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Abstract 
The National Assessment of Educational Progress (NAEP) uses jackknife replicate 

weights for estimating sampling variances. In the presence of nonnegligible finite 

population corrections, the jackknife requires either special factors attached to each sum 

of squares or adjustments to be made to the jackknife replicate weights to provide 

consistent variance estimators. The NAEP sample design has two stages of selection. We 

needed to incorporate a finite population correction for the first-stage of selection 

(schools), but not for the second-stage of selection (students). A method is developed for 

doing this in a way which is simple, allowing for its use by analysts without the need for 

explicit factors attached to sums of squares in variance estimation (the necessary 

adjustments are fully incorporated into the weights). The approximation is conservative 

in that it slightly overestimates the true variance. This paper provides theoretical results, 

and the companion paper Kali et al. (2011) shows results of its application to NAEP 

2011.  

 

Key Words: National Assessment of Educational Progress (NAEP), jackknife 

replication methods, finite population correction (FPC)

 

1. Introduction 

 
Finite population corrections are an important part of variances for survey sampling 

estimates. A widely-used methodology for estimating variances in practice are replication 

methods, including the jackknife, bootstrap, and balanced repeated replication (see for 

example Rust and Rao (1996)). Replication methods depend on using the sample itself to 

provide information about the variability induced by the sampling process. It is difficult 

to incorporate finite population corrections into replicate variance methods because these 

factors are not apparent in the sample distribution itself: they are ‘external’ to the sample 

distribution. They have to be brought in explicitly in a careful way. This paper describes 

the new approach for incorporating finite population corrections into replicate variances 

for the National Assessment of Educational Progress (NAEP)
1
. This methodology will be 

used in future years of the NAEP program, starting with the current year.  

 

NAEP’s variance estimation procedure for many decades has been the jackknife 

procedure. Without adjustment, the jackknife procedure essentially provides an unbiased 

variance estimator for totals
2
 assuming the finite population correction is negligible. If 

                                                 
1
 The National Assessment of Educational Progress measures the achievement of fourth-, eighth-, and twelfth-graders in 

the United States through a nationally representative sample. It is sponsored by the US Department of Education. General 

information about NAEP can be found at http://nces.ed.gov/nationsreportcard/.  
2
 Most other estimates such as means (weighted totals divided by the sum of weights), regression coefficients, correlation 

coefficients, distribution function estimates, etc. can be seen as smooth functions of weighted totals. The jackknife 
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the finite population corrections are not negligible, then the jackknife variance estimator 

can be seen as conservative (it is positively biased as an estimator of the true variance of 

the total).  

 

In order to achieve an unbiased variance estimator where the finite population corrections 

are all negligible, it is necessary only to work with the first-stage units (the sample units 

from the first-stage sample, which in NAEP is generally the school level). Jackknife 

replicate weights that perturb first-stage units only will succeed successfully in providing 

unbiased variance estimators (see for example Kalton 1979).  

 

The new approach developed in this paper provides jackknife variance estimators that are 

less conservative through the application of finite population corrections directly in the 

jackknife weighting perturbations. In principle, the concept is very simple. We start with 

a set of jackknife perturbations which provide unbiased variance estimators for totals. 

These perturbations decrease some weights for a particular replicate and increase others. 

The finite population correction can be accounted for by reducing the size of these 

perturbations in the exactly appropriate way to achieve variance estimators that are 

unbiased estimators of the fully fpc-corrected variance. One can cite Rizzo and Judkins 

(2004), Fay (1984), Fay (1989), Flyer (1987), Judkins (1990), and Rao and Wu (1988), 

for applications of this technique in a variety of settings.  

 

This paper is one of a pair of papers given in this JSM 2011 session. The second paper is 

Kali et al. (2011), and provides empirical results for the application of this procedure to 

NAEP 2011.  

 

2. Should Finite Population Corrections be Applied? 

 
An important starting point in any survey and analysis design is deciding whether it is 

appropriate to include finite population corrections at all. The fact that the sampling 

fraction is nonnegligible does not necessarily mean that finite population corrections 

must be applied. If one for example is planning to analyze the sample by using a 

superpopulation model, and the inference will be to parameters in the superpopulation 

model, then incorporating the finite population correction in variance estimators is not the 

correct answer (see for example Korn and Graubard (1999), Section 5.7). In the NAEP 

application, there are two stages of selection at the school level and at the student level, 

with differing sampling rates (and therefore finite population corrections) associated with 

them.  

 

It appears logical in the NAEP application to incorporate finite population corrections at 

the school level. At the school level, this will represent the true sampling variance 

treating the school sample as a without-replacement sample from the frame of schools for 

that jurisdiction. In particular, when all schools in a jurisdiction are included in the 

sample, the replicate variance estimator at the school level will be 0, reflecting no 

sampling variability in this case. And with the previous procedure this does occur for 

schools selected with certainty. For NAEP, we wish to represent a fixed set of schools 

                                                                                                                                     
estimation theory allows one to assert that the jackknife variance estimator for these other parameters will be consistent 

(not unbiased), if it is unbiased for the total, and is consistently conservative (i.e., it converges to a value higher than the 

true value) if the jackknife variance estimator is positively biased for the total. See for example Shao and Tu (1995), 
Section 2.1.  
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within each jurisdiction. We also wish to have a procedure that treats certainty schools 

and non-certainty schools consistently. 

 

But what of students? Should the variance be zero for jurisdictions when all schools and 

all grade-eligible students are included in the sample? From a strict sampling viewpoint, 

the answer is yes. There is no sampling, so the variance should be zero. This is certainly 

the correct answer when the estimators are descriptive, and especially for estimates of 

totals (total numbers of girls, boys, Blacks, Hispanics, etc.), as the census of schools and 

students will give the correct number (putting aside nonresponse and measurement error) 

of grade-eligible students within any demographic domain of interest. These 

demographic characteristics are ‘fixed’ characteristics: they will not change at any point.  

 

The student characteristics of direct interest however are the students’ proficiency scores, 

developed from the answers the students give on the NAEP assessment. These 

proficiencies can be viewed as being drawn for each student from an infinite population 

of potential proficiencies, for reasons as follows: 

 

 Each student is only given a portion of the full assessment (a set of assigned 

blocks of questions), with that portion randomly selected, to reduce burden 

on the student; 

 The proficiencies are measured using an Item Response Theory model3 as a 

complex function of the actual assessment item results; 

 Even given a particular fixed assessment (putting aside the IRT and the 

randomly assigned blocks), a given student will provide somewhat different 

results depending on the exact day of the exam (no student’s answers will be 

fully consistent over time: there is some noise coming from the day-to-day 

differences in the student’s capabilities and motivation).  

 

The approach then for the NAEP proficiency scores is to view the student assessments as 

being drawn from an infinite population. In particular, we have chosen not to incorporate 

a finite population correction at the student level. The student assessment results from a 

given school are viewed as a with-replacement sample of assessments from an infinite 

population of such assessments, even when every grade-eligible student in the school is 

assessed. The student-level sampling fraction should always be viewed as negligible: 

essentially zero. Again, this is the approach taken previously in NAEP in the case of 

students sampled from within certainty schools, and again we wish to use a consistent 

approach across certainty and non-certainty schools. 

 

Given this logic, the variance estimated is both a sampling variance and a model 

variance: a sampling variance at the school level and a model variance at the student 

level.  

  

                                                 
3
 See for example Baker and Kim (2004).  
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3. Approximate Variances for NAEP Two-Stage Sampling 

 
We approximate the NAEP sample design for each jurisdiction at the school level as a 

heavily stratified design, with each stratum having a sample size of 2 or 3. The NAEP 

sample design is in fact a systematic sampling procedure, thus representing it as a heavily 

stratified design is an approximation. See for example Wolter (2007), Section 8. Using 

this approximation, we can write the population value of interest as follows (S is the 

number of strata in the jurisdiction, s designates stratum, Ns is the number of schools in 

the stratum, Msi is the number of grade-eligible students in the school, and si  is the 

mean proficiency within the school (a pure model parameter, not a fixed value calculable 

for any school)): 
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Y corresponds to the expectation (under the model for proficiency) of the total 

proficiency aggregated over all grade-eligible students in all schools in the jurisdiction. 

 ̅ is the mean proficiency within the jurisdiction.  

 

Within each sampled school, we draw a simple random sample of msi ‘proficiencies’ from 

an infinite population with mean si  and variance 2
si . We designate ysij as the estimated 

proficiency of each student j=1,…, msi, ns as the school sample size in stratum s, and  
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The estimator from the two-stage sample of Y is as follows: 

 

1

1 1

ˆ      
snS

si si si

s i

Y M y 

 

  

 

In the general case of without replacement probability proportional to size sampling, the 

variance is as follows (see for example Cochran 1977, Equation 11.42
4
): 

 

                                                 
4
 Note that we are leaving out the finite population correction at the second stage, as the second stage is sampling from an 

infinite population. 

Section on Survey Research Methods – JSM 2011

2504



 

   

  

   

2
2 2

1 1 1 1

2 2
2

1 1 1 1

1 2

ˆ   

                    

ˆ ˆ            

s s s

s s s

N N NS S
sj sjsi si si si

si sj sij

s i j i s isi sj si si

N N NS S
si si

sij si si sj sj si

s i j i s i si

MM M
Var Y

m

w
w w

m

Var Y Var Y

 
  

  


  

    

    

 
      

 

    

 

 

 

 

                                                                 

with     and                                                                          (1)si
sij si sj sij si

si

M
w  


   

 

si  is equal to the first-stage probability of inclusion for school i, and sij  is the joint 

probability of inclusion for schools i and j in the same stratum (note that school selection 

is independent across strata, so that the joint probability of inclusion in that case is the 

product of the first-stage probabilities of inclusion. 2
si  is the variance among student 

assessments in school si. The unbiased variance estimator is as follows: 
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One can cite for example Equation 11.44 in Cochran 1977. dsij can be approximated in a 

conservative way in most cases using the following approach. If the si  are nearly equal 

within a stratum (to a common value ss Nn ), then sampling is nearly equivalent to 

simple random sampling without replacement, and sij  will be equal in this case to 

    1 1s s s sn n N N  . After algebra, the value for sij  in this case is 

  )1()(
2

 sssss NnNNn . Finally, further algebra (see Appendix) shows that 

   11  sssij nfd , with sss Nnf  . In this case when the sampling probabilities 

within a stratum are close, a conservative approximation of dsij (in that the approximation 

is too big, making the variance too big) is 
 

1

,min1~






s

sjsi

sij
n

d


. When si  equals sj  

equals ns/Ns, sijd
~

 reduces to the exact dsij.  
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 Yv ˆ~  in general is a conservative estimator of  YVar ˆ . The actual estimator that is used in 

practice is the ratio estimator  
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This is an approximately unbiased estimator of Y . The appendix develops an 

approximate variance expression for Y
ˆ

, which is as follows: 
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An approximately unbiased estimator of this expression is as follows: 
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The replicate variance estimators developed will be designed to duplicate Equation (3) 

for totals, and to approximate Equation (5) for means.  

 

4. Replicate Variance Estimators: School Level 
 
Two sets of replicate weights will be developed to implement the variance estimator

5
. 

The first will be designed to reproduce )ˆ(1 Yv . The second will be designed to reproduce 

)ˆ(2 Yv . The first set will consist of perturbations at the school level only (perturbations in 

the ws weights). The second set will consist of perturbations at the student level. The 

replicate variance estimator matching )ˆ(1 Yv  is as follows: 

 

                                                 
5
 This refers to replicate weights before grouping. In practice a particular replicate weight (e.g., replicate weight 1), will 

include perturbations at the school and at the student level.  
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Before grouping, each replicate r pertains to a stratum s. In this section for simplicity’s 

sake we will assume every ns equals 2. The case ns equals 3 will be developed in Section 

5 below. For a stratum in which ns equals 2, there will correspond exactly one replicate r. 

This replicate weight will be defined as follows: 
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Ar is the sampled school which is ‘retained’ for replicate weight r (with no finite 

population correction this school would receive an r-weight of 2*wsi), Dr is the sample 

school which is ‘deleted’ for replicate weight r (with no finite population correction this 

school would receive an r-weight of 0). To incorporate the finite population correction, 

the replicate weights are ‘shrunk back’ from 2*wsi and 0, giving a replicate weight which 

is larger than wsi but smaller than 2*wsi in the Ar case, and giving a replicate weight which 

is smaller than wsi but greater than 0 in the Dr case.  

 

Using this replicate weight definition, the square  2ˆ)(ˆ YrY   is as follows (assuming 

without loss of generality that 1sy  is the assessment mean for the ‘retained unit’ for the 

stratum and 2sy  is the assessment mean for the ‘deleted unit’ for the stratum).  
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Assuming one replicate r for each stratum s, the replicate variance estimator is as 

follows: 
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One can see that this is identical to )ˆ(~
1 Yv  as given in Equation (3-3), so that the replicate 

variance estimator reproduces the unbiased variance estimator.  

 

5. Replicate Variance Estimators: Student Level 

 
At the student level, there will be one replicate for each sampled school (or combination 

of schools: see below)
6
. The overall estimator can be written as a weighted total of 

individual proficiency outcomes: 

                                                 
6
 This is before grouping.  
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The replicate variance estimator for replicate 'r  can be written as: 
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For replicate 'r  corresponding to school si, the replicate weights are as follows: 
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The set Asi is the set of ‘retained students’ for replicate weight 'r , and the set Dsi are the 

‘deleted students’. Asi and Dsi should each be roughly half of the msi of the students in the 

school’s sample. For simplicity’s sake, assume msi is always even, so that Asi and Dsi each 

have msi /2 students
7
. Write )(Aysi  as the mean of the Asi student proficiencies, and write 

)(Dysi  as the mean of the Dsi student proficiencies.  
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Suppose ER is the expectation over the replication process, which draws the without 

replacement sample of Asi (msi/2 from a population of msi). Then  2)( sisiR yAyE  is the 

variance of a sample mean from a simple random sample without replacement of size 

msi/2 from a population of size msi. In the appendix it is shown that: 
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7
 The case of odd msi assigns (msi +1)/2 students to Asi (or Dsi). None of the substantive results below are changed.  
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6. Replicate Variance Estimators at the School Level: The Case of Triples 
 

This section develops replicate weights for the case in which ns equals 3 for the stratum. 

We can assume for simplicity’s sake that ns=3 for every stratum (the case in which ns 
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There are two replicates assigned to each stratum s, which will be denoted r1 and r2. The 

three sampled schools are assigned to three sets A, B, and C (one school per set). The 

replicate weights are defined as follows: 
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It is shown in the appendix that  Yvr
ˆ

1  defined using these replicates is identical to 

 Yv u
ˆ

1 : 

 

      1 1 1
ˆ ˆ ˆ

r uE v Y v Y v Y     Eq (7) 

 

7. Discussion 
 

This paper describes the new variance estimation approach for NAEP, and provides the 

philosophy and mathematical derivations underpinning it. The companion paper Kali et 

al. (2011) provides an evaluation of using this approach specifically in the NAEP 

context. This paper shows that this variance estimation approach is generally successful 

in reducing significantly the computed variance in ‘middling’ jurisdictions: those with 

significant school-level sampling fractions but in which only a minority of schools are 

certainty selections.  
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8. Appendix 

 

Proofs of Results in Text 

 

8.1 Proof of Unbiasedness of Variance Estimator in Equation (2) 

We will start with the expectation of  Yv ˆ
1 . E1 indicates expectation with respect to the 

school sample and E2 indicates expectation with respect to the student sample.  
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Note that only  sisiy   and  sjsjy   are random under the student sampling 

distribution, and are independent of each other (as student sampling between schools is 

done independently), giving the result (all covariance terms are 0). Thus, 
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Using Cochran (1977), Eq. 9A.36, we can reduce the last factor as follows: 

Section on Survey Research Methods – JSM 2011

2510



 

 

       sisisississi

N

ij

sijsjsi

N

ij

sij nn
ss

  


1  1

 
 

Thus we have: 
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The second part is to find the expectation of  Yv ˆ
2 .  
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Thus, we can write: 
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8.2 Proof of Equation (4) 

Y
ˆ

 is a ratio estimator, and its variance can be approximated using the delta method: 
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The variance of Ŷ  is given in Equation (1). The variance of 0M̂  can be derived as 

follows. There is no second stage sampling inherent in the estimator 0M̂ , as the measures 

of size are computed exactly for each cluster. Thus there is only a first term for first-stage 

cluster sampling, with the same probabilities of selection for clusters as for Ŷ . Thus 
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For the covariance between Ŷ  and 0M̂ , the first term for first-stage cluster sampling is 

only applicable, as the lack of second-stage cluster sampling (effectively) for 0M̂  will 

render the covariance at this level equal to 0.  
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8.3 Proof of Equation (6) 

In this section we show that   sisisisiR msyAyE 22
)(   

 

From Cochran 1977, Section 2.6, the variance of a sample mean y  of size n from a 

population of size N, with population variance S
2
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In this case for the sample mean )(Aysi , the population size is msi, the sample size is 

msi/2, and the population variance is 2
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8.4 Proof of Equation (7) 

In this section we show that   3   when )ˆ()ˆ( 11  sur nYvYvE  

 

Using the replicate weight definition in Section 6, the sum of squares from the two 

replicates r1 and r2 is as follows: 
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If we take the expectation over the replication process, each of the three school level 

means has equal chance of being unit 1, unit 2, and unit 3: so that  

 

   
2 2

1 2

2 2

1 1 2 2 1 1 3 3
3 3 2 2

,max 2

2 2 3 3
1 1

1 1 2 2

,max

ˆ ˆ ˆ ˆ( ) ( )  

2 2
2 22

              
3

      2
2

1
              

3

R

s s s s s s s s
s s s s

s

s s s s
s s

s s s s

s

E Y r Y Y r Y

w y w y w y w y
w y w y

d
w y w y

w y

w y w y
d

    
  

     
      

    
  

  
   
  




   

 

           

     

 

2 2

3 3 1 1 3 3 2 2

2

2 2 3 3 1 1

2 2 2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

2 2 2

1 1 2 2 3 3

,max

1 1 2 2

2 2

           2

4    4

  4 

               2   2
3

s s s s s s s s

s s s s s s

s s s s s s s s s s s s

s s s s s s

s

s s s s

w y w y w y w y

w y w y w y

w y w y w y w y w y w y

w y w y w y
d

w y w y w

     
 

    

    

   

      

     

     

       

1 1 3 3 2 2 3 3

1 1 3 3 2 2 3 3 1 1 2 2

2 2 3 3 1 1 2 2 1 1 3 3

2 2 2,max

1 1 2 2 3 3 1 1 2 2

  2

  4   4   4

  4   4   4   

6 6 6 6 6
3

s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s

s s s s s s s s s s

y w y w y w y

w y w y w y w y w y w y

w y w y w y w y w y w y

d
w y w y w y w y w y w

 
 
 
  

   
 
   
   
  

         

            

1 1 3 3 2 2 3 3

2 2 2

,max 1 1 2 2 3 3 1 1 2 2 1 1 3 3 2 2 3 3

6

2*

s s s s s s s s

s s s s s s s s s s s s s s s s s s s

y w y w y w y

d w y w y w y w y w y w y w y w y w y

 

     

 

We can also show: 
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The two expressions together give us: 
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