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Abstract 

The authors developed and tested a non-parametric method of estimating the risk of 
disclosing information about whether known population individuals have cancers. This 
method matches cancer patients diagnosed in 2000 in a research data file from the 
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 
Program with individuals in Census 2000 Public Use Microdata Sample (PUMS) by 
county of residence and several common demographic key variables and estimates the 
proportion of patients who are unique in both files. To overcome the lack of direct 
estimates of population totals for counties with less than 100,000 residents, the authors 
developed two methods to impute the incomplete county codes in PUMS based the 
relationships among Public Use Microdata Area (PUMA), County, and Race. The 
uniqueness estimates were then validated against the gold standard obtained by matching 
SEER data with 100% Census 2000 Summary File 1 (SF1.) Older racial and ethnic 
minorities residing in less populous areas are at higher risks of being identified. Both 
imputation methods produce conservative risk estimate and the magnitudes of upwards 
bias are 3-4 times. The bias tends to be greater for areas with larger risks. This research is 
the first attempt to systematically evaluate the risk of disclosing the attribute of whether 
an individual has cancer, and it builds substantial foundation for establishing routine 
procedures for assessing such risks using yearly updated microdata from the American 
Community Survey (ACS) in the future.  

Key Words: Disclosure Risk, SEER, Cancer Registry, Population Uniqueness, Census 
PUMS, and ACS 

 

1. Introduction 

The National Cancer Institute’s Surveillance, Epidemiology, and End Results Program 
(SEER) routinely collects and publishes data on cancer patient demographics, geographic 
locations, tumor characteristics, and treatment information from population-based cancer 
registries. It has been the most authoritative source of data for describing cancer 
incidence and survival at national, regional, and local levels. There has been an 
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increasing need for small geographic area data to identify areas with elevated cancer rates 
and to plan and monitor the impact of cancer control and prevention activities at local 
levels. However, the identification of cancer patients is likely when one combines 
detailed geography with basic demographics. Disclosure not only discredits the agency 
but also presents a significant impact on to a patient, as it tends to have great potential for 
tangible harms given the sensitive nature of individual medical conditions. In order for 
the agency to make informed decisions in balancing data utility and the risk of disclosure, 
it is important to quantify the risk of disclosure systematically. 

Record Uniqueness (ܴܷ) in a cancer surveillance data file means that there is only a 
single patient with the same basic socio-demographic characteristics such as gender, age, 
race, and geography. While the risk of disclosing new information about a known cancer 
patient presented by record uniqueness in a cancer surveillance data file has been well 
addressed [1]. However, significant gaps exist for evaluating the disclosure risk when 
matching the cancer surveillance data to another general population data file based these 
same basic demographic variables. Because this second file is not a file of cancer patients, 
but drawn from the general population (e.g. census data, credit card files, voter registry, 
etc,), if a person is unique based on the same set of attributes we call this person 
Population Unique ( ܷܲ ). If an intruder knows that a person has cancer and basic 
demographics, he can use ܴܷ to reveal additional details about the cancer patient (e.g. 
tumor characteristics, treatment, number of prior cancers). However, if an intruder has 
matched registry data to a population file, and knows that a person is both ܴܷ and ܷܲ, 
then they can use this information to reveal that a person has cancer based just on basic 
demographic information (potentially a much more sensitive revelation). This precisely 
follows the definition of disclosure provided by various authors, in which a patient is 
identified, rather than just disclosing additional information about a known patient [2, 3]. 
One of the methodological difficulties that hinder the development in this area is that the 
assessments require population data, which has to either be estimated from the released 
data [4-13] or be acquired from another source. The estimation approach is not feasible 
because cancer patients usually have different characteristics than the general population, 
inferring the population distribution from the cancer patients would be problematic 
without acquiring addition information about the difference between these two. Therefore,  
population information can only be acquired externally.  

This article regards the number of ܴܷ patients who are also unique in the population, 
denoted as ܷܲ, as a measure of disclosure risk and develops a nonparametric model to 
assess such risks. This measure of risk, denoted as ܷܲ|ܴܷ, has been widely used and 
considered in the context of releasing census or survey sample data [5, 7, 12, 14-16]. This 
study is the first to apply this measure in the case of estimating risk for a public health 
surveillance data. It particularly concerns the threat of disclosure arising from the 
possibility that an intruder might successfully identify a patient through matching his/her 
released identifying information to known individuals in the population.  

In this study, we first evaluate ܴܷ and ܷܲ from SEER data linked to US Census 2000 
100% Summary File 1 (SF1) based on gender, single year of age, race (White, Black, 
American Indians and Alaksa Natives, and Asian & Pacific Islander)) and county. 
Because the SF1 is census rather than a sample, we can identify with relative certainty 
(with the exception of people missed) if a person is ܷܲ. However, the SF1 is a summary 
(rather than individual record) file which provides counts based on four basic 
demographic characteristics, and intruders may want to use additional identifying 
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characteristics besides the 4 basic demographic variables.  In this instance, linking a file 
such as the 5% Public Use Microdata Sample (PUMS) from the U.S. Census long form 
survey may be attractive for the intruder, since it contains a rich source of additional 
characteristic of the individual (e.g. marital status, and nativity).  However, since data 
sources such as PUMS are a sample rather than a census, and counties with populations 
under 100,000 are combined to reduce the chance of identification, the intruder can never 
be absolutely certain that a person is population unique, and sophisticated statistical 
techniques must be employed to infer a high probability of ܷܲ.   

In this paper we first evaluate the extent of PU|RU using SEER and the SF1.   Secondly 
we use a basic algorithm (including imputation of county) to estimate PU|RU   using 
SEER and the PUMS data.  We chose the PUMS data because it allowed one consider 
various disclosure risk scenarios by choosing different sets of identifying information 
given the data richness. This test also prepares us for future use of yearly updated 
American Community Survey (ACS) sample data in annual assessments of SEER new 
releases given the similarities between the two survey data. The issue of measure change 
over time, for example, patients’ moving out their initial diagnosis areas, can be better 
coped by using timely ACS estimates. For validation purpose, the risk estimates were 
compared with those obtained by using the SF1.  Despite its high accuracy, since it is 
based on complete population enumeration, we did not consider use it in routine 
assessments because the data is limited to four basic demographics and only updated 
once every 10 years. Only considering limited sets of disclosure risk scenarios and 
assuming constant identifying information across 10 years could be problematic and 
limiting.  

In the remaining sections, we first introduce data attributes type and their relations with 
the risk of disclosure. We then define two disclosure measures, justify our choices, 
discuss properties of those measures, show evaluation results, and discuss areas for future 
research.  

2. Materials and Methods 
2.1. Data attributes 

A cancer registry microdata set like SEER’s research data file can be viewed as a data file 
with each row representing a cancer event for one patient, and each column representing 
an attribute of this event. From the standpoint of confidentiality, the attributes can be 
classified into four categories: direct identifiers, quasi-identifiers, sensitive attributes, and 
non-sensitive attributes. The direct identifiers include names, addresses, unique 
identification numbers (for example, Social Security Number), etc. and they are routinely 
removed from a released data file to prevent direct identity disclosure. Quasi-identifiers, 
also called key identifiers or key variables, are variables that can be used to indirectly 
identify patients, for example, age, gender, date of birth, race, ethnicity, and small area 
geographic locations. This set of variables is the background information an intruder 
might easily have about the known target individuals. A sensitive attribute is the 
information an intruder does not have but attempts to obtain and the disclosure of this 
attribute might result in discrimination embarrassment or economic harm to an identified 
patient. Data on cancer diagnoses, test results, cause of death, etc. are usually in this 
category. The rest of data items are non-sensitive attributes, and the disclosure of which 
generally do not cause harm.  
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Establishing the distinction between these four types of variables usually involves 
difficult and complex judgments, because the categorization may not necessarily be 
mutually exclusive and static over time. With more data made publicly available, 
sensitive attributes such as diagnosis and treatment information may become available for 
identification. Attributes that are not sensitive to one party may appear highly sensitive to 
another party.  

There are two general types of disclosure that are of concern: identity disclosure and 
attribute disclosure [17]. Identity disclosure refers to the identification of an entity (such 
as a cancer patient or a health care organization) and attribute disclosure refers to an 
intruder finding out something new about the target entity. For a microdata with detailed 
information attached to each record, identity disclosure usually leads to the revelation of 
attributes, and therefore, is of primary importance. 

2.2. Measures of disclosure risk 

The identity disclosure risk measures in the literature are mainly based on either the 
number/percentage of unique records or the probability of identification. Because unique 
records can be identified with high certainty and cancer surveillance data usually contains 
many unique records since cancer is rare, measures based on uniqueness are more useful. 
Two pieces of knowledge are important for a successful identity disclosure attempt: 
response knowledge [4] and population uniqueness. Response knowledge is a term 
originally used in surveys and it refers to the knowledge that a person has been 
interviewed for a particular survey. Translated into cancer surveillance, it is the 
knowledge that a person has cancer (physicians and hospitals are required by law to 
report all cancer diagnoses). If an intruder has reasons to believe that a particular person 
has cancer, and consequently his data must be in the surveillance database, identity 
disclosure can be easily accomplished if this person is unique in the dataset. Response 
knowledge significantly increases the risk of disclosure and oftentimes this information is 
what an intruder would like to know most. The knowledge of population uniqueness 
usually requires complete enumeration of a population. If a record is both record unique 
and population unique, then the disclosure becomes much more likely since a one-to-one 
relationship between a data record and a target individual can be established, and the 
knowledge that this person has cancer will be disclosed together with other attribute 
information that is attached to his record. 

For simplicity, in the rest of article, we used the term sample to refer to SEER data and 
the term population to refer to the general population data.  ܨ௞  and ௞݂ denote the 
population size and the sample size in cell ݇ of a cross-classification of key variables 
with a total of  ܭ cells respectively. ∑ ௞ܨ

௄
௞ୀଵ ൌ ܰ and ∑ ௞݂

௄
௞ୀଵ ൌ ݊, where ܰ and ݊ are 

the total population size and total sample size. We defined the set of record uniques as 
ܴܷ ൌ ሼ݇: ௞݂ ൌ 1ሽ, the set of population uniques as ܷܲ ൌ ሼ݇: ௞ܨ ൌ 1ሽ, and the set of 
record uniques that are also population unique as ܴܷ|ܷܲ ൌ ሼ݇: ௞݂ ൌ 1, ௞ܨ ൌ 1ሽ. A global 
disclosure risk measure for the entire sample data file is ߬ ൌ ∑ ሺܫ ௞݂ ൌ 1, ௞ܨ ൌ 1ሻ௄

௞ୀଵ , 
where ܫሺ·ሻ is the indicator function. 

2.3. Data sources and key variables 

This study involves three datasets: the SEER research data file for which we seek risk 
estimates; 5% Census 2000 PUMS file, the population data that intruders have access to 
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for matching SEER patients; and finally 100% Census 2000 Summary File 1, a 
population data based on complete enumeration, which provides population statistics for 
calculating ‘gold standard’ risk estimates for validation. 

This SEER data includes 346,955 cancer patients diagnosed in 2000, the same year as the 
U.S. 2000 Census, from SEER 17 Registries1. We excluded the data from Alaska Native 
Tumor Registry because all patients are American Indians and Alaska Natives, and 
additional confidentiality constraints are in place for these data. We obtained both PUMS 
and SF1 from U.S. Census Bureau. PUMS contains rich data representing 5 percent of 
U.S. population. Each record represents ݓ௜ population individuals, where ݓ௜ is the person 
weight attached to record ݅. The smallest geographic units in PUMS are Public Use 
Microdata Areas (PUMAs) with a minimum population of 100,000. This threshold was 
set by the Census Bureau to prevent the disclosure of individual information from 
released data. SF1 contains information collected on Census short-form questionnaires. 
Three merits make it a perfect validation source: it is based on complete enumeration of 
U.S. population; statistics are available at much lower geographic levels with high 
precision, such as county and census tract; and single-race population estimates at county 
level are available. However, it cannot be used routinely because the contents are limited 
to four basic demographic variables2 and risk assessments are not possible in situations 
where the intruders have access to more background information. 

Five common key variables among all three datasets are selected: single year of age (A) 
in 85 categories (top-coded at 85), sex (S) in 2 categories, race (R) in 5 categories (White, 
black, American Indian or Alaska Native (AIAN), Asian, Native Hawaiian, and Pacific 
Islander (API), and Others), Hispanic origin (H) in 2 categories, and State-county 
geocodes (SC) in 468 categories3. The total possible number of combination cells is about 
795,600. 

2.4. Methods 
 
2.4.1. Record matching and risk estimation 

For both population data of PUMA and SF1, we matched SEER patients with population 
records on key variables. Based on the matching results, SEER patients are classified into 
two groups: matched group and not-matched group. For matched group, the number of 
ܴܷ and the number of ܴܷ|ܷܲ patients are estimated. When PUMS is used,  ܨ௞෢ is 
obtained by summing the survey weights in cell ݇: ܨ௞෢ ൌ ∑ ௞א௜௜ݓ , where ݅ denote 
individuals. Then ߬̂ is estimated by ߬̂ଵ ൌ ∑ ൫ܫ ௞݂ ൌ 1, ௞෢ܨ ൌ 1൯௄

௞ୀଵ . When SF is used, ߬ can 
be directly calculated since both ௞݂ and ܨ௞ are known. For not-matched group, we first 
calculated ߠ෠ ൌ ∑ ሺܫ ௞݂ ൌ 1ሻ௄

௞ୀଵ , then we predicted how many of them are also population 
unique, ߬̂ଶ. The combined estimate is  ෝ߬ ൌ ߬̂ଵ ൅ ߬̂ଶ. 

                                               
1 The SEER’s 17 Registries are Los Angeles, San Francisco-Oakland, San Jose-Monterey, Great 
California, Connecticut, Detroit, Atlanta, Rural Georgia, Hawaii, Iowa, Kentucky, Louisiana, New 
Jersey, New Mexico, Seattle, Utah, and Alaska Native Tumor Registry. 
2 The entire questionnaire includes seven questions: name, household relationship, sex, age, 
Hispanic or Latino origin, race, and home ownership (whether home is owned or rented). 
3 There are 486 counties in SEER areas. 
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It is vital to point out that there are two possible reasons for non-matching: measurement 
errors [18] or perturbation errors [19, 20] in key variables and incomplete coverage of the 
population data due to sampling or census undercount. A true population match may 
appear to have a different combination of key variables from the SEER patient due to 
measurement discrepancies; such leads to a non-match. Individuals with rare 
characteristics may not appear in a sample representing a portion of the population due to 
sampling. The smaller the sampling fraction is the more under-represented individuals. 
Some individuals were not counted by the census and the undercount rates vary by age, 
sex, race, geographic area population density, and economic status [21]. These non-
matching factors are in fact protective to the confidentiality of the release data because 
they make record matching difficult [22]. 

2.4.2. Imputing county codes in PUMS 

Because county codes are not available in PUMS for those with population less than 
100,000, we created imputations, using PUMA-county-race relationships extracted from 
SF1, multiple times and estimated the imputed population totals in the same way as if we 
were using the original data. Imputation uncertainty was taken into account by taking the 
average of multiple estimates [23].  

There are mainly four types of PUMA-county relations. Counties with large populations 
are PUMAs by themselves (referred to have a relation of “1 to 1”) or subdivided into one 
or multiple PUMAs (“M to 1”). For these counties, population totals can be estimated 
using the sum of the weights over all PUMAs nested within a county. One PUMA can 
also be formed by a group of small adjacent counties (“1 to M”) and occasionally, and 
PUMA boundaries can cross county boundaries and be made of parts of several counties 
(“Mixed”). For respondents residing in these counties, we imputed their county codes 
assuming race is distributed homogenously within a PUMA. We could have based the 
imputations on just the PUMA-county relation or a relation between PUMA, county and 
other variables. Goodman-Kruskal’s lambda association tests suggest that Race has the 
strongest association with the geography. 

We developed two imputation methods. In both methods, we first created a set of race-
PUMA strata with population size of ݊௦, where ݏ denotes stratum. Within each stratum, 
we randomly allocated records into one of the nested counties with probabilities 
proportional to their sample weights ݓ௜. We repeated the second step multiple times 
(M=5) to create multiply imputed data sets. The only difference between the two methods 
is how many population individuals we assumed each record represents. In the first 
method, we assumed each respondent represents ݓ௜ population individuals. Assigning 
one record to a county is equivalent to allocating ݓ௜ population individuals with the same 
characteristics to that county, therefore, the estimated population size for that cross-
classification cell, ܨ௞෢, is guaranteed to be no less than ݓ௜. When ݓ௜ ൐ 1, then ܨ௞෢ ൐ 1 and 
cell ݇ is not a population unique cell. The distribution of weights suggests that only a few 
records represent themselves and most records are associated with weights much greater 
than one. Therefore, we expected large underestimation bias in ߬̂ since it mostly equals 
zero. Alternatively, we considered an expanded-weights approach. We created a pseudo 
population data by expanding each record to ݓ௜ records with the same characteristics, 
thus each respondent only represents himself. We then randomly assigned each 
respondent to a county with equal probability of 1 ∑ ௜ݓ

௡ೞ
௜⁄ . This approach allows the 

assigning of pseudo respondents who are generated from one respondent to different 
counties, thus it is possible to have combination cells with frequencies of one and 
consequently produce less bias in ߬̂.  
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3. Results 

We first presented the gold standard risk estimates obtained using SF 1. We then 
compared them with two sets of risk estimates obtained using PUMS, where county 
codes are imputed using imputation method 1 and 2 respectively. 

Table 1 shows the estimated numbers and proportions of ܴܷ, ܷܲ, and ܷܲ|ܴܷ by 
coverage status using SF1. Overall, for 99.9% of SEER patients, at least one match can 
be found in the census population. Among these matched patients, the proportion of ܴܷ 
is very high with an overall value of 7.25% across all cancer sites and all SEER areas. 
The proportions are higher for regions with low population density, such as New Mexico, 
Iowa, Kentucky, Utah, and Louisiana, which are around 20%. In contrast, ܴܷ is 
relatively rare in populous regions, such as Connecticut, California, Detroit4, and Seattle5, 
and the proportions range from 3% to 4%. The proportions of ܷܲ follow the same pattern 
as those of ܴܷ but at much smaller magnitudes (approximately 100 times smaller.) 
Almost all ܷܲ are also ܴܷ, which suggests that the overall impact of measurement errors 
on record match is negligible.  

Almost all of the 362 SEER patients without population matches are record uniques. 
Because the measurements in key variables are comparable based on previous results, it 
is highly possible that the impact of measurement errors on matching rates is also 
negligible, and the main contributing factor for non-matching is census undercount. It is 
desirable to have conservative disclosure risk estimates, therefore, we treated not-covered 
ܴܷ as ܷܲ. We then derived a combined estimate of ܷܲ|ܴܷ for the entire SEER data file 
(presented in the last column of Table 3) by summing the number of ܷܲ|ܴܷ among 
covered SEER patients and the number of ܴܷ among not covered SEER patients. On the 
average, the proportion of ܷܲ|ܴܷ is 0.17%. The data with the highest risk is from the 
Kentucky registry (0.59%) and the data with the lowest risk is from Detroit SEER 
registry (0.03%). Compared with the general population, non-match SEER patients tend 
to be 60 years of age and older, male, non-white, Hispanic, not married, and residing in 
smaller counties (data not shown and available upon request.)  

Table 2 shows the numbers and proportions of SEER records and counties by imputation 
status and PUMA-county relationship. On average, 17.2 % SEER patients residing in 
78.6% counties have missing data on county codes in PUMS. This proportion varies by 
area population density. For SEER areas with low population densities, the proportion of 
missing data is as high as 71.8% for Kentucky and 68.3% for Iowa. In contrast, for 
populous regions, this proportion reduces to 0% for Connecticut, 3.6% for New Jersey 
and 4.6% for California. 

                                               
4 Metropolitan Detroit Cancer Surveillance System covers Macomb, Oakland, and Wayne 
counties. 
5 FHCRC Cancer Surveillance System covers Clallam, Grays Harbor, Island, Jefferson, King, 
Kitsap, Mason, Pierce, San Juan, Skagit, Snohomish, Thurston, and Whatcom counties. 
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Table 1 : Estimated Number of SEER Records (2000) that are ܴܷ, ܷܲ, and ܷܲ|ܴܷ using 100% Census SF 1 

 
Overall  Matched  

Non-
matched 

 
Combined 

 
N  

Match 
Rate (%) 

ܴܷ (%) ܷܲ 
ܷܲ/ܴܷ  

(%) 
 ܴܷ (%) 

 ܷܲ/ܴܷ  
(%) 

Entire 
 SEER File 

346,643 
 

99.90 25,093 (7.25) 233 232 (.07)  
 350 

(96.69) 
 

582 (0.17) 

CA 144,315  99.94 5,509 (3.82) 40 39 (.03)  88 (97.78)  127 (0.09) 

CT 20,272  99.85 705 (3.48) 4 4 (.02)  28 (93.33)  32 (0.16) 

GA* 11,202  99.96 924 (8.25) 4 4 (.04)  5 (100.00)  9 (0.08) 

HI 5,572  99.75 372 (6.69) 7 7 (.13)  14 (100.00)  21 (0.38) 

IA 16,269  99.84 3,305 (20.35) 39 39 (.24)  26 (100.00)  65 (0.40) 

KY 22,140  99.68 4,425 (20.05) 62 62 (.28)  68 (97.14)  130 (0.59) 

LA 21,186  99.92 3,473 (16.41) 19 19 (.09)  18 (100.00)  37 (0.17) 

MI* 22,588  99.98 432 (1.91) 3 3 (.01)  4 (100.00)  7 (0.03) 

NJ 48,208  99.83 2,333 (4.85) 16 16 (.03)  77 (92.77)  93 (0.19) 

NM 7,593  99.89 1,746 (23.02) 12 12 (.16)  8 (100.00)  20 (0.26) 

UT 6,999  99.90 977 (13.97) 15 15 (.21)  7 (100.00)  22 (0.31) 

WA* 20,299  99.97 892 (4.40) 12 12 (.06)  7 (100.00)  19 (0.09) 

Notes:  * Three SEER regions do not cover complete states.  In Georgia, SEER covers metro Atlanta and several additional rural counties.  In 
Michigan, SEER covers metro Detroit.  In Washington, SEER covers metro Seattle. See http://seer.cancer.gov/registries/ for details. 
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Table 2: The Numbers and Proportions of SEER 2000 Persons (Ps) and Counties (Cs) by Imputation Status and PUMA-County Relation for 
SEER 17 Registries 

PUMA-County 
Relationship* 

Direct Estimation  Indirect Estimation Via Imputation 

M to 1  1 to 1  1 to M  Mixed 

# Ps (%) # Cs (%)  # Ps (%) # Cs (%)  # Ps (%) # Cs (%)  # Ps (%) # Cs (%) 

Total 248,93 (7.2) 35 (7.5)  261,855 (75.5) 65 (13.9)  51,066 (14.7) 361 (77.3)  8,825 (2.5) 6 (1.3) 

CA 7,456 (5.2) 10 (17.2)  130,330 (90.3) 24 (41.4)  4,993 (3.5) 23 (39.7)  1,536 (1.1) 1 (1.7) 
CT 3,324 (16.4) 4 (50.0)  16,948 (83.6) 4 (50.0)  - -  - - 

GA** - -  10,615(94.8) 5 (33.3)  587 (5.2) 10 (66.7)  - - 
HI 6,82 (12.2) 1 (25.0)  4,056 (72.8) 1 (25.0)  834 (15.0) 2 (50.0)  - - 
IA 3,477 (21.4) 5 (5.1)  1,686 (10.4) 1 (1.0)  11,106 (68.3) 93 (93.9)  - - 
KY 736 (3.3) 1 (0.8)  5,515 (24.9) 2 (1.7)  15,889 (71.8) 117 (97.5)  - - 
LA 3,132 (14.8) 5 (7.8)  3,533 (16.7) 2 (3.1)  8,598 (40.6) 53 (82.8)  5,923 (28.0) 4 (6.3) 

MI** - -  22,588 (100.0) 3 (100.0)  - -  - - 
NJ 3,559 (7.4) 5 (23.8)  42,877 (88.9) 14 (66.7)  406 (0.8) 1 (4.8)  1,366 (2.8) 1 (4.8) 

NM*** 1,010 (13.3) 2 (6.1)  2,514 (33.1) 1 (3.0)  4,065 (53.6) 30 (90.9)  - - 
UT 684 (9.8) 1 (3.4)  4,423 (63.2) 3 (10.3)  1,892 (27.0) 25 (86.2)  - - 

WA** 833 (4.1) 1 (7.7)  16,770 (82.6) 5 (38.5)  2,696 (13.3) 7 (53.8)  - - 
Notes:  *  M to 1: Multiple PUMAs correspond to 1 county 
 1 to 1: 1 PUMA corresponds to 1 county 
 1 to M: 1 PUMA corresponds to multiple counties 

Mixed: 1 PUMA is comprised of multiple small counties and part(s) of a large county. 
  **  Three SEER regions do not cover complete states. In Georgia, SEER covers metro Atlanta and several additional rural counties.  In 

Michigan, SEER covers metro Detroit.  In Washington, SEER covers metro Seattle. See http://seer.cancer.gov/registries/ for details. 
     ***   Four cases with missing information on county are excluded. 
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Table 3 shows the results obtained using PUMS with county codes imputed using method 
1. Compared with the gold standards, the match rates decrease slightly for all SEER 
regions from an average of 99.90% to 98.71% with a difference of 1.19%. The declines 
are smaller for populous regions. Three regions with the smallest declines are Michigan 
(0.36%, Metropolitan Detroit), California (0.45%), and Connecticut (0.59%). Three 
regions with the largest declines are Kentucky (4.12%), New Mexico (3.89%), and 
Louisiana (3.19%). As we expected, the estimated proportions of ܷܲ are zero for all 
regions. Among not-covered SEER patients, approximately 73% are ܴܷ on average, with 
65% to 85% across regions. These proportions are much smaller than those gold standard 
estimates. Under the same assumption about non-matched ܴܷ, we calculated the 
combined estimates of the proportion of ܷܲ|ܴܷ which are shown in the last column of 
Table 4. The average proportion across all regions is nearly 1%. The largest proportion is 
associated with data from New Mexico registry (3.03%), followed by Kentucky registry 
(2.97%). The smallest proportion is associated with Detroit registry (0.24%) and the 
second smallest is with California (0.42%). The overestimation bias, on average, is 5.6 
times, and ranges from 3.0 for Hawaii to 14.0 for Georgia. Table 4 shows the results from 
PUMS with county codes imputed using method 2. Similar to the results in Table 3, the 
coverage rates decreased but at smaller magnitudes. The proportions of ܷܲ|ܴܷ are less 
than 0.1% for covered SEER patients for all regions except for Kentucky, and New 
Mexico. For Connecticut and Detroit, imputation procedures are not needed because all 
counties have 100,000 or more population. Therefore, the results are the same in both 
imputation methods. However, the magnitudes of the proportions of ܷܲ|ܴܷ are small 
compared with the gold standard. Among not-covered SEER patients, the proportions of 
ܴܷ slightly increased over Imputation Method 1, but are also smaller than the gold 
standard. The accuracy of combined ܷܲ|ܴܷ estimates improved over that of method 1, 
but still exhibits certain upward discrepancies from the gold standards. The 
overestimation bias, on average, is 3.7 times, and ranges from 2.4 for both Iowa and 
Kentucky to 8.0 for Georgia. 

Table 3: Estimated Number of SEER Records (2000) that are ܴܷ and ܷܲ using Census 2000 5% 
PUMS by Coverage Status, Imputation Method 1 

Matched  Not-matched  Combined 

 
Match 

Rate (%) 
ܴܷ (%) ܷܲ  ܴܷ (%)  

ܷܲ/ܴܷ  
(%) 

Entire 
SEER File 

98.71 22,203.0 (6.49) 0  3240 (72.54)  0.93 

CA 99.49 4,987.2 (3.47) 0  609.8 (82.43)  0.42 

CT 99.26 612.0 (3.04) 0  121 (81.21)  0.60 

GA* 98.35 802.8 (7.29) 0  126.2 (68.44)  1.13 

HI 98.57 323.0 (5.88) 0  63 (78.95)  1.13 

IA 97.26 3,042.4 (19.23) 0  288.6 (64.65)  1.77 

KY 95.56 3,835.8 (18.13) 0  657.2 (66.79)  2.97 

LA 96.73 3,019.0 (14.73) 0  472 (68.23)  2.23 

MI* 99.62 382.0 (1.70) 0  54 (62.79)  0.24 

NJ 99.05 2,072.6 (434) 0  337.4 (74.06)  0.70 

NM 96.00 1,524.2 (20.91) 0  229.8 (75.59)  3.03 

UT 97.77 849.0 (12.41) 0  135 (86.43)  1.93 

WA* 99.07 753.0 (3.74) 0  146 (77.00)  0.72 
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Notes:  * Three SEER regions do not cover complete states.  In Georgia, SEER covers metro 
Atlanta and several additional rural counties.  In Michigan, SEER covers metro Detroit.  
In Washington, SEER covers metro Seattle. See http://seer.cancer.gov/registries/ for 
details. 

 
Table 4: Estimated Number of SEER Records (2000) that are ܴܷ and ܷܲ using Census 2000 5% 
PUMS by Coverage Status, Imputation Method 2. 

Matched  Not-matched  Combined 

 
Match 

Rate (%) 
ܴܷ (%) ܷܲ 

ܷܲ/ܴܷ  
(%) 

 ܴܷ (%)  
ܷܲ/ܴܷ  

(%) 
Entire  

SEER File 
99.26 23,352 (6.79) 72 67 (.01)  2,087 (81.30) 

 
2,154 (0.62) 

CA 99.56 5,073 (3.53) 14 13 (.01)  524 (82.92)  537 (0.37) 

CT 99.26 612 (3.04) - - (.00)  121 (81.21)  121 (0.60) 

GA* 99.09 860 (7.75) 3 3 (.03)  69 (67.39)  72 (0.64) 

HI 98.69 328 (5.96) - - (.00)  58 (79.45)  58 (1.04) 

IA 98.93 3,174 (19.72) 1 1 (.00)  157 (90.25)  158 (0.97) 

KY 98.59 4,209 (19.28) 23 22 (.10)  284 (90.96)  306 (1.38) 

LA 98.87 3,301 (15.76) 16 13 (.06)  190 (79.60)  203 (0.96) 

MI* 99.62 382 (1.70) - - (.00)  54 (62.79)  54 (0.24) 

NJ 99.10 2,086 (4.37) 1 1 (.00)  324 (74.49)  325 (0.67) 

NM 98.52 1,654 (22.11) 9 9 (.11)  96 (88.89)  105 (1.38) 

UT 98.76 906 (13.11) 5 5 (.07)  78 (89.63)  83 (1.19) 

WA* 99.16 767 (3.81) 1 1 (.00)  132 (77.65)  133 (0.66) 

Notes:  * Three SEER regions do not cover complete states.  In Georgia, SEER covers metro 
Atlanta and several additional rural counties.  In Michigan, SEER covers metro Detroit.  
In Washington, SEER covers metro Seattle. See http://seer.cancer.gov/registries/ for 
details. 

Figure 1 shows the relative bias of ߬̂ by imputation method for each SEER area. For each 
method, relative bias was calculated as the difference in  ߬̂ between PUMS and SF1 
divided by SF1. A much larger bias occurred for areas with lower risks of disclosure for 
both methods. Because person weights are distributed similarly across low- and high-risk 
areas (see Table 5), differential sampling fractions are less likely to be the main reason 
for bias as otherwise discussed in the literature of estimating population uniqueness from 
random sample data [5, 10, 13, 24]. Rather, this finding suggests that the inflation of bias 
is closely related to the large number of population individuals with infrequent 
combinations of demographics within a geographic area.   
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Figure 1: Relative Bias of Combined Proportion of ܷܲ/ܴܷ by Imputation Method 
 

4. Discussion 

The overall proportion of SEER patients who can be uniquely identified from the U.S. 
general population is small, which is less than 1 percent. However, given the size of the 
ever-growing SEER data system, this small percentage translates to hundreds of patients 
who are at great risk of having their private health information disclosed. The 
sustainability or even the survival of SEER data system is highly dependent upon the 
agency’s ability to keep data anonymous. This study is one of the first steps to ensure 
SEER data confidentiality through statistical approaches. 

Despite the upward bias, results from this study suggest that the census microdata sample 
file has great utility for assessing the proportion of record unique patients in a population 
based cancer surveillance data who are also unique in the population. The conservative 
estimation can lead to data being overly withheld from legitimate researchers and other 
data users. The bias can be due to several reasons: (1) low sampling fraction in PUMS; (2) 
the invalidity of assuming all not-covered SEER record uniques are population unique; (3) 
perturbation errors in county codes due to imputation; and (4) finally the underlying 
population distribution in an area. The first and second reasons oftentimes go hand in 
hand such that the smaller the sampling fraction, the more individuals, including those 
with less rare combinations of characteristics that are becoming unrepresented in PUMS 
due to sampling. For future study, an approach that allows relaxing the assumption about 
the population frequencies of non-matched unique SEER patients should be considered. 
A model should be developed to predict how many of these SEER uniques are also 
unique in the population. However, solving this problem is no less challenging than 
providing a solution to the original research question in which we sought estimates of 
population uniqueness for all SEER unique patients.  

Section on Survey Research Methods – JSM 2011

2620



 

Alternatively, since a population unique individual will appear to be record unique if this 
person has cancer and resides in a SEER covered area, the proportion of ܷܲݏ among 
SEER areas provides a upper bound for ߬. The size of overestimation could be small as 
suggested by the results for matched SEER records shown in Table 1, although a formal 
evaluation of such bias is warranted. Then the future research question becomes how to 
estimate the proportion of ܷܲݏ from a representative microdata sample of SEER covered 
regions, such as the Census or ACS PUMS, using probabilistic models [4, 5, 9, 24]. 
Methodological challenges such as low sampling fraction as well as complex sampling 
design features in PUMS should be addressed. By comparing the estimates obtained 
using different set of key variables, one could infer which variables or variable grouping 
schemes contribute most to the uniqueness, thus statistical procedures should be applied 
to control disclosure.  
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