under our model.

2. Model

We begin the model description in section 2.1 by discussing the simplified case where
no 0s or 1s are observed, in which case a beta regression can be a suitable model
for the observed poverty rates. Next, in section 2.2, we describe the full zero-one
inflated beta (ZOIB) model which allows for observed rates of 0 or 1.

2.1 Beta regression model

First let us consider the case where all observed estimated county-level poverty rates
(among related children aged 5-17) are in the open interval (0, 1).

Let Yi denote the true poverty rate in county i and let yi denote the observed
estimated poverty rate in county i. We define yi as

yi =
ACS estimated number in poverty

ACS estimated number in poverty universe
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and assume that all rates fall within the interval (0, 1).
A reasonable candidate for modeling y is the beta distribution, which covers a

wide range of distribution shapes on the interval (0, 1). The density function of the
beta distribution (with parameters a and b) is

p(y|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1

The estimated poverty rate is also related to four covariates (tax poverty rate,
tax non-filing rate, food stamp participation rate, and natural log of ACS sample
size in poverty universe) that we observe for each county, using administrative and
ACS records (U.S. Census Bureau, 2011). In order to incorporate this covariate
information into a beta regression model, we parameterize the beta family in terms
of its mean,

µ = E(y) =
a

a+ b
,

and a parameter related to its variance,

γ = a+ b

Inversely, the parameters a, b can be expressed as a = γµ and b = γ(1 − µ). Note
that the variance of a beta distribution is

V ar(y) =
µ(1− µ)

γ + 1
=

ab

(a+ b)2(a+ b+ 1)

The variance does depend on the mean µ, and larger values of γ correspond to less
heterogeneity in the data.

Now we can model poverty rates as a beta regression, with each county having
its own µi and γi.

Furthermore, we can rewrite V ar(y) as a variance of rate estimates rescaled by
a design effect:

V ar(yi) =
µi(1− µi)
γi + 1

=
µi(1− µi)

ni
deffi

where ni is the (unweighted) size of the sample in the poverty universe in county i.
This leads to

γi =
ni

deffi
− 1

The design effect reflects the effect of the complex sample design (Kish, 1965). For
now, we approximate deffi by an approximate design effect for a stratified simple
random sample with a negligible sampling fraction in all strata.

deffi = ni
∑
h

Ŵ 2
ih/nih (1)

Ŵih = N̂ih/N̂i, N̂ih =
∑
c∈h

wic, N̂i =
∑
h∈i

N̂ih, ni =
∑
h

nih

wic is the weight for child c in household h, which is in area i. The Ŵih, N̂ih,
and N̂i are sample estimates of the corresponding population quantities.

Liu et al. (2001) discuss this approach using population quantities

Nih, Ni =
∑
h∈i

Nih, and Wih = Nih/Ni (2)
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for small area estimation. Kalton et al. (2005) discuss it for estimating the design
effect for a disproportionate stratified sample. They derive the estimate for the de-
sign effect under the assumptions of equal stratum means and equal within-stratum
variances. They illustrate that, for proportions between 0.2 and 0.8, the formula
using (2) to estimate deffi provides reasonably close estimates of the design effect.

For now, the deffi are used in formula (1) to estimate the γi, which are then
treated as known for the remainder of the estimation procedure. Future work may
involve using the modeled poverty estimates to re-estimate the γi and vice versa,
iteratively, until both the poverty rates and the γi stabilize.

As given above, γi is undefined for areas where no children in the poverty uni-
verse were sampled. Our current procedure drops these counties from the estimation
procedure.

Let βµ denote a vector of regression coefficients (including an intercept) for
estimating µi, so that βµ = (βµ0, βµ1, . . . , βµ4). Also let y = (y1, . . . , ym) be the
vector of observed ACS direct estimates for each of the m small areas, and let the
corresponding covariate vectors be xi = (1, xi1, . . . , xi4) for each i = 1, . . . ,m.

The Bayesian beta “regression” model we consider is

yi|µi, γi,xi,βµ ∼ Beta (γiµi, γi(1− µi))
logit (µi) = logit

(
µ(x′i)

)
= x′iβµ

p(βµ) ∝ 1

where p(βµ) is an improper flat prior on the βµ vector. We use the logit link

F (w) = log( w
1−w ), with inverse link function F−1(w) = exp(w)

1+exp(w) .

Our model’s parametric structure specifies a linear relationship (on the logit
scale) between µ, x, and βµ. There are several ways to broaden the scope of the
models we can consider. One is to use a semiparametric structure, where logit(µ)
will be related to x via an arbitrary function. Another is to impose a stochastic
model such as logit(µi) ∼ Normal(x′iβµ, σ

2). However, we have had difficulties
getting the MCMC code to converge for that model.

2.2 Zero-one inflated beta model

In practice, we do observe ACS direct estimates of the poverty rate of exactly 0 or
exactly 1. In other words, our model should ultimately allow for observations in the
closed interval [0, 1].

Let Zi denote the true poverty rate in county i and let zi denote the observed

estimated poverty rate in county i. Rates may be in the interval [0, 1]. Let p
(0)
i be

the probability that county i has an observed rate of 0, and similarly let p
(1)
i be

the probability of observing 1. Otherwise, the county has a probability of p
(01)
i =

(1− p(0)i − p
(1)
i ) of having a rate drawn from the Beta(ai, bi) distribution.

In other words, the result of a multinomial trial is used to determine which of
the three processes generates an observation.

zi =


0 with probability p

(0)
i ,

1 with probability p
(1)
i ,

∼ Beta(ai, bi) with probability p
(01)
i .

βµ is the vector of regression coefficients for estimating the logit of the mean of

the beta distribution, µi = ai/(ai + bi). Similarly, we model p
(0)
i and p

(1)
i using β0
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and β1:

p
(0)
i = inv.logit(xi

′β0) and p
(1)
i = inv.logit(xi

′β1)

We use an intercept term and the same set of four regressors as before (tax poverty
rate, tax non-filing rate, food stamp participation rate, and natural log of ACS
sample size in poverty universe) for each of β0, β1, and βµ.

The random variable zi in this zero/one-inflated model has the following mean:

E(zi) = 0 · p(0)i + 1 · p(1)i + µi · (1− p(0)i − p
(1)
i ) = p

(01)
i µi + p

(1)
i

Note that we make the assumption that the ACS direct estimate zi is unbiased
for the true poverty rate that we are trying to estimate. Therefore, despite the
structure of the model, our estimate Ẑi of the poverty rate is not the estimated
mean of the beta distribution, µ̂i, but rather the estimated posterior mean of zi.

In our MCMC procedure we draw samples j = 1, ..., J from the posteriors of
each parameter. Letting tildes denote these sampled posterior draws, we have

Z̃ij = p̃
(01)
ij µ̃ij + p̃

(1)
ij

Ẑi = J−1
J∑
j=1

Z̃ij
(3)

3. Computational Approach

We use the Metropolis algorithm to generate a MCMC sample from the posterior
distribution.

First, propose new values for the β values (regression coefficients) for each of the
three parts of the model. (To do this, use a jumping distribution to move from the
previous accepted β values to a new proposal value, and just tune this procedure
over many iterations to give an appropriate acceptance rate. We use independent
normal jumping distributions for each β in the first burn-in period, then use the
sample covariance matrix of previous iterations to choose a multivariate normal
jumping distribution for the second burn-in period.)

For each iteration, use the proposed β values to calculate µi and p
(0)
i and p

(1)
i

for each county and convert into ai and bi for each county. Then plug the values
into the joint posterior likelihood function, which is proportional to

p(β0,β1,βµ|γ, z,x) ∝

p(β0,β1,βµ)

m∏
i=1

p
I{zi=0}
0i p

I{zi=1}
1i [p01ipdfBeta(zi|ai, bi)]I{0<zi<1}

where p(β0,β1,βµ) ∝ 1 is an improper flat prior on the β vectors, and

p0i = inv.logit(xi
′β0), p1i = inv.logit(xi

′β1), µi = inv.logit(xi
′βµ)

ai = γiµi, bi = γi(1− µi)

Compare to the likelihood from the previous iteration. If either the ratio of
new-to-old likelihoods is higher than 1, or if it’s smaller but a random uniform
(0, 1) draw is even smaller, then accept the new values. Otherwise, reject the new
values; store the old values as the values for this iteration; and draw a new proposal
values for the next iteration. The decision to accept or reject a set of proposed
values is made for all three β vectors simultaneously.
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Gelman et al. (2004) suggest adjusting the proposal distributions to keep the
acceptance rate around 20-40%. Once the rate is steadily in that range, draw the
desired number of samples, discard the burn-in period, and make inferences based
on the rest.

We do all of this for several chains at once (starting with different, overdispersed
initial values). This way, we can evaluate the convergence by checking for each
β whether its multiple chains are converging to the same distribution, using the
potential scale reduction factor R̂ (Gelman et al., 2004, p. 297).

Finally, we compute our estimates of the rate in each county by following the
equations in (3). For county i, transform xi and all of the post-burn-in samples of

β̃0j , β̃1j , and β̃µj into samples of p̃
(0)
ij , p̃

(1)
ij , and µ̃ij and consequently Z̃ij . Then

average the Z̃ij samples to estimate the posterior mean Ẑi.

4. Results

This section summarizes the poverty estimates from our procedure and several eval-
uations of those estimates, as well as a simulation study designed to evaluate the
estimation procedure itself.

The first two sections refer to the simulation study. Section 4.1 explains how
the simulation study datasets were generated, and section 4.2 describes the estima-
tion procedure’s credible interval coverage under the simulation study assuming the
model is true.

The remaining sections summarize results based on the actual data. Section 4.3
summarizes the parameter estimates using standardized posterior means and 95%
credible intervals. Section 4.4 compares the observed number of ones and zeros
to the model’s predicted number of ones and zeros. Section 4.5 summarizes the
residual differences between our estimates and the ACS direct estimates, overall as
well as after sorting the counties into groups by population size. Finally, section 4.6
shows the estimated average MSEs (AMSEs) within each of the county groups.

4.1 Details of simulation study

Before simulating new datasets, we began by using the 2009 SAIPE input data to
find the MCMC posterior estimates of the β vectors under the model in section 2.2.
(These estimates are displayed in section 4.3.) Keeping the same X matrix and γ
vector from the 2009 data, and treating the posterior estimates of the β vectors as
a fixed set of known parameter values, we simulated 50 new datasets of z based on
the model.

Our approach assumed that the sample size and design effect, and therefore
also γi, remain constant in each county across the simulations. Hence the survey
weights were only used for the initial estimation of the design effect based on the
actual observed ACS estimates.

In other words, the fixed X matrix and set of β vectors defined the ‘true’ values
of p(0), p(1), and µ. These were used to define the ‘true’ values of the poverty rates
Z, as well as to simulate new draws from the Beta distribution for each county and
then the multinomial choice of whether to use 0, 1, or the Beta draw. We used this
approach to generate 50 new simulated datasets for each county, keeping the γ and
β vectors fixed across the 50 simulations.
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Figure 1: Number of counties with each CI coverage rate,
for 95% CIs computed over 50 simulations

Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

4.2 Credible interval coverage

We used the simulated datasets described in section 4.1 to evaluate the MCMC’s
credible interval (CI) coverage, assuming the model in section 2.2 is true.

We ran the estimation procedure on each of the 50 simulated datasets to see
how often each county’s 95% CI for Zi contains the true value. For a given dataset,
each county’s 95% CI is determined by taking the set of J posterior samples Z̃ij
and using the 2.5% and 97.5% percentiles of the samples as the upper and lower
credible limits, respectively. For each dataset and each county, we note whether the
true value Zi falls within these limits.

In our 50 simulated datasets, most counties’ CIs contained the true value close
to 95% of the time. To be precise, the most frequent CI coverage was 94%, i.e. 47
of the 50 datasets’ CIs contained the true value. This happened in 681 of the 3136
counties in the dataset. See Figure 1 for the full histogram.

4.3 Parameter estimates

The standardized posterior means and 95% credible intervals for the β parameters
are summarized in Table 1. The posterior means and credible interval endpoints for
each parameter were standardized by dividing them by the parameter’s posterior
standard deviation.

Given that we only observed a single estimate of 1, the β̂1 estimates are unstable
on this 2009 dataset, even once the MCMC chains appeared to reach convergence.
However, the β̂0 estimates are much less variable, with only the non-filing rate
predictor’s CI containing zero. The β̂µ estimates have the tightest CIs and appear
quite stable.

The coefficient estimates support two expected conclusions: First, the negative
posterior means of the coefficients of ln(n) for β̂0 and β̂1 suggest that the probability
of observing a 0 or 1 is lower for larger counties. Second, the posterior means of the
tax poverty rate, non-filing rate, and food stamp participation rate coefficients for
β̂µ are all positive, suggesting that poverty is higher in counties with high values of
these predictors.
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Intercept TaxPov NonFiler FoodStamp ln(n)

Beta0 Mean 9.47 -2.78 0.07 -4.63 -15.29
Beta0 2.5% 7.54 -4.94 -1.92 -6.58 -17.39

Beta0 97.5% 11.54 -0.85 1.96 -2.71 -13.36

Beta1 Mean -1.80 0.74 1.64 -1.17 -1.08
Beta1 2.5% -3.74 -1.40 -0.15 -3.47 -3.37

Beta1 97.5% 0.02 2.67 3.74 0.42 0.52

BetaMu Mean -147.27 50.91 14.12 24.71 20.16
BetaMu 2.5% -149.25 49.00 12.07 22.68 18.20

BetaMu 97.5% -145.32 52.93 16.03 26.70 22.12

Table 1: Standardized posterior means and 95% credible intervals for β
Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

4.4 Checking predicted vs. actual estimates of ones and zeros

We would like to see whether the model predicts as many 0s and 1s as were actually
observed in the data. Using the same data as the SAIPE 2009 estimation procedure
(2009 ACS data with 2008 tax and SNAP administrative data), the model predicts∑
p̂
(0)
i = 173.9 zeros and

∑
p̂
(1)
i = 0.066 ones overall. This is comparable to the

174 zeros observed in the ACS estimates, but perhaps somewhat low for the single
ACS observation of value one.

We bin the number of zeros by the ACS poverty universe sample size in a county
to see if the model accurately predicts the numbers of zeros across the range of
sample sizes. The sample size bins are 1-5, 6-10, 11-20, 21-50, and over 50. Results
are presented in Table 2. (We do not do this for the 1s since there was only a single
observed estimate of 1.)

County sample size <5 6-10 11-20 21-50 >50

Number of zeros observed 40.0 32.0 47.0 42.0 13.0
Number of zeros predicted 38.0 36.0 47.2 39.7 12.9

Table 2: Observed and predicted number of zeros, by sample size in county
Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

Within each of these sample size categories, the number of predicted 0s is close
to the number of 0s observed. This suggests that the ZOIB model does a good job
of modeling the 0s.

4.5 Residuals for posterior point estimates

Table 3 compares our point estimates of Ẑi to observed zi values from the ACS. The
interquartile range shows that many differences are small, only about ± 5 percentage
points, but the minimum and maximum differences are rather large, showing that
a few counties’ model estimates may be quite far from the ACS direct estimate.

Figure 2 shows boxplots of the residuals Ẑi − zi within each county size group,
with a separate boxplot on the far left for counties with observed values of 0 or 1.
(Of the 174 0s, 144 occurred in counties with populations under 10k; 20 occurred
in counties of size 10-20k; and 10 occurred in counties of size 20-65k; the only 1
occurred in a county of population below 10k). Positive residuals are overestimates
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Ẑi − zi
Min. -0.894

1st Qu. -0.055
Median 0.000

Mean -0.012
3rd Qu. 0.048

Max. 0.646

Table 3: Summary of residuals: model estimate Ẑi minus direct estimate zi
Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

Figure 2: Residuals Ẑi − zi within each group of counties,
partitioned by county population size (counties with obs. of 0 or 1 separated out)

Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

(i.e. the ZOIB estimates are higher than the direct estimates), and vice versa for
negative residuals.

It is clear that the smallest counties’ residuals are most variable, while ZOIB
estimates for the largest counties tend to stay close to the ACS estimates, as ex-
pected. The far-left boxplot shows that many of the estimates for counties with
observed 0s are still not too far above 0. However, for the single county with an
observation of 1 (the negative residual in the far-left boxplot), the ZOIB estimate is
quite far from 1. In a year with more observations of 1, we would be likely to have
more stable parameter estimates and poverty rate estimates for such counties.

4.6 AMSEs for poverty rate, by county size

For internal evaluations of the current SAIPE log-level model, counties are par-
titioned into groups by county population size and the average MSE (AMSE) is
estimated within each group. For the 2009 data, the five groups (and the number
of counties in each group) are: population under 10k (n=705), 10k to 20k (n=615),
20k to 65k (n=1024), 65k to 250k (n=537), and over 250k (n=255).

We calculate similar AMSE estimates for the ZOIB model. However, unlike the
official SAIPE model, the current version of the ZOIB model does not include a
model error term and involves no raking. Thus the AMSEs may not be measuring
exactly the same thing here as in the current SAIPE model. Nonetheless, we believe
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that comparing the AMSE estimates for ZOIB vs. log-level SAIPE can give a rough
sense of how much improvement remains to be made to the ZOIB model.

Our AMSE estimator for each of the 5 groups is based on the Gonzalez-Waksberg
estimator, as presented e.g. in Lahiri and Pramanik (2010). For group g,

AMSEGWg = n−1g
∑
i∈g

(Ẑi − zi)2 − n−1g
∑
i∈g

V (zi)

where V (zi) is the ACS estimate of the sampling variance of the ACS direct estimate
zi.

However, while the usual Gonzalez-Waksberg estimator averages the V (zi) val-
ues, the SAIPE team’s internal evaluations take their median instead. So in fact
we use an alternate estimator:

AMSEGW.altg = n−1g
∑
i∈g

(Ẑi − zi)2 −mediani∈g(V (zi))

This is because counties with direct estimates of 0 or 1 have no sampling error
estimates, so the mean would be undefined. The median is seen as more robust
than the mean when dropping undefined counties, and the median is what tends to
be used for SAIPE program internal evaluations, so we use it here for compatibility.

Finally, within each group of counties, the AMSE is usually transformed into
a root AMSE on the percentage point scale. Root AMSE estimates for the ZOIB
model results are shown in Table 4, along with the same estimates for the current
SAIPE model.

County population size <10k 10-20k 20-65k 65-250k >250k

ZOIB root AMSE 13.9 9.1 5.9 3.3 2.9
SAIPE root AMSE 7.6 7.5 2.9 — —

Table 4: Estimates of Root AMSE (on percentage point scale)
of ZOIB and SAIPE model estimates within each group of counties

Source: Simulated from U.S. Census Bureau, Small Area Income and Poverty Estimates data, 2009

For the current SAIPE model on the 2009 data, in each of the two groups of
largest counties, the median sampling variance is bigger than the mean squared
residual. Hence, the AMSEs are negative and the root AMSEs are undefined.

For the ZOIB model estimates in the largest counties, the root AMSE of 2.9 is the
same as that found for the current SAIPE model estimates in medium-sized counties.
The root AMSEs for smaller counties under ZOIB are consistently larger than for
the current SAIPE model, showing that our ZOIB model still needs improvement.

However, the AMSE seems very sensitive to the choice of mean vs. median, and
the possibility of negative AMSE estimates is undesirable. We intend to find a more
robust measure of comparison to use for future work.

5. Future Research

In the future, the most important improvement is to add a model error term. In
other words, the logits of p(0), p(1), and µ should have a stochastic distribution
around the regression means x′iβ rather than being deterministically related. Cur-
rently we are having trouble with MCMC convergence in this regard, but we hope
to overcome the problem soon. This will transform our approach from a sample
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regression model to a Fay-Herriot style area-level model that shrinks survey esti-
mates towards regression predictions according to the reliability of each component.
Further work should also assess the effect of benchmarking to state estimates and
the value of using alternative regressors.

Another clear area for improvement is the estimation of the design effect. An
updated approach is being developed. We will also consider including predictors for
sampling error variances.

We will also investigate the use of replacing the improper flat priors with more
informative priors. For example, prior years of ACS data and SAIPE estimates
should provide ample information that we can incorporate into informative priors
on the regression coefficients β as well as on any model error terms that may be
added to the model.
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