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ABSTRACT 

 
 The negative hypergeometric distribution is of interest in applications of inverse 
sampling without replacement from a finite population where a binary observation is 
made on each sampling unit. Thus, sampling is performed by randomly choosing units 
sequentially one at a time until a specified number of one of the two types is selected for 
the sample. Assuming the total number of units in the population is known but the 
number of each type is not, we consider the problem of estimating this unknown 
parameter. We investigate the maximum likelihood estimator and an unbiased estimator 
for the parameter. We use the method of Taylor’s series to develop five approximations 
for the variance of the parameter estimators. We then propose five large sample 
confidence intervals for the parameter. Based on these results, we simulated a large 
number of samples from various negative hypergeometric distributions to investigate 
performance of three of these formulas. We evaluate their performance in terms of 
empirical probability of parameter coverage and confidence interval length. The unbiased 
estimator is a better point estimator relative to the maximum likelihood estimator as 
evidenced by empirical estimates of closeness to the true parameter. Confidence intervals 
based on the unbiased estimator tended to be shorter than two competitors because of its 
relatively small variance estimator but at a slight cost in terms of coverage probability. 
 
Key Words: Confidence interval, Empirical coverage probability, Inverse sampling, 
Large sample theory. 
 

1. INTRODUCTION 
 

 The negative hypergeometric distribution, also known as the inverse 
hypergeometric, or hypergeometric waiting-time distribution, has many useful 
applications in public health research. The probability distribution function is a discrete 
probability model that was first described by Wilks (1963), discussed by Moran (1968) 
and Johnson and Kotz (1969), and further developed by Guenther (1975). Expressions for 
the mean and variance of the negative hypergeometric distribution are well known. 
Discrete distributions, such as the binomial, geometric, Poisson, and negative binomial, 
are discussed in most introductory mathematical statistic books, but the negative 
hypergeometric distribution has not often appeared in such texts or in peer-reviewed 
literature. Piccolo (2001) recently derived some approximations for the asymptotic 
variance of the maximum likelihood estimator for the parameter of the negative 
hypergeometric distribution. Zelterman (2004) presented some variations of the negative 
hypergeometric distribution. 
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 In this paper, we use the method of Taylor’s series to develop approximations for 
the variance of estimators of a parameter of the negative hypergeometric distribution. We 
then propose five large sample confidence intervals for the parameter. We simulated a 
large number of samples from various negative hypergeometric distributions to 
investigate performance of three confidence intervals based on these results. We 
evaluated their performance in terms of empirical probability of parameter coverage and 
interval length for three formulations of confidence intervals. We begin in Section 2 with 
an overview of the salient characteristics of the distribution. 
  

2. THE NEGATIVE HYPERGEOMETRIC DISTRIBUTION 
 

 Consider an urn that contains a total of N balls where R of these balls are red and 
B are blue. Suppose we wish to select a random sample from the urn and observe the 
number of balls of each color in the selected sample. Our goal might be, for example, to 
estimate the number of red balls in the urn where N is known and R (hence, B) is not.  
 

Suppose the balls are well mixed in the urn and a given trial of an “experiment” 
is as follows: we randomly select a ball from the urn, observe the ball’s color, and place it 
on the side; we then randomly select a second ball, and place it aside; and we continue to 
randomly draw from the total of N balls, sampling without replacement, until we obtain a 
fixed number of red balls (successful balls), denoted as r, where r ∈{1, 2, … , R}. Let  
X ∈{0, 1, …, B} denote the number of blue balls that must be drawn to get r red balls. 
Note that we stop selecting balls when the rth red ball is chosen so that some permutation 
of r – 1 red balls and x blue balls will be chosen in the first r + x – 1 selections and the 
last ball drawn will always be red. Let A1 be the event that r – 1 red balls are drawn in  
r + x – 1 trials and let A2 be the event that the rth red ball is drawn at the (r + x)th trial 
given that event A1 has occurred. Now, the probability X = x is  
 
                                               ( ) ( ) ( )121 | AAPAPxXP ×= =  
This can be expressed as 
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We refer to this expression as the probability distribution function (pdf) for the random 
variable X. For given N, R and r, we refer to the non-zero probabilities determined by the 
pdf for all values in the domain of the random variable, together with the corresponding 
values of the random variable that occur with these non-zero probabilities, as the negative 
hypergeometric distribution. Negative hypergeometric distributions are skewed to the left 
when R < B and to right when R > B, but when R and B are approximately equal, the 
probability distributions are close to being bell-shaped and resemble a normal 
distribution. 
 

     Theorem 2.1 Let X denote a random variable that has a negative hypergeometric 
distribution as defined earlier. Let X denote the number of 
unsuccessful draws observed before obtaining r red balls. Then the 
expected value and variance of X are, respectively,                                 
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3.  ESTIMATION 
 

We call attention to the estimation problem for two situations: 
1. R is a known integer and N is an unknown integer that we wish to estimate. 
2. N is a known integer and R is an unknown integer that we wish to estimate. 

Both situations are relevant in many applied problems. The first arises in capture-
recapture problems [Bailey (1952)]. This paper investigates the second issue. 
 

A heuristic point estimator of R is =R̂ N(r/(r+x)). However, this estimator may 
yield non-integer estimates. This concern is addressed as follows.  
 
Theorem 3.1:  Let the estimator ˆ

mR  be the greatest integer such that  
 

ˆ 1,  m

r rN R N
r x r x

≤ < +
+ +

then ˆ
mR  is the maximum likelihood 

estimator (MLE) for R.  
 

Guenther (1975) mentioned the MLE, but our result appears to differ from his in 
the manner of determining the integer for the final estimate. We verified our result 
numerically by iteratively solving for maximum likelihood estimates for a variety of 
parameters of the distribution. For example, let r = 15, while R takes values from the set 
{0, 1, … , 100} for a specific x. Given that a specific sample yields x = 0, the possible 
values for the likelihood, denoted prob_x, are plotted against corresponding values of R 
in Figure 3.1. We see that the likelihood has its greatest value when R = 100; hence, if a 
specific sample yields x = 0, the MLE is 100. Similarly, as shown in Figure 3.2, if a 
specific sample yields x = 5, the likelihood has its largest value when R = 75 so the MLE 
is 75. Finally, if x = 25, the initial calculation yields 37.5 but, as shown in Figure 3.3, the 
likelihood has its largest value when R = 38, so the MLE is 38. 
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          Figure 3.1  MLE for R when n = 100, r = 15, and the sample yields x = 0. 

  
        

 
                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2  MLE for R when n = 100, r = 15, and the sample yields x = 5. 
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      Figure 3.3  MLE for R when n = 100, r = 15, and the sample yields x = 25. 
 
 
 
Although MLE’s have well known and useful large sample properties, we often  

prefer unbiased estimators that are functions of MLE’s where the functions carry the 
asymptotic properties. We can easily show that the estimator given in the following 
theorem is unbiased as claimed by Guenther (1975). 

Theorem 3.2:  The estimator 
1ˆ

1u

rR N
r x

−
=

+ −
 is an unbiased estimator for R.  

 
4.  APPROXIMATION FORMULAS FOR VARIANCE OF ESTIMATORS 

 
 We note that ( ) ˆ xfRu = and use the Taylor series method to find an estimator for 
the variance of the unbiased estimator given above. Thus, 

( ) ( )
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If we do not know R, we can substitute ˆ

uR  to for R, in which case we find 
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 For large samples, both the MLE and unbiased point estimators for R have 
approximately normal sampling distributions. So a )%1(100 α−×  confidence interval 
(CI) based on the unbiased estimator is: 
 

       ( )( )
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                                                                                                                                       (4.1)  
             
 When N and R are very large, we have 1N N+ ≈  and 1 2R R R+ ≈ + ≈ , so an 
approximation to the above CI is 
 

                              
( )

( )
( )( )/ 2 2

1ˆ ˆ ˆ ˆ
ˆu u u u

u

N r
R Z NR r N R R r

rN R r
α

−
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 To obtain an interval estimate, we need to have r ≤  R. If r > R, we always have to draw 
all the balls (N) because it is impossible to observe the specified number of red balls. In 
this case, we observe the exact value of R, so an interval estimate is not required. Further, 
when an estimate of R results in R̂ N= , the CI reduces to a point estimate. This occurs 
when x = 0 and the resulting point estimate may be undesirable because such an estimate 
may occur when   NR ≠ as is implied in this circumstance. For example, we may 
observe x = 0 by choosing r red balls on the first r selections, giving NRu =ˆ even when 
there is at least one blue ball in the urn. To circumvent our dilemma with this happening, 
we arbitrarily substituted x + 0.1 in computing uR̂ for use in the formula for ( )ˆˆ uRσ . Our 

simulation results support our use of this modification because we obtained excellent 
empirical coverage when r = 3, 5, 7 despite having found numerous samples with x = 0. 
  

Following an approach similar to that used above leads to a CI based on the MLE 
of R. That is 

               
( ) ( )( )

( )( )2ˆ1
1ˆˆ

1
1ˆˆ

2/
++

+−−
+
+

±
m

mmm
m

RNr
rRRN

N
RNzR α                                   (4.2) 

or the simplified approximation 

              
( )( )
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rRRNRzR mmm

m
−−

±
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2/α  

To avoid producing point estimates for CI’s using these two formulas when we find r + x 
= N, which may occur by choosing the rth red ball on the Nth selection so that rRm =ˆ , we 
again arbitrarily substituted x + 0.1 to ensure obtaining an interval estimate. 
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Let  Y = r + X denote the total number of balls that must be drawn to get r red 
balls and further let R Nθ =  where R and N are both large so that 

1 ,   2 ,R R R R+ ≈ + ≈  and 1 .N N+ ≈  If, in addition, is small relative to ,r R  then 

                   ( ) rN r rE Y
R R N θ

≈ = =  

 
and 

                   ( ) ( )( ) ( )
( )

( )
23 2

1rB R N r N R N r
V Y

R R N

θ
θ

− −
≈ = =  

 
That is, under these conditions, the mean and variance of the negative hypergeometric 
distribution, respectively, are approximately equal to the mean and variance of the 
negative binomial. Here, an approximate confidence interval is 
 

                  
yry

Nrz
y

Nr 11
2/ −± α                                                                    (4.3) 

 
If x = 0 so that y = r, we again substitute x + 0.1 for x as in the above. 

 
5.  NUMERICAL EXAMPLE 

 
The negative hypergeometric distribution is relevant in planning sample surveys 

that use the method of random digit dialing. For a complex sample design, the way the 
sampling is conducted determines the primary sampling unit (PSU). Consider a sampling 
frame comprised of a list of telephone numbers that is a mixture of residential and non-
residential telephone numbers. Researchers often randomly sample “one at a time” a 
sequence of telephone numbers (PSU’s) from a “bank” of 100 numbers (the sampling 
frame) and calls these numbers until a specified quantity of residential households is 
contacted. Researchers may need to estimate the expected or average number of calls 
required before reaching the specified quantity of residential numbers. The requirements 
may specify a point estimate or an interval estimate. It is easy to see the analogy between 
this problem and the model that uses this inverse sampling method to select balls from an 
urn as described earlier. The negative hypergeometric distribution provides a useful 
framework for developing a theory for estimation in both applications.  

 
Suppose N = 100 and r = 15 are known, but R is unknown and we want to 

estimate R. Further, suppose in a given 100 bank, we find y = 21 total calls are required to 
reach r = 15 residential numbers (i.e., we observe x = 6 nonresidential numbers before 
finally observing the 15th residential number). Using the unbiased estimator for R, we get 
ˆ 70uR = . An estimate of the standard error of the unbiased point estimator uR̂  is 

( )ˆˆ 8.96uRσ = . On constructing a 95% CI, we find ( )1 / 2
ˆ ˆˆ 70 18u uR z Rα σ−± = ± . In 

view of our simulation results presented in Section 7, we know the true confidence level 
is not exactly 95%, but very likely exceeds 90%. 
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6.  DESIGN OF SIMULATION STUDY 
 
To further study point estimators and CI’s for R, we used SAS 9.1 to simulate 

random samples from a negative hypergeometric distribution and compute the mean of 
the estimates based on the unbiased and MLE estimators. We also obtained the empirical 
estimates of the coverage probabilities and expected lengths for the confidence interval 
formulas shown in Eq. 4.1-4.3. We used a “population” of size N = 100 with parameter R 
taking one of the values in the set { }90,  80,  70,  60,  50,  40,  30,  20SR =  as the 

number of red balls and 100B R= −  the number of blue balls. For each combination of 
values in the set of SR with a value of r ranging from 3 to 25, we generated 10,000 
samples. For each sample, we computed three point estimates and three CI’s for R. In this 
known environment for the combinations of R in the set of SR  and for every sample, we 
determined whether or not each of the three CI’s included the “known” parameter R. 
Finally, we computed the percentage of samples in which the CI included or “covered” 
the parameter R. The result provided empirical estimates of coverage probabilities for 
CI’s and empirical estimates of expected lengths of CI’s. 

 
 

7. SIMULATION RESULTS 
 
7.1  Point Estimator 
 

We judged the quality of point estimators in terms of empirical estimates of the 
expected differences between the estimators and the true R. The point estimator with the 
smaller empirical estimate of the expected difference was preferred. 

 
1. R = 90. The unbiased estimator is a better point estimator compared to the MLE 

because the majority of the estimates are closer to the reference line R = 90. The 
MLE tended to over estimate R, especially when r is between 5 and 20 but 
appeared to begin converging to R when r > 17.  

2. R = 80, 70, 60. The estimates based on ˆ
uR  are very close to the reference line R = 

80, 70, 60, respectively, whereas the estimates based on ˆ
mR  converged to the 

reference lines as r increased (See, for example Figure 7.1).   
3. R = 50. Figure 7.2 shows that estimates based on ˆ

uR  are very close to the 

reference line R = 50. The estimates based on ˆ
mR  subsequently converged to the  

reference line as r increased. 
4. R = 40, 30. The estimates based on ˆ

uR  are very close to the reference line, R = 

40, 30, respectively, regardless of value r. The estimates based on ˆ
mR  converged 

rapidly to the reference lines as r increased (see, for example, Figure 7.3). 
 

In conclusion, the unbiased estimator is uniformly closer to R compared to the MLE, as 
expected. 
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Figure 7.1  Mean value of point estimates for R 
(n = 100, R = 70, number of replicates = 10,000)

Unbiased

MLE

46

48

50

52

54

56

58

3 5 7 9 11 13 15 17 19 20 25

R
 h

at

r

Figure 7.2  Mean value of point estimates for R 
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7.2  Empirical Coverage Probabilities for CI’s  
 

To construct a CI, we would like the actual coverage probability to be close to 
the nominal level (i.e., 95% in this discussion). CI’s based on large sample theory do not 
always provide coverage that is exactly equal to the nominal level but, typically, the 
actual coverage converges to the nominal level as the sample size becomes very large 
although the rate of convergence varies as the parameters change. Thus, it is desirable to 
compare the empirical coverage with the specified nominal level for different values of 
the parameters to determine whether the coverage is sufficiently close to the nominal 
level for sample sizes that are small enough to be of practical use. 

 
We arbitrarily considered empirical coverage probability between 93% and 97% 

to be reasonably good performance. We regarded any empirical coverage probability less 
than 93% to be anti-conservative and any greater than 97% to be conservative. We found: 

 
1. None of the CI’s provided adequate coverage when r is very small. 
2. None of the CI’s performed uniformly best over different values of r. 
3. In most cases, the estimates of CI coverage based on ˆ

uR  and ˆ
mR appeared to 

converge to 95% as r increased. The empirical estimates using the unbiased 
estimator tended to be more anti-conservative while the empirical estimates 
using the negative binomial approximation tended to be more conservative 
(See, for example, Figure 7.4).  

4. The empirical estimates of CI coverage of R tended to be more anti-
conservative when r is small (e.g., r < 5) regardless of type of the estimators 
and the magnitude of R.  

5. In most of cases, when r is not too small (e.g., r > 5) and R is less than half 
the “population” size N (e.g., N = 100, R = 30), the empirical estimates of CI 
coverage using the MLE tended to have better coverage.  
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Figure 7.3 Mean value of point estimates for R 
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6. In most of cases, when r is not too small (e.g., r > 5) and R is about half of 
the “population” size N (e.g., N = 100, R = 50), the empirical estimates of CI 
coverage appeared to be good regardless of the estimator.  

7. In most of cases, when r is not too small (e.g., r > 5) and R is more than half 
of the “population” size N (e.g., N = 100, R = 70), the empirical estimates of 
CI coverage appeared to be poor regardless of the estimator. Also, the 
empirical estimates of CI coverage fluctuated as r changed.  

8. For a fixed r, especially when r is equal or greater than 7, the empirical 
estimates of CI coverage decreased as R increased regardless of the estimator 
(Figure 7.5). 
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7.3  Empirical Estimates of Expected CI Length 
 

The expected length of a CI is the expected difference between the upper bound 
and the lower bound. It is another important criterion used to evaluate CI’s besides 
coverage. For similar coverage, the smaller the expected lengths, the better the 
performance of CI’s. 

 
1. For a fixed R, empirical estimates of expected lengths decreased as r increased 

(Figure 7 .6, 7.7. In addition, the empirical estimates of expected CI length using 
the unbiased estimator tended to be shorter lengths for fixed small r (e.g., N = 
100, r < 5). However, estimates of expected lengths using the MLE converged to 
those using the unbiased estimator as r increased. 

2. When R is large enough (e.g., N = 100, R = 70), the expected lengths using the 
MLE converged to those using the unbiased estimator regardless of the 
magnitude of r. 

3. For a fixed r, the expected lengths increased as R increased from 20 to 60, and it 
reached peak at R = 60, then decreased as R increased (Figure 7.8). 

4. We define the parameter θ  as 
R
N

θ =  (where θ  = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9). For a given θ  with a fixed r, the expected lengths increased with 
similar magnitude as the “population” size N increased regardless of the 
estimator (Figure 7.9). 
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In summary, CI’s based on the negative binomial approximation do not provide 

adequate coverage properties to be recommended for general use. With respect to CI’s 
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based on the unbiased estimator and the MLE, we conclude that either a smaller r (e.g., r 
= 3) or a bigger R (e.g., R = 90) will cause poor performances. In order to construct CI’s 
with good properties, we must have reason to believe the range of R is 20 to 80, and r 
must be specified in the range of 10 to 20. Although the unbiased estimator is the point 
estimator of choice, CI’s based on the MLE frequently out performed those based on the 
unbiased estimator in terms of coverage but the latter tended to be shorter in length. None 
of the CI types held coverage consistently at the 95% level. 
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