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Abstract

The National Health Interview Survey (NHIS), conducted by the National Center for Health
Statistics (NCHS), is designed to provide reliable design-based estimates for national and
four major geographical regions of the United States for a wide range of health related
variables. However, state or sub-state level estimates are likely to be unreliable since they
are based on small sample sizes. In this paper, we compare the efficiency of different area
level models in estimating smoking prevalence for the fifty U.S. states and the District of
Columbia using the 2008 NHIS survey data in conjunction with a a number of potentially
related auxiliary variables obtained from the Area Resource File (ARF), a large county level
database compiled from different U.S. federal agencies. A major portion of this study is
devoted to the investigation of various methods to estimate the sampling variances needed
to implement an area level model. In our data analysis, the hierarchical Bayes method
based on the random sampling variance model appears to be have an edge over other area
level models considered in the paper.

Key Words: Hierarchical Bayesian modeling, MCMC, Small area estimation, National
Health Interview Survey, Generalized mixed effect model.

1. Introduction

National sample surveys are generally designed to provide reliable design-based di-
rect estimates for targeted large areas or domains of a survey population. However,
direct design-based methods tend to be unreliable for different subpopulations with
small sample sizes such as subnational geographical regions (e.g., states, counties,
etc.) or cells formed by cross-classifying different demographic variables. As an
alternative to design-based direct estimators, a wide range of methods that borrow
strength from supplementary databases using explicit models, such as linear mixed
effects models (LMM) or generalized linear mixed models (GLMM) have been pro-
posed in the literature. For a review of different small area methods, we refer to
Rao (2003) and Jiang and Lahiri (2006).

In section 2, we describe databases used in this paper. In section 3, we first point
out a few shortcomings of the well-known Fay-Herriot area level model (Fay and
Herriot (1979)) and then discuss a few alternative area level modeling approaches
proposed in the literature. In section 4, we introduce five methods for stabilizing
the variance estimates for small areas. In sections 5 and 6, we examine model-based
estimates and the model fit via posterior distributions, and we discuss results. We
conclude in section 7 with the summary and provide future research areas.
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2. Data Description and Design Characteristics

2.1 The NHIS description

The NHIS is an annual survey with a state-stratified multi-stage complex design.
The survey design includes primary sampling units, (PSUs), which are individual
counties or contiguous groups of counties, and they are taken without replacement
with probability of proportional to their estimated sizes. Within each PSU, the
survey uses an area frame for sampling and it further divides into sub-strata and
clusters. We use in-house data and so we are able to include survey design features
unavailable to the public. In particular, we use clusters of blocks of housing units
for variance estimation.

In addition to detailed survey design variables, the data include various geograph-
ical identifiers, demographic and health related variables. The survey is designed
to produce reliable survey-weighted direct estimates and their associated design-
based standard errors for the nation and four major census regions, (Region 1:
Northeast, Region 2: Midwest, Region 3: South, and Region 4: West). For
more details about the survey, see (http://www.cdc.gov/nchs/nhis/quest_data_
related_1997_forward.htm#2008_NHIS).

2.2 The Area Resource File

For our area-specific auxiliary variables, we have used data from the Area Resource
File (ARF). The ARF is a database containing more than 6,000 variables for each of
the nation’s counties. It contains health related information, measures of resource
scarcity, economic activity, health training programs, and socioeconomic and en-
vironmental characteristics. It also contains geographic codes that enables various
quantities of interests to be aggregated into desired groupings. The data sets are
from many different government agencies, such as Bureau of Labor Statistics, the
Census, and the U.S. Department of Agriculture. More information about the ARF,
see (http://arf.hrsa.gov/faqs.htm).

Some of the variables derived from ARF could be sample survey based and hence
could be subject to sampling errors, an aspect we did not address in the paper.
But, if the county specific sample sizes are large (e.g., statistics computed from
the American Community Survey), one could ignore sampling variances for such
estimates as an approximation.

3. Different Area Level Models and Statistical Inference

3.1 Notation and model description

Let yij be a binary response for the characteristic of interest for unit j in area i
and Ni be the population size in area i (i = 1, . . . ,m, j = 1, . . . , Ni). The param-
eter of interest is the small area proportion, θi =

∑Ni
j=1 yij/Ni. We can estimate

θi by θ̂i =
∑ni

j=1 wijyij∑ni
j=1 wij

, direct survey-weighted estimate of θi; ni is the sample size

for area i; wij is the survey-weight associated with unit j in area i (i = 1, . . . ,m,
j = 1, . . . , Ni).
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A widely used small area model is the Fay-Herriot model (Fay and Herriot (1979))
described as:
Model 1: The Fay-Herriot Model
For i = 1, . . . ,m,

Level1 (Sampling model) : θ̂i|θi
ind∼ N (θi, ψi)

Level2 (Linking model) : θi|β, A
ind∼ N (x′iβ, A), (1)

where xi is a vector of known covariates for area i; the sampling variance ψi is
assumed to be known; the hyper-parameters A and β, are unknown.

The Fay-Herriot model is an example of a matched model, Rao (2003), since the
two levels can be combined into a single linear mixed model:

θ̂i = x′iβ + νi + εi, (2)

where {νi} and {εi} are all independent with νi∼N (0, A) and εi∼N (0, ψi).

The assumption of normality for both sampling and the linking models could be
problematic as they do not guarantee positive support between 0 and 1 for the
posterior distribution of θi; see Liu et al. (2007) and Lahiri (2011). Normality of
the sampling distribution as well as the linking distribution can be handled using
models given in Jiang and Lahiri (2001), Liu et al. (2007) and others. As argued by
Lahiri and Rao (1995), the assumption of normality of the linking model may be
more severe than that of the sampling distribution since there may be certain central
limit effect on the survey-weighted proportions. Thus, for the sake of simplicity, we
consider normality for the sampling distribution but a logistic model for the linking
distribution. Such a model may be called a unmatched model, Rao (2003). In this
paper, we consider the following two unmatched models:

Model 2: The Normal-Logistic Model
For i = 1, . . . ,m,

Level1 (Sampling model) : θ̂i|θi
ind∼ N (θi, ψi)

Level2 (Linking model) : logit(θi)|β, A
ind∼ N (x′iβ, A). (3)

Model 3: The Normal-Logistic Random Sampling Variance Model
For i = 1, . . . ,m,

Level1 (Sampling model) : θ̂i|θi
ind∼ N

(
θi, ψi =

θi(1− θi)
ni

DEFFi

)
Level2 (Linking model) : logit(θi)|β, A

ind∼ N (x′iβ, A), (4)

where DEFFi is the true design effect; that is, the ratio of the true sampling variance
of the survey-weighted proportion under the complex design to the true sampling
variance of the unweighted sample proportion under simple random sampling.

Both Model 2 and Model 3 were considered by Liu et al. (2007). The idea of cap-
turing a part of uncertainty due to the estimation of small area sampling variances
using a random sampling variance model can be traced back to Arora and Lahiri
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(1997). For implementation of the three models, we need to estimate ψ for Model 1
and Model 2 and DEFF for Model 3. You and Rao (2002) considered an alternative
decomposition of the sampling variances as ψi = θ2i CV2

i , where CVi is the coefficient
of variation of the survey-weighted proportion θ̂i. However, unknown θi seems to
have more influence on CVi than DEFFi (see Lahiri 2011 for discussion) and thus
we prefer to choose the decomposition considered by Liu et al. (2007).
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Figure 1: Comparison btw estimates of ̂DEFFi and ĈV
2

vs. θ̂

Figure 1 shows how the direct design estimates θ̂ are related to ̂DEFF and ni× ĈV
2

for the 15 largest U.S. states. It seems that ĈV has strong dependency with direct

design-based estimates with adjusted R2 = 0.479 when ni × ĈV
2

i estimates are

regressed against θ̂i. However, ̂DEFF estimates have no clear relationship with
direct design-based estimates with adjusted R2 = −0.076 when ̂DEFFi estimates
are regressed against θ̂i.

3.2 Estimation of ψ and DEFFi

To use the hierarchical models discussed in section 3.1, an estimate of the within-
area sampling variance, ψi, must be available. In the 2008 NHIS data, while all
states have sample, some low population states have few sampled clusters, thus
their design-based variance estimates could lead to bias and instabilities. Treating
such estimators as accurate inputs may reduce the effectiveness of the hierarchical
models. Here, we propose five methods for estimating ψi to more accurately repre-
sent state proportion estimates and their properties.

A Generalized Variance Function, (GVF), is a model that describes the relationship
between a statistic and its corresponding variance, and traditionally it has been used
for variance estimates, Otto and Bell (1995), Wolter (1985). Our first method uses

a combination of GVF vargvfi and direct sampling variance estimate vari for each

state i. The GVF model in use was defined as vari = α + β/θ̂i, and we have used
this model to obtain fitted values for states with small number of clusters. The
variance estimate, ψ̂i, for the method 1 is defined as:
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Method 1

ψ̂i =

{
max(vargvfi , vari) , if number of clusters for ith state < 100
vari , if number of clusters for ith state > 100.

(5)

We have perceived that using the maximum between the GVF fitted values and
vari seems as a conservative approach, and also recognized that direct design-based
variance estimates for states with large number of clusters are stable (the number
100 for cluster size for each state is arbitrary).

In the next four methods, we have applied methods considered by Liu et al. (2007),
where the estimator ψ̂i is decomposed into estimates of DEFF and the true sam-
pling variance of the unweighted sample proportion under simple random sampling,
(SRS).

For the second method, we have replaced true sampling variance for sampling pro-

portion under SRS with its estimate, θ̂i(1−θ̂1)ni
, and parameter DEFF is replaced with

deffadji , which is defined below.

Method 2

ψ̂i =
θ̂i(1− θ̂i)

ni
· deffadji , deffadji =

{
deffi if .99 < deffi < 3.5

deffi otherwise,
(6)

where deffi is the design-based estimate of DEFFi; deffi = 1
10

∑10
j=1 deffi(j) and

deffi(j) j = 1, . . . , 10 are design effects of 10 largest states.

For the third method, we have estimated ψi by using quantities from the four census
regions. For j = 1, . . . , 4, we have:

Method 3

ψ̂i =
θ̂j,region(1− θ̂j,region)

ni
· deffj,region, (7)

where θ̂j,region and deffj,region are the direct survey-weighted proportion and the di-
rect design-based design effect estimates for the region in which the small area i lies.

For the fourth method, instead of using the direct design-based estimate θ̂i, we first
estimate θ̂i by fitting a logistic regression on 20 largest states and then predict θ̂i
for other states by applying the same function. The underlying idea is that when
ni is small in area i, the direct design-based estimate, θ̂i, is not very reliable, thus
by fitting a regression line, the fitted estimates for ith area “borrow strength” from
other areas with similarities. Thus, ψ̂i is defined as:

Method 4

ψ̂i =
θ̂synthi · (1− θ̂synthi )

ni
· deffadji , (8)
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where θ̂synthi , is the fitted value of θi from the logistic regression.

For the fifth method, (the random sampling variance model), we have used a close
approximation of ψi suggested from the model 3 in section 3. Liu et al. (2007) have
shown that true ψi is approximately:

ψi ≈
θi(1− θi)

ni
· deffi

, where deffi is a reasonable design effect estimate. We have tried both deffj,region
and deffadji . In this paper, we present results for deffadji only, so that ψ̂i is defined
as:

Method 5

ψi ≈
θi · (1− θi)

ni
· deffadji . (9)

3.3 Inference on Small Area Estimation

For inference about parameters in small area estimation models, the hierarchical
Bayesian (HB) approach is explored. With the HB method, making an appropri-
ate choice of prior distribution for hyper-parameters is important in calculating the
posterior distributions. We choose non-informative prior distributions for A and β
(uniform in a finite interval with large length) so the the issue of impropriety does
not arise.

The WinBUGS package, (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.
shtml), is used to implement the HB models, and the Bayesian inference is car-
ried out by the Markov Chain Monte Carlo (MCMC) techniques. For convergence
diagnostics of MCMC chains, we have followed the suggestion by Gelman et al.
(2004); we have calculated the Gelman and Rubin R̂ statistic using three chains,
and for each parameter, we examined its auto-correlation function (ACF) plot, Al-
bert (2007). See Robert and Casella (2004) and Gelman et al. (2004) for more
details about stochastic sampling methods, such as Metropolis Hastings and Gibbs
sampling methods.

4. Model Selection

The task for model selection is quite complex for our project. We focused on
three aspects of model selections: (i) auxiliary variables, (ii) choice of the two level
models and (iii) the choice of the design effects method. We considered two basic
steps to choose the final model. First we focused on selection of auxiliary variables
in subsection 4.1 and then given the set of selected auxiliary variables we compared
five different methods in subsection 4.2 and 4.3.

4.1 Selection of auxiliary variables

There are several county specific auxiliary variables available from ARF. First, we
obtained state specific auxiliary variables from the ARF by appropriate aggrega-
tion. In order to select a few useful auxiliary variables for the area level models, we

Section on Survey Research Methods – JSM 2011

2640

(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml)
(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml)


applied standard regression model selection techniques with logit(θ̂) as the depen-
dent variable using data for the 15 largest states. Basically, we are assuming that
for these 15 largest states sampling variability in the survey-weighted estimates can
be ignored so we can take advantage of standard regression tools.

The following state specific auxiliary variables emerge as potential auxiliary vari-
ables for our area level models:

• Percent of minority population
• Poverty rate
• Percent of population without high school diploma
• Percent of population with age 65 and above

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.3820 0.3594 -1.063 0.31280

min_per -0.9493 0.5372 -1.767 0.10764

pov_per 4.1615 1.2538 3.319 0.00776 **

edu9_per -10.0193 1.9895 -5.036 0.00051 ***

p.agegp3 -3.3229 1.3313 -2.496 0.03167 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0916 on 10 degrees of freedom

Multiple R-squared: 0.8544, Adjusted R-squared: 0.7961

F-statistic: 14.67 on 4 and 10 DF, p-value: 0.0003453

We have ran a simple linear regression model with these covariates against the logit
of direct design-based estimates for the 15 largest states. Under the model, even
though the minority percentage was not significant by a slight margin, including
this covariate improved the overall model fit by adjusted-R squared value.

4.2 Comparison of the five methods

Given the set of four auxiliary variables selected in subsection 4.2, we compared
five different methods. Methods 1-4 represent the normal-logistic model with the
four different estimators for ψ. Method 5 represents the normal-logistic random
sampling variance model where DEFF is estimated by Method 2. We now present
two different ways to compare these five methods.

4.2.1 Model selection using benchmarking criterion

Without the benchmarking, one way to analyze the performance of the posterior
estimates for each state is to compare their aggregates at the census region against
the regional design estimators. (The 2008 NHIS is constructed to give precise esti-
mators at the census region.) So, we examined the following relative error (RE):

REj =

∣∣∣∣∣
∑

i∈j wiθ̂
ps
i − θ̂j,region

θ̂j,region

∣∣∣∣∣ , j = 1, . . . , 4,
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where θ̂j,region is the census regional design-based direct estimate, wi is survey weight

for state i, and θ̂psi is posterior mean from the area-level HB model at state i. This
ratio would provide a criterion for comparing the five different methods.

Cen. Rgn. Method 1 Method 2 Method 3 Method 4 Method 5

Rgn 1: NE 0.0763 0.0562 0.0467 0.0539 0.0420
Rgn 2: MW 0.0752 0.0480 0.0431 0.0396 0.0379
Rgn 3: S 0.0869 0.0549 0.0493 0.0472 0.0428
Rgn 4: W 0.0316 0.0090 0.0062 0.0008 0.0012

Table 1: Relative errors for five methods

From Table 1, we see that, in the census region 4, all methods performed well.
Overall, method 5 performs the best except in region 4 where Method 4 is marginally
better. Method 1 consistently performed the worst in all regions.

4.2.2 Bayesian p-value

Even though the previous section describes an assessment of model performance for
different methods at the census regional level, an additional appraisal is still needed
at the state level. For this purpose, we use the Bayesian p-value (Gelman et al.,
2004). Similar data analysis was carried out in a number of papers (see, e.g., Datta
et al. (1999) and Rao (2003)). Their main idea is that if the model fits, then repli-
cated data generated under the model should look similar to observed data. That is,
the observed data should look plausible under the posterior predictive distribution.
Thus, the technique for checking the model fit is to draw simulated samples from
the posterior predictive distribution and compare these to the observed data.

Let yobs denote observed data and ynew be predicted data from a distribution, f(y|θ).
Let functions f(d(yobs, θ)|yobs) and f(d(ynew, θ)|yobs) be the posterior (predictive)
distributions of d(yobs, θ), and d(ynew, θ), where d(y, θ) is a χ2-type discrepancy
measure, Gelman et al. (2004), defined as:

d(y, θ) =
50∑
i=1

(σ2i )
−1(yi − θi)2.

Parameter σ2i is the true variance for area i, and we implement this measure for our
analysis with replacing σ2i by different ψ̂i.

We generate parameters, θ(l), from the posterior distribution, f(θ|yobs) and new data
y(l) from f(y|θ(l)), l = 1, . . . , B, where B(= 3, 500) is the total number of iterations.
Then, we have generated two sets of samples, d(yobs, θ

(l)) and d(y(l), θ(l)). These
are used to approximate the Bayesian p-value, Gelman et al. (2004), by the test
quantity P{d(ynew, θ) ≥ d(yobs, θ)|yobs}, which is approximated by,

pB ≈ B−1
B∑
l=1

I{d(y(l), θ(l)) ≥ d(yobs, θ
(l))}, (10)

where I(·) is an indicator function.
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An extreme value (near 0 or 1) of the Bayesian p-value approximate (10) indicates
lack of fit of a given model, whereas for an adequate model, this measure will be
close to 0.5.

Methods measure

1 0.2552
2 0.3922
3 0.3716
4 0.4025
5 0.4019

Table 2: Bayesian p-values for different methods.

According to this diagnostic, method 4 outperforms method 5 by a slight margin,
and method 2 performs equally as method 4 and 5. This diagnostic further strength-
ens the claim that method 1 performs the worst; it is still outperformed by all other
methods.

5. Estimation

Since from the previous data analysis, methods 4 and 5 emerge as the best two, we
compare these methods further.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

states from smallest to largest

θ̂

4

4

4

4
444

4

4

4

4

4

4

4

44

4

4

44

4

4

4

4

44

4
4

4

4

4

4

4
4

4

4

4

4
4

4

4

4
4

4

4

4
4

4

44

4

5

5

5

5

5
55

5

5

5

5

5

5

5

5
5

5

5

55

5

5

5

5

55

55

5

5

5

5

5
5

5

5

5

5
5

5

5

5
5

5

5

5
5

5

55

5

B
B

B

B

B

BBB
B

B

B
B

B

B

B

B

B

BB

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

BB

B

B
B

B

B

B
BB

BB

B
B

B

B

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

1 4 7 10 14 18 22 26 30 34 38 42 46 50

Posterior θ̂ for N−Logit methods 4 and 5

*
4
5
B
−

θ̂= design direct estimate
method 4
method 5
BRFSS
national average

Figure 2: Estimates by states

Figure 2 shows the hierarchical Bayes estimates obtained using method 4 and 5
for each state by its sample size. For confidentiality reasons, actual state names
are omitted. States are partitioned into three groups by their sample size, (shown
by vertical dotted lines). The symbol “B” represents estimates from another large
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survey, the Behavioral Risk Factor Surveillance System, (BRFSS). The BRFSS is
a state-based system of health surveys that collects information on health related
subjects via telephone interviews. For more information about the BRFSS, see
(http://www.cdc.gov/BRFSS/about.htm). The national smoking average of 2008
is represented by the solid line at 20.6%.

Note that the direct estimates are bouncing around the national estimates with
more variability among the estimates for the group of states with smaller sample
size. The variability among the direct estimates reduces as we move from left to
right side of the graph. For the largest states direct estimates are very similar to
the two hierarchical Bayes estimates. As shown in figure 3, we see a pattern that
among smaller states, model-based estimates of both methods are pulled towards
the national average. The BRFSS estimates for the large states are mostly below
the national line, which is in contrast with the other estimates.

Let us now turn our attention to compare the posterior standard errors from method
5 with the design-based standard error of the survey-weighted proportions. We
only consider method 5 since it is likely to report a more accurate standard error
estimates than method 4 as method 5, unlike method 4, attempts to explain a part
of variability in estimating the sampling variances.
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Figure 3: Box plots of std. errors

The box plots of the reported standard errors for the design-based method and
method 5 are displayed in Figure 3. The design-based standard errors are much
more variable than the posterior standard errors. Also, on the average the posterior
standard errors seem to be smaller than the design-based standard errors. While
Figure 3 is indicating superiority of method 5 over the design based method in
terms of their respective reported standard errors, it is not a confirmatory test
since design-based standard errors are not strictly comparable with the posterior
standard errors.
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6. Summary

This study provides estimates of smoking proportion for each state by using the
2008 NHIS data and small area estimation models. The area-level models require
the user to know ψi, the true value of area-level variance, but in practice, it must
be estimated. We have shown five methods for estimating the area-level variance
and provided their assessment at the census regional level and the state level. Our
results have shown that although all methods have reasonable outcomes, the most
widely used method performed worse than others. We also have concluded that the
estimation of ψi in the smaller states results in larger differences compared to their
design estimate counter parts.

In future research, we would like to explore other models for sub-state estimates
using the NHIS data and analyze their performance. We hope that this study has
provided some insights about small area estimation modeling.
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