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Abstract 
SUDAAN 10 (RTI 2008) introduced the WTADJUST procedure, which produces 

calibrated survey weights. By forcing the weighted  totals for a set of “calibration 

variables” to equal benchmark totals computed from either the whole sample, a larger 

sample, or the entire population, calibration weights can reduce or eliminate the potential 

for bias from unit nonresponse under a reasonable response model.  WTADJX, which 

will be available in SUDAAN 11 (RTI 2012) allows the set of model variables governing 

the response model to differ from the set of calibration variables. As a result, the new 

procedure  may be used to assess and perhaps even correct for unit nonresponse that is 

not missing at random, that is to say, when unit response is a function of variables known 

only for the respondents. There are other potential uses of WTADJX. These include 

producing calibrated weights asymptotically identical to so-called “optimal” ones and 

simplifying the computation of replicate weights when using a nonlinear calibration 

routine.  

Key Words: Response model; Nonresponse bias; Generalized raking;  Variance 

estimation; Optimal calibration.  

1. What is calibration weighting? 

In the absence of nonresponse, calibration is a weight-adjustment method that creates a 

set of weights, {wk} that   

1.  Are asymptotically close to the original design weights:  dk  = 1/k   (as the sample size 

grows arbitrarily large, wk converges to dk)  and therefore nearly unbiased under 

probability-sampling theory.  

2.  Satisfy a set of calibration equations (one for each components of xk):    

                                                 k k kS U
w  x x  

When estimating T = U yk    with  t = S wk yk   or Uy  T/N  with  S wk yk/S wk,  

calibration weighting will tend to reduce mean squared error when yk is correlated with 

components of xk (but a real survey has many yk’s). 
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One way to compute calibration weights is linearly with the following formula: 
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Observe that as the sample size grows arbitrarily large, g
T
xk (which means g) converges 

to 0. 

This is the weighting scheme implied by the generalized regression (GREG) estimator 

since                                    
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2.   The GREG and unit nonresponse? 

How does the GREG handle unit nonresponse?  The sample S is replaced by the 

respondent sample R in defining the GREG and g: 

                                     1 T
GREG k k k k kR R

t w y d y    g x  

where   
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depending on whether the respondent sample is calibrated to the population ( )jU x  or 

to the original sample ( )j jS
d x .  Either way, the estimate is also nearly unbiased 

under the quasi-sample-design that treats response as a second phase of random sampling 

as long as each unit’s probability of response has the form: 

                                                  

1
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and g is a consistent estimator for γ. Put another way: GREGt  k kR w  x

1ˆ .k k kR d p 
 x

 
Notice that with nonresponse neither ( )

T
j j jU R d x x nor  

( )
T

j j j jS Rd d x x converges to 0
T
, and so neither does g

T
.   This, at the time 

surprising, use of calibration weighting was proposed by Fuller et al. (1994).  

3.  Nonlinear Calibration Weighting 

The problem with the probability-or-response function in equation (1) is that it can fall 

below unity and even be negative.  A useful nonlinear form of calibration weighting finds 

a g (through repeated linearization) such that  

                          

( ) or

(2)

( ) ,

T
k k k k k kR R U

T
k k k k k k kR R S

w d

w d w
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 where                 
( ) ( )exp( )

( )
( ) ( )exp( )

T
T k

k T
k

u c u c A

u c c A

  
 

  

g x
g x

g x
,                                    (3) 

and  ( ) ( )( )A u u c c     (which makes taking the derivate of ( )T
k g x easier). 

The weight adjustment  ( )T
k g x is centered at c (i.e., α(0) = 1) with a lower bound   0 

and an upper bound  u > c> , which can be infinite.   The user sets these centering and 

bounding parameters. Equation (3) is a generalization of both raking, where 

0, 1,c u    , and the implicit estimation of a logistic-regression response model, 

where 1, 2, .c u     

When c = 1, equation (3) is the generalized-raking adjustment introduced by Deville and 

Särndal (1992) to bound the range of the ( ).T
k g x  Centering at 1 was a requirement of 

calibration weighting in that landmark paper (α'(0) = 1 was required as well), but setting  

c > 1 with 1  is more sensible when adjusting for unit nonresponse.   

SUDAAN’s WTADJUST allows separate weights functions for each k:  

                                          

( ) ( )exp( )
( ) (4)

( ) ( )exp( )

T
T k k k k k k k k

k k T
k k k k k k

u c u c A

u c c A

  
 

  

g x
g x

g x

 

but with a common g chosen to satisfy one of the two versions of the calibration equation 

(the population or original-sample version).  When adjusting for nonresponse (or 

coverage), it makes sense to center at the inverse of the overall response (coverage) rate.   

Although WTADJUST allows  ( )T
k k g x to be k-specific, when adjusting for 

nonresponse (or coverage), it is sensible to select a single value for the ck and a very 

limited number of k and ku values.  
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4.  Missing Not at Random 

Why not allow for the possibility that nonrespondents are not missing at random?   In 

particular, what if we assumed a response model:  

1 ( ) ( )exp( )
( ) ,

( ) ( )exp( )

T
T k k k k k k

k k k T
k k k k k k k k

u c c A
p

u c u c A

      
    

γ x
γ x

γ x
    

where some components of the model vector xk are known only for respondents (such as 

yk itself) but fit calibration equations using a benchmark  z-vector containing values know 

for respondents and nonrespondents.  In other words, replace equation (2) by  

                         

( ) or

(5)

( ) ,
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k k k k k k kR R U
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w d

w d w

  

  

  

  

z g x z z

z g x z z

 

so that g again estimates γ.   

Mathematically, finding a g that satisfies either the first or second line of (5) can often be 

done as long as the number of calibration (benchmark) variables in zk is at least as great 

of the number of model variables in xk.. A routine to do that is coming in SUDAAN 11 

(RTI 2012): WTADJX.   It will work easiest when the numbers of model and calibration 

variables coincide so that one of the sets of calibration equations in (5) holds.  Otherwise, 

there are more unknowns than equations, and the equations in (5) cannot hold exactly.  

See Chang and Kott (2008) for a discussion of minimizing the difference between, say, 

( ) andT
k k k kR d  g x z  kU z as a means for estimating γ. 

5.  An Example:  Nonresponse in the 2002 Census of Agriculture  
 

The USDA used traditional poststratification within each county to adjust for 

nonresponse in the 2002 Census of Agriculture.  Five groups were formed using frame 

information on historic sales. Sales increases with Group number, except that Group 5 

had same sales as Group 3 or 4 but no survey responses in the previous five years.  Call 

these group identifiers the calibration variables (zk). 

 

In the following table, we contrast using a poststratification scheme at the state level with 

using WTADJX where model variables (xk) are formed based on actual 2002 sales.  

Since the model variables are identifiers of mutually exclusive groups, the choice of k(.) 

doesn’t matter in this case except when the linear solution is out of bounds for an 

alternative choice of k(.).  
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 Summary Statistics on the Two Methods of Reweighting for Nonresponse    

 

Model 

group 

 

 

Census 

counts 

Using poststratification 

 

Adjusted    Response     Standard 

counts          rate             error 

Using survey values 

 

Adjusted       Response   Standard 

counts             rate             error 

1 408,243 465,059 88      219  446,322    91 531 

2 288,040 330,097 87      197         329,755      87   1,401 

3 256,280 297,589 86      187         309,230       83   7,321 

4 216,022 257,410 84      150         268,045       81 327 

5 53,107 66,327   80  110 96,127       55      344 

Total 1,221,692 1,416,482  86      256      1,449,479       84 721 

 

It appears that poststratification, which assumes nonresponse to the census is a function 

of a farm’s expected size is biased downward if nonresponse is actually a function of a 

farm’s realized size. Kott (2005) provides a thorough discussion of these results.   

Observe that the standard errors are higher when a farm’s realized sales is used in 

nonresponse adjustment. Moreover, the possibility exists that there is no satisfying 

solution to the calibration equation.  When that happens, one may need to drop a model 

variable or add another. See Chang and Kott (2008).   

6.   “Optimal” Calibration 

In the absence of nonresponse and coverage errors, a linear estimator often better than the 

GREG calibrated on zk  also calibrates on zk but sets xk = (dk −1)zk.  This produces the 

nearly unbiased linear estimator with the smallest asymptotic mean squared error under 

Poisson sampling and similarly under stratified simple random sampling with large 

stratum samples sizes.  As a result, it has been called  the “optimal estimator” under 

Poisson sampling (Rao, 1994)  and “pseudo-optimal estimator” more broadly (Banker, 

2002).  

With WTADJX centered at 1, we can bound the weights and retain the asymptotic 

properties of the optimal estimator by setting xk = (dk −1)zk. In particular, when  dk > 1, 

we can set k = 1/ dk to assure that all  wk are at least unity, which many find desirable.  

If some dk = 1, we can simply set wk = 1 and remove k from U and S before applying 

equation  (4).  See Kott (2011).  

7.  Easier Replication Weights  

We know how to estimate the mean squared errors of WTADJUST-calibration estimators 

using linearization.  Unfortunately, that knowledge has has yet been incorporated into 

SUDAAN 10.  SUDAAN 11 will include proper asymptotic mean-squared-error 

estimation for a single-step calibration.  Often, however, calibration is done is separate 

nonresponse adjustment and mean-squared-error reducing steps.  In fact, there can be 
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multiple nonresponse-adjustment steps as well as a coverage-adjustment step. When there 

are multiple calibration steps, one can use replication to estimate mean squared errors in 

SUDAAN as long as the first stage sample is drawn with replacement  (or we can 

reasonable treat the sample as if it were). 

The problem with replication when using WTADJUST is that it is possible that the one 

can find calibration weights can satisfy calibration equations in (2) with a particular set of 

centering and bounding parameters  but not replicate weights.  The following alternative 

method of computing replicate weights  based on an idea in Kott (2006) may prove 

helpful.  Rather than reproducing the calibration with the same centering and bounding 

parameters, run WTADJX centered at 1 (and any bounds) on k    the pre-adjusted 

replicate weight, dk(r).  Set  xk = (k/k)zk, where  

                   k = 
( )( )

( )( )

k k k k

k k k k

u

c u c

  

 
    is the derivate of  k(.). 

 

This replication approach can also be used with WTADJX, but special handling is 

necessary when there are more calibration variables than model variables. Sadly, this 

special handling will be easily accomplished with SUDAAN 11. 

8. Concluding Questions 

There remains much we don’t know about calibration weighting.  In particular,   

How many calibration variables are too many?  

Is using calibration weighting to account for nonrespondents not missing at random 

practical, and, if so, when?  

Empirical research is needed on these questions. WTADJX will makes this research 

easier.  
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