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Abstract 
DNA microarray technology is a powerful tool for high-throughput analysis that has been 

used for the purpose of monitoring expression levels of thousands of genes 

simultaneously and identifying those genes that are differentially expressed. The high 

dimensionality of microarray data, the expression of thousands of genes in a much 

smaller number of samples, presents challenges that affect the validity of analytical 

results. A main issue in microarray transcription profiling is data mining and analysis. 

Statistical methods are vital for these scientific endeavors. We utilized data obtained from 

a transcriptome analysis of cold acclimation effects on two winter wheat mutant lines 

varying in freeze survival. The line with 75 % survival was designated freeze resistant 

(FR) and the line with 30 % survival was designated freeze susceptive (FS).  After pre-

processing of the microarray data, we compared the results obtained with and without 

Sparse Principal Component Analysis (SPCA) on the annotated gene sets. From a starting 

dataset of 61,115 genes, the significantly differentially expressed genes (DEGs) obtained 

without using SPCA were 15 in FR, 246 in both (FR and FS), and 36 in FS. However, the 

significantly DEGs identified with SPCA were 14 in FR, 226 in both (FR and FS), and 36 

in FS. Given the small dataset, SPCA was still able to reduce the starting annotated 

dataset from 1321 to only 1211.  

 

Key Words: Microarray, transcriptome, sparse principal component, differentially 

expressed, p-value 

 

 

1. Introduction 

 
The high dimensionality of microarray data, the expression of thousands of genes in a 

much smaller number of samples, presents challenges that affect the validity of analytical 

results (Nikulin et al., 2009). Principal component analysis (PCA) is a classical tool 

widely used in data processing and dimensionality reduction. Basically, PCA consists of 

finding a few orthogonal directions in the data space, which preserve the most 

information in the data. This is accomplished by finding directions that would maximize 

the variance of the projections of the data points along these directions (He et al., 2011). 

PCA generally produces mostly non-zero entries and each principal component is a linear 
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combination of all the original variables (Zou et al., 2004).  The main motivation for 

SPCA is that the largest PCA component is difficult to interpret as usually all 

components are nonzero.  

 

This article used the SPCA method for dimension reduction of wheat microarray 

transcriptome data.  The main objective of the SPCA in wheat microarray data analysis is 

to approximate the properties of regular PCA keeping the number of non-zero loadings 

small (Sjostrand et al., 2006). The SPCA imposes extra constraints or penalty terms to the 

standard PCA to achieve sparsity and non-zero values reflect the high variance of the 

standard methods.  We propose that SPCA explains a large part of the total variance of 

the gene expression levels of the wheat microarray data and lead to identification of the 

subset of genes representing the principal component which are considered important.  

 

2. Method 

 

2.1 Datasets: Biological samples 
To generate the microarray data, RNA was isolated from two Winoka winter wheat 

mutant lines differing in freeze survival (Sutton et al. 2009). These lines designated FR 

and FS displayed freeze survival of 75% and 30% respectively. Treatments consisted of 

six replicates of four plants/pot for each line grown in the green house at 22-28 o C with 

14 hours photoperiod. At the fourth leaf stage, three replicates of each line representing 

non-treated control plants (12 plants/line) were removed from the green house, the crown 

tissue, the most freeze resistant part of the plant, was excised and frozen in liquid N2 for 

later RNA isolation.  The remaining six replicates of 12 plants/line were transferred to a 4 

o C cold room for 4 wk to achieve cold acclimation (CA) as described (Kenefick et al., 

2002).  At the end of cold acclimation the crown tissue was harvested at 4 o C and frozen 

in liquid N2 for later RNA isolation.  The classic CsCl gradient RNA isolation procedure 

of Chirgwin et al., (1979) was used to prepare total RNA from the frozen crown tissue.  

Resulting RNA was treated with DNase to remove any possible contaminating genomic 

DNA.  

 

2.2 Microarrays 
Eight Affymetrix wheat microarrays (CEL files) data were used in the analyses. Each 

array is composed of 61,127 (Additional file 1) probe sets representing 55,052 transcripts 

for all 42 chromosomes in the wheat genome (affymetrix.com). cDNA synthesis and 

hybridizations with the microarrays were performed at UC Riverside genomics facility 

(http://genomics.ucr.edu/facility/genomics/instruments/affymetrix.html). 

 

 

2.3 Data analysis 
The overall approach for the microarray data analyses is presented in Figure 1. All of the 

analysis was performed based on the Affymetrix GenChip Manual (Affymetrix Inc) using 

the statistical program R 2.12.0 (http://www.R-project.org) with affy, RMA Bioconductor 

packages (Irizarry et al., 2003) for the pre-processing. We used the model developed by 

the Bolstad et al., 2004 to measure the expression which is formulated as; 

 

Expression values =                            (1) 

 

Background subtraction (B), Normalization (N) to facilitate between-array comparison 
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Summarization of 11-20 probe pair (PM/MM) intensities to one probe set value (S) 

 

 

 
 

Figure 1: Work flow for a microarray data analysis 

 

Statistical methods for identifying differentially expressed genes 
After normalization of the microarray data, we compared the results (I) Without SPCA; 

only fold change then test statistics were applied (II) With SPCA; SPCA technique for 

dimensionality reduction was applied followed by fold change and test statistics.  

 

2.3.1 Fold Change 
One of the simplest methods for identifying differentially expressed gene is to evaluate 

the log ratio between two conditions (Churchill et al., 2003). In our dataset log 

transformation was performed in the data pre-processing then two replications were 

averaged and calculated difference between CA and  Untreated (UT) in FR and similarly 

in FS, and results are taken to be differentially expressed  if the expression under one 

condition is one-fold greater or less than that under the other condition.  

 

        
   

   
           (2) 

 

 

Where,  

 

FC = fold change 

 

        genes of CA treatment 

        genes of UT 
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  i= 1, 2,…, n  

        

If CA = UT, effects of fold change is 0, If CA = 2UT then effect of fold change is 1. 

2-fold up-regulated = log ratio of +1, 2-fold down-regulated genes = log ratio of -1 

Non-differentially expressed genes = log ratio of 0. 

 

2.3.2 Student t-test 
Gene expression data are usually given in terms of the base-2 logarithm of the expression 

ratio, defined as the expression level of a gene relative to its level in some control 

condition (deHoon et al., 2002). We used two samples t-test with unequal variances to 

detect differentially expressed genes: 
 

  
     

 
        (3) 

 

   
   
  
   

  
        (4) 

 

   
   
  
   

  
        (5) 

   
  
 

  
 

  
 

  
        (6) 

    
        

   
   

    
       (7) 

 
The data with very small variance due to its low expression level contributes to large 

absolute t-values regardless of the mean difference between two conditions, and thus 

these genes can be selected as differentially expressed genes although they are not truly 

differentially expressed. To overcome this problem of the traditional t-test, we applied 

false discovery rate (FDR) proposed by Benjamini and Hochberg, 1995 to estimate 

significance levels as well as to control family- wise Type I error rates. FDR = FP / (FP + 

TP). FP = false positive, TP = true positive. 

 

 

2.3.3 Sparse Principal Component Analysis 
SPCA can be described as an extension of PCA, where a constraint of the number of 

nonzero loadings is added. SPCA method is used to reduce the number of nonzero 

coefficients from high-dimension data in this research. Since interpretation depends on 

comparing the relative sizes of the loading vectors, the sparse loadings in SPCA are much 

easier to interpret than PCA described by Zou et al., 2004.  

 
The regression methods used in the calculation of SPCA all originate from ordinary least 

squares (OLS) approximations. The independent variable Y is approximated by a linear 

Scientific and Public Affairs Advisory Committee – JSM 2011

2162



combination of the dependent variables in X (Sjostrand et al., 2007). The coefficients for 

each variable (column) of X contained in β 

 

                             (8) 

 
Where, ||.|| represents the     norm. This is the best linear unbiased estimator given a 

number of assumptions, such as independent and identically distributed residuals. 

However, if some bias is allowed, estimators can be found with lower mean square error 

than OLS when tested on an unseen set of observations (Sjostrand et al., 2007). A 

common way of implementing this is by introducing some constraint on the coefficients 

in β. The method described here use constraints on either the    norm or the     norm of β, 

or both, adding the      constraint give 

 

                                     (9) 

 

This is known as ridge regression (Hoerl et al. 1970). The theme of this theorem is to 

show that the connection between PCA and a regression method is possible. More about 

ridge regression was discussed in Hoerl et al., 1970, Zou et al., 2004, and Sijostrand et 

al., 2007 where sufficiently large values of γ will shrink the coefficients of β. The 

shrinkage introduces bias but lowers the variance of the estimates. After normalization, 

the coefficients are independent of the parameter γ, so, ridge penalty does not penalize 

the regression coefficients but ensure the reconstruction of PCs. Lasso penalty is added to 

the problem to penalize for the absolute values of coefficients to make the coefficients 

vector sparse. Replacing the      norm in the constraint with the     norm gives 

 

                                      (10) 

 

Where,             
    . This is the LASSO method by Tibshirani (1996). Using the     

norm not only shrinks the coefficients, but also drives the one by one to exactly zero as γ 

increases. This implements a form of variable selection, as minor coefficients will be set 

to zero in a controllable fashion, while the remaining coefficients will be used to 

minimize the size of the regression residuals.  

 

Another possibility is to use a combination of the constraints from ridge regression and 

the LASSO. This approach is known as the elastic net (Zou et al., 2004) and has the form 

 

                                          (11) 

 
The main benefit of the elastic net is that it better handles cases where p > n (Sjostrand et 

al., 2006).  

 

To the remaining data sets, SPCA was applied to reduce the number of nonzero 

coefficients. The equation by Zou et al., (2004) was applied to obtain sparse loading; 

Suppose we are considering the first k-principal components. Let α and βbe p x k 

matrices. Let    be the     row of the data matrix x. For any γ > 0, let 

 

 

               
 

           
        

  
     

           
 
    (12) 
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    is a lasso penalty. 

 

 
Subject to        

 

 

Where, γ is used for all k components, different      are allowed for penalizing the 

loadings of different principal components. If p > n, a positive   is required in order to get 

exact PCA when the sparsity constraint (the lasso penalty) (      ) vanishes (Zou et al., 

2004). 

 

 

3. Results 

 

3.1 Pre-processing and presence calls selection 
The shape of the box plot for all the arrays looked similar, thus we concluded that there 

were less systematic biases in the data. Log transformation was used to remove the biases 

that were present. 

 
 

Figure 2: Box plot representation of chip-wise PM log intensity distributions. (a) Raw 

data before normalization. Chips 1 and 2, Chips 5 and 6 deviate strongly. (b) After RMA 

normalization, all eight intensity distributions appear similar. Because of the inconsistent 

distributions before normalization, it is recommended to carefully investigate the impact 

of the deviate chips on further analysis steps. 
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The box plot of raw intensities of the data across the eight chips is depicted in Figure 2A. 

The raw intensities differed between Chip 1 and Chip 2, and Chip 5 and Chip 6. The 

results of using RMA normalization as described in methods is depicted in Figure 2B. All 

intensities after transformation were distributed similarly. 

 

The overall result of the microarray data is reflected in Figure 3 which is explained in 

detail in the following topics:  

 
Figure 3: Overall results of microarray data analysis before SPCA 

 

 

3.2 Fold change determination 
Genes for which the fold change in mean expression levels of each group by the symbol 

(+ and -) were reported as up-regulated or down-regulated (see eq.2). After 

accomplishing the background correction, quantile normalization, and median polish 

summarization, 25,770 and 26,264 expressed genes remained for FR and FS lines 

respectively. Of these, 2,237 responded to cold acclimation only in FR, 23,533 in both 

FR and FS, and 2,731 in only FS. In FR, there were 1021 up-regulated and 1216 down-

regulated genes. Of the genes expressed in both FR and FS, 11,241 were up-regulated, 

12,292 were down-regulated. In FS, there were 1317 up-regulated and 1414 down-

regulated genes. 
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3.3 Differentially expressed genes (DEGs) 
Using Test- statistics such as The Benjamin and Hochberg False Discovery Rate (FDR) 

method for multiple testing corrections with a FDR of significance level at α = 0.1, 

significantly DEGs were characterized as q ≤ 0.1 and fold change level greater than one. 

The 1021 up - and 1216 down-regulated genes expressed only in FR were reduced to 167 

and 258. Similarly, the 1317 up- and 1414 down-regulated genes expressed only in FS 

were reduced to 381 and 427. FDR and fold change reduced the 11,241 up - and 12,292 

down - regulated genes in both FR and FS to 1,807 and 1, 577 respectively.  

 

Of the DEGs reported in FR, FS, and both FR and FS, only 7 up-and 8 down-regulated 

genes with information (gene symbol, gene title, and go biological function) were 

identified in FR, 16 up - and 20 down-regulated genes were identified in FS. Similarly, 

151 up - and 95 down-regulated genes in both FR and FS were identified.  

 

3.4 SPCA for dimension reduction 
Our analysis of principal components (PC) indicated that the first PC accounts for ~90% 

of the information present in the entire data set. Trade off curves between explained 

variances and cardinality in both (FR and FS), FR, and FS is explained in Figure 4 and 

Table 1. It was observed that γ gradually changes the SPCA algorithm in FR and FS. The 

variance of the SPC increased with the number of non-zero loadings, but after γ = 0.05, 

the growth flattened markedly in common (expressed in both FR and FS) set. Therefore, 

we chose γ = 0.05for genes expressed in both FR and FS and γ = 0.07 for genes 

expressed only in FR and only in FS as the minimum number of non-zero loadings for 

which adding more variables does not give a significant contribution.  

 

 
Figure 4: Trade-off curves between explained variance and cardinality. The vertical axis 

is the Percentage explained variance and horizontal axis is the sparsity. A) In both (FR 

and FS), B) in FR only, and C) in FS only. 
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Table 1: Explained variance as a function of lambda both in FR and FS, FR only, and FS 

only. 
γ Both FR and 

FS var. (%) 

No. of non -

zero loadings 

FR var. 

(%) 

No. of non -

zero loadings 

FS var. 

(%) 

No. of non -

zero loadings 

0 0.6 8 0.3 4 0.3 4 

0.00001 1 14 0.3 6 0.3 4 

0.00005 2.7 30 0.7 13 0.5 10 

0.0001 3.8 45 1.2 25 0.9 17 

0.0003 7.6 95 2.9 53 2.2 44 

0.0005 10.3 123 4.5 79 3.2 66 

0.0007 12.7 158 5.7 100 4.2 107 

0.001 15.9 199 7.4 135 5.9 150 

0.005 37.5 498 23.8 520 22.1 623 

0.007 44.6 605 29.8 682 28.2 798 

0.01 52.9 712 37.6 894 35.7 1030 

0.02 69.3 964 55.8 1337 53.2 1552 

0.03 78.2 1088 67 1620 64.1 1861 

0.05 87.3 1211 79.7 1908 77 2267 

0.07 91.9 1278 86.4 2057 84.3 2481 

0.09 94.4 1298 90.3 2154 88.7 2594 

0.1 95.2 1305 91.7 2175 90.2 2635 

 
The overall result using SPCA is depicted in Fig. 5. This treatment resulted in a reduction 

of total genes from 2,237 to 2,057 in FR, 1321 to 1,211 in both (FR and FS), and 2,731to 

2,481 in FS. We further analyzed the resulting genes and reported 415(163 up-and 252 

down-regulated), 226 (142 and 84 genes as up - regulated and down - regulated), and 776 

(372 up-and 404 down-regulated) significantly DEGs in FR, both, and FS respectively. 

 

 
Figure 5: Overall results of microarray data analysis after SPCA 
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3.5 Visualization of gene expression changes 

Volcano plot 
The ‘volcano plot’ is a scatter plot of the negative        -transformed p-values from the 

gene specific t-test against the         fold change (see Figure 6). Genes with statistically 

significant differential expression according to the gene-specific t-test will lie above a 

horizontal threshold line and genes with large fold-change values will lie outside a pair of 

vertical threshold lines (Churchill et al., 2003). Of the 1321 genes expressed in both FR 

and FS, the volcano plot algorithms with cut-off at p ≤ 0.01 and fold change greater than 

2, identified 187 and 217 genes as significantly regulated by cold acclimation in FR and 

FS respectively. Of the 1211 expressed genes obtained after SPCA treatment, 176 and 

207 genes were identified as significantly expressed in FR and FS. 

 

 
Figure 6: Volcano Plot. The negative log10-transformed p-values are plotted against (A) 

the log ratios (log2 fold change) in FR and FS with response to cold before SPCA and 

(B) after SPCA 
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4. Conclusions 

 
This paper focuses on the implementation of the sparse principal component analysis in 

microarray data analysis. We applied SPCA algorithm developed by Zou et al., 2004 that 

efficiently deals with p >> n data. However, this research represents the result from the 

wheat microarray data analysis we compared SPCA only a set of data that have 

information (GO terms, gene titles, and gene symbols). The dimension reduction from 

1321 to 1211 using SPCA is significant in the small data set that resulted to 20 

significantly DEGs differences between with SPCA and without SPCA. In this work we 

aimed to filter correlated genes to identify significantly DEGs in response to cold. In 

future studies we will verify significantly DEGs using RT-PCR and cluster them. We will 

also attempt to analyze sequences and find regulatory elements of selected genes.  
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