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Abstract 
Census Transportation Planning Products (CTPP) are sets of tabulated data products 

designed for transportation planners. As the underlying data are moving from the Census 

Long Form sample to the smaller American Community Survey (ACS) five-year 

combined sample, disclosure risk becomes a non-avoidable concern, especially for small 

geographic areas. A perturbation approach was developed so that the CTPP products 

based on the perturbed data satisfy the transportation data user community’s analytical 

needs while simultaneously satisfying the requirements set by the U.S. Census Bureau for 

reducing disclosure risk. This paper discusses the variance estimation on the CTPP tables 

using perturbed ACS data. The ACS uses the Successive Difference Replication (SDR) 

method for variance estimation because it has the advantage that the variance estimates 

can be computed regardless of the form of the statistics or the complexity of the design. 

However, the SDR estimator applied naively to the perturbed data does not account for 

the variance due to perturbation. As a remedy, an additional term was added to reduce the 

bias. The proposed estimators are compared with a few alternatives and evaluated 

through a simulation study. 

 

Key Words: Balanced Repeated Replication, data perturbation, disclosure risk, 

perturbation variance, successive differences replication, synthetic data 
 

1. Introduction 

 
The Census Transportation Planning Products (CTPP) are sets of custom tabulations for 

the transportation community. A large volume of tables are generated by the U.S. Census 

Bureau at various geographical aggregations to support a wide range of transportation 

planning needs. In 2000, the data underlying the CTPP tables were based on the Census 

Long Form. Since then, the Long Form has been replaced by the American Community 

Survey (ACS) and the tables must now be run using the ACS. With the transition, the 

CTPP tables face serious cell suppression, especially for small geographical areas due to 

the smaller sample size in the ACS. Of course, the tables must satisfy the disclosure rules 

required by the Disclosure Review Board (DRB) at Census Bureau. The National 

Highway Cooperative Research Program (NCHRP) was concerned that large scale cell 

suppression would severely reduce the data usability, and therefore called for research on 

statistical disclosure control (SDC) that would provide transportation planners with high 

quality unsuppressed tables which strictly conform to the Census Bureau DRB’s 

disclosure rules. Sponsored by the NCHRP and the National Academy of Sciences 

(NAS), Westat put together a research team that worked cooperatively to develop an 
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operationally feasible data perturbation approach to fulfill this goal. The proposed 

approach can be used to perturb the ACS data adequately so that tabulations based on the 

perturbed data will be approved for publication without any cell suppression. 

 

This paper studies the variance estimation for the CTPP tables generated using the 

perturbed ACS data through the proposed perturbation approach. The usual ACS variance 

estimator was designed for estimates based on unperturbed ACS data so that perturbation 

variance is not naturally part of it. As a remedy, we propose to add an adjustment term to 

the usual ACS variance estimator to appropriately account for the error due to data 

perturbation. In Section 2, we briefly describe the disclosure risk elements in the CTPP 

tabulations, and the perturbation approach developed to reduce the risk. Variance 

estimators for estimates using perturbed data are presented and compared in Section 3, 

including an empirical example. In Section 4, we present the results from a simulation 

study which further evaluates the performance of different variance estimators. Final 

conclusions and remarks are given in Section 5. 

 

2. Disclosure Risk and Perturbation Approach 

 
The CTPP products include residence-based tables, workplace-based tables, and 

residence-to-workplace flow tables. The tables involve demographic variables (e.g., age 

of workers, minority status), socio-economic variables (e.g., household income, person 

earning, poverty status), and transportation variables (e.g., means of transportation, travel 

time, time leaving home), and show cell aggregates, means, and medians. The smallest 

geography for the tables will be at the Traffic Analysis Zone (TAZ) level, which is 

roughly similar to block groups. The new CTPP products will be processed from the 

2006-2010 ACS combined sample, with a sample size that is only about half of the 2000 

Census Long Form sample size. As a result, the disclosure risk becomes a serious 

concern since the smallest TAZs will have just 20-25 ACS sample workers. The tables of 

flows for each TAZ result in a large number of sample uniques.  

 

A disclosure risk in the CTPP tables arises from the ability to link the tables to build 

microdata records (Krenzke and Hubble, 2009) with restricted geographical information, 

and match the records to the ACS Public Use Microdata Sample (PUMS) to obtain an 

additional 150 variables or so. Also, the sample uniques that are for scenarios such as 

long distance bicycle/walker commuters between two known TAZs are likely to be 

population uniques. The typical disclosure rules set up by the Census Bureau DRB would 

impact about 90 million CTPP tables in various geographical areas. These tables involve 

about 30 to 50 percent of all microdata in 90 percent of the TAZs.  

 

As an alternative to cell suppressions, we developed a general approach to perturbing the 

ACS microdata (see Krenzke et al., 2011a and 2011b). The Census Bureau DRB 

approved this approach since the tables generated from the perturbed data have 

substantially reduced disclosure risk. As a result, the tables are not subject to cell 

suppression prior to publication. The approach begins with an initial risk analysis to flag 

high risk values by forming the tables and applying the disclosure rules. Next, in the data 

replacement step, the high risk values are perturbed using either a semi-parametric 

approach or a constrained hotdeck approach, depending upon the variable types. Both 

approaches change the high risk values slightly while maintaining the associations 

between variables in TAZs with medium to large sample sizes. After the data 

replacement step, a weighting calibration process called raking (Deming and Stephan, 
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1940) is applied to bring consistency between certain ACS estimates and estimates based 

on perturbed data at the Public Use Microdata Area (PUMA) level. An evaluation was 

conducted that concluded that the perturbation approach achieves a good balance on 

retaining data utility and reducing disclosure risk. 

 

3. Variance Estimation with Perturbed Data 
 

The ACS has very complex survey design and weighting adjustment process (U.S. 

Census Bureau, 2009). To approximate the variances of the estimates under this design, 

the ACS implements the Successive Difference Replication (SDR) approach (Wolter, 

1984; Fay & Train, 1995; Judkins, 1990). The SDR approach is designed to be used with 

systematic samples such as ACS, for which the sample is selected from a frame sorted by 

geographic ordering. Its main advantage is that the variance estimates can be computed 

for all sorts of statistics despite the complexity in the sampling or weighting procedures.  

 

Suppose  ̂ represents the ACS estimate of a statistic, θ, using the ACS full sample 

weight, and  ̂  is the ACS estimate of θ using the kth set of ACS replicate weights (See 

U.S. Census Bureau, 2009, Chapter 12, for the formation of the replicate weights). Then 

the variance of  ̂ can be estimated using the SDR formula as 

 

    
24ˆ ˆ ˆvar

80
    kk

 (1) 

 

In this research we focus on developing a variance estimator for the subset of the CTPP 

tables that will be generated using the perturbed ACS data. They are referred to as 

perturbed tables or perturbed estimates. A variance estimator that can appropriately 

estimate the variance of the perturbed estimates should capture two components, variance 

due to sampling error, and variance due to perturbation given an ACS sample.  

 

One simple idea for estimating the variance of the perturbed estimates would be just 

treating the perturbed data as if they were not perturbed and applying the ACS formula 

naively. This naïve variance estimator is 

 

    
24

ˆ ˆ ˆvar
80

    kk
 (2) 

 

where  ̂ is the estimate based on perturbed data and raked full sample weight, and  ̂  is 

the estimate based on perturbed data and the kth set of raked replicate weight (Note that 

after data perturbation the raking process is applied to both the full sample weight and 

each set of the replicate weights). This variance estimator reduces to the usual ACS 

estimator in equation (1) when the perturbation error is small enough to ignore. It can be 

shown that, under certain assumptions, the estimated variance from a replication method 

based on the perturbed data, in expectation with respect to perturbation, is not very 

different from the variance based on the unperturbed data. In the Appendix we prove this 

using the Balanced Repeated Replication (BRR) estimator as an example. The SDR 

estimator, and other replication estimators, should have similar properties though it is 

more difficult to work through the theoretical proof. More general, the naïve estimator is 

likely to be negatively biased since variance due to data perturbation is not accounted for. 

The bias could be serious if the amount of perturbation is moderate to large. 
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An alternative straightforward solution for estimating the error component due to 

perturbation given an ACS sample is to add an adjustment term comprised of the squared 

difference between the ACS and perturbed estimates, ( ̂   ̂)
 
. If there is no 

perturbation bias (  ( ̂  )   ̂  where    means expectation with respect to random 

perturbation conditional on the sample s), then the expectation of this adjustment term is 

essentially the perturbation variance (  (( ̂   ̂)
 
  )     

 ). If there is some 

perturbation bias, then this term estimates the mean squared error. Adding the adjustment 

term to the naïve estimator (2) gives an estimator we call the naïve-with-adjustment 

estimator,  

 

      
224 ˆˆ ˆ ˆ ˆvar

80
        kk

. (3) 

 

An alternative estimator to formula (3) is to add the adjustment term to the usual ACS 

estimator (1). We call this the ACS-with-adjustment estimator. Assuming the 

perturbation is independent of the sampling process, the estimator given in (4) is 

essentially the sum of sampling variance and perturbation variance, 

 

      
2 24 ˆ ˆ ˆˆ ˆvar

80
        kk

. (4) 

 

The microdata underlying the CTPP tabulations will not be released, which prevents the 

users from deriving the unperturbed estimate  ̂ by separating the two components in 

formulae (3) and (4). While the ACS estimate is well protected against being disclosed, 

using it in the variance formulae enables us to estimate the perturbation variance from 

only one perturbed dataset (in other words multiple perturbed data are not needed).  

 

We begin our investigation of these alternative variance estimators by giving an empirical 

example. Figure 1 shows the estimated standard errors (SEs) of the county-level mean 

travel time for workers who drove alone, using the ACS data from 2005 to 2009. The 

computations were based on the original ACS and the perturbed dataset using the 

proposed perturbation approach for the test site Atlanta. The horizontal axis represents 

the 20 counties in Atlanta. They are sorted in an increasing order of the estimated SEs 

based on the usual ACS estimator (1). The SEs computed from the ACS estimator (1) and 

the naïve estimator (2) are very similar, and generally smaller than the SEs computed 

from the naïve with adjustment estimator (3) and the ACS-with-adjustment estimator (4). 

The estimated SEs computed from (3) and (4) account for the difference in the point 

estimates from the original and the perturbed data. This second term was moderate or 

large for some of the counties, but small or close to zero for others. We suspect this 

occurred because the post-perturbation raking attenuates the difference in the estimates 

due to perturbation. Although travel time was one of the raking dimensions at the PUMA 

level, the county-level estimates based on the perturbed data were not fully aligned with 

the estimates based on the original ACS data, especially in large PUMAs containing a 

few counties.  

 

4. Simulation 

 
To further evaluate the proposed variance estimators, a simulation study was conducted. 

In the simulation, the perturbation approaches developed by the research team were 
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applied to the data from one test site, Olympia, and the perturbations were applied 1,000 

times independently. From each of the 1,000 independent perturbed datasets, the mean 

travel time for workers who drove alone within each Combined TAZ (CTAZ) was 

calculated; a CTAZ contained at least 300 workers living in the area. The variances were 

computed using three different estimators: naïve estimator (2), naïve-with-adjustment 

estimator (3), and ACS-with-adjustment estimator (4). 

 

 

Figure 1: Estimated standard errors (in minutes) of the mean travel time for workers who 

drove alone in 20 counties in Atlanta: ACS 2005-2009. 

 

Table 1 shows the relative difference between the average of the 1,000 perturbed 

estimates and the ACS estimates for each CTAZ, as well as the ratios of the average 

standard errors from (3) and (4) to the standard error from the usual ACS estimator (1). 

The perturbation noise is generally no more than two percent of the ACS estimates in 

most of the CTAZs, but reaches three percent in CTAZ 17 and 5 percent in CTAZ 16. A 

majority of the perturbed standard errors from the ACS-with-adjustment estimator (4) are 

2 to 9 percent higher than those from the usual ACS estimator. In CTAZ 16, the standard 

error from (4) is 28 percent higher than that from (1). The perturbed standard errors from 

(3) are similar to those from (4) but they can sometimes be lower than the ACS estimated 

standard errors. It appears that the data perturbation process only adds a small amount of 

noise to the ACS data for large CTAZs, which makes the perturbed estimates deviate 

only slightly from the original estimates. The impact in small areas such as TAZs was not 

evaluated because confidentiality concerns mandated that these be substantially 

perturbed. 

 

We computed coverage rates to evaluate whether the variance estimators appropriately 

account for both the sampling error and the perturbation error. Coverage rates summarize 

how well the constructed confidence intervals covers the true values through 

independently repeated sampling and perturbation processes. However, the true values 

were not available in this study, since Olympia ACS data was just one sample. Therefore, 

instead of drawing repeated ACS samples, we drew the simulated true values (mean 

travel time) for individual CTAZs from a normal distribution with the ACS point 

estimate as the mean and the ACS variance estimate as the variance, assuming the ACS 

point and variance estimates from the unperturbed data for each CTAZ were 
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approximately unbiased. We computed, on average, how likely the confidence intervals 

based on the perturbed estimates contained the randomly drawn true values. The results 

are presented in Figure 2. Each boxplot is based on 22 averages (one for each CTAZ). 

 

Table 1: Relative Difference between ACS and Perturbed Estimates, and Ratios of 

Standard Errors from (3) and (4) to that from Usual ACS Estimator (1), by CTAZ: ACS 

2005-2009, Olympia 

 

CTAZ 

Relative Diff between perturbed 

estimate and ACS estimate 

Ratio of standard 

errors: (3)/(1)  

Ratio of standard 

errors: (4)/(1) 

1 0.01 1.03 1.06 

2 0.00 0.94 1.03 

3 0.01 1.00 1.05 

4 0.02 1.08 1.08 

5 0.01 0.93 1.03 

6 0.01 1.09 1.06 

7 0.01 1.04 1.04 

8 0.02 1.09 1.10 

9 0.01 1.09 1.04 

10 0.01 1.07 1.06 

11 0.01 1.09 1.08 

12 0.02 1.18 1.10 

13 0.00 1.08 1.02 

14 0.01 1.07 1.04 

15 0.01 1.21 1.06 

16 0.05 1.30 1.28 

17 0.03 1.12 1.09 

18 0.01 1.18 1.09 

19 0.01 0.88 1.03 

20 0.01 1.16 1.04 

21 0.01 1.04 1.06 

22 0.00 1.08 1.05 

 

The coverage for the naïve estimator (2) was always lower than the coverage based on 

the naïve-with-adjustment estimator (3). The coverage rates from the naïve estimator 

were acceptable for some CTAZs, but could be lower than the nominal rates for majority 

of the CTAZs, and even fell below 90 percent occasionally. This clearly showed that the 

naïve estimator (2) did not capture the variance due to perturbation appropriately. 

 

The coverage rates were very close to the nominal 95 percent when the ACS-with-

adjustment estimator (4) was used to estimate the variance. The performance of the 

confidence intervals based on the naïve-with-adjustment estimator (3) was also good, but 

slightly less stable than those based on (4). This reflects the instability of the naïve 

estimator in estimating the sampling error since the second components in (3) and (4) are 

identical.  

 

5. Conclusions and Remarks 

 
The ACS-with-adjustment estimator outperforms the other estimators for variance 

estimation on the perturbed estimates. It uses the original ACS full sample estimates and 

replicate estimates, as well as the perturbed full sample estimates. This estimator is 

actually computationally simpler and more stable than the naïve-with-adjustment 

estimator. The adjustment term, the squared difference between the original and 

Section on Survey Research Methods – JSM 2011

1600



perturbed estimates, serves as an appropriate estimate of the conditional perturbation 

variance. It ensures that the confidence intervals constructed on the perturbed estimates 

and variances have the coverage rates close to the nominal, even when the perturbation 

process may have introduced some bias to the estimates. A disadvantage of using this 

adjustment term for estimating the error due to perturbation is that it is only based on one 

set of perturbed data. Using multiple independently perturbed datasets for perturbation 

variance estimation would effectively improve the stability. However, generating 

multiple perturbed datasets could dramatically increase the time and effort in the data 

perturbation process given the large sample size of ACS and the perturbation approach 

being used. 

 

 
Figure 2: Coverage rates of confidence intervals based on three variance estimators (left: 

Naïve estimator; middle: Naïve-with-adjustment estimator; right: ACS-with-adjustment 

estimator) 

 

Reiter (2003) discusses generating multiple datasets with partial synthesis to facilitate 

variance estimates that account for between dataset error variance. Assume perturbations 

are made independently for i = 1, …,m to yield m different perturbed datasets. Let 

 ̂  denote the CTPP perturbed estimate of θ based on the ith perturbed data and  ( ̂ ) 

denote the estimated variance of  ̂ , treating the ith perturbed data as being unperturbed 

(e.g., computed using the naïve estimator). Under certain regularity conditions, the 

analyst can obtain valid inferences for θ by combining  ̂   and  ̂( ̂ ) as follows: 

 

1
ˆ ˆ   i

im
, 

      
21 1 1

ˆ ˆ ˆ ˆˆvar
1

i i

i i
v

m m m
     


   (5) 

 

The point estimate is the average of the m perturbed estimates,  ̅̂. The variance of  ̅̂ is 

the sum of two components, with the first term estimating the sampling error and the 

Section on Survey Research Methods – JSM 2011

1601



second term estimating the perturbation variance, or the variation between the perturbed 

estimates. This set of estimators is designed for publishing multiple perturbed datasets for 

which the analysts will be able to conduct any types of analyses that they desire. For the 

CTPP products Census Bureau will only release a set of pre-defined tabulations, but not 

microdata.  

 

There are two drawbacks to applying (5) directly to the CTPP products. First, (5) does 

not use the original ACS estimates in variance estimation because they are unknown to 

the analysts. The variance estimates can be biased if in expectation the perturbation noise 

is not zero. But for the CTPP tables both the point estimates and the variances are 

produced by the Census Bureau for whom the ACS estimates are available. Moreover, 

there is no disclosure concern associated with using the original ACS estimates since the 

users have no way to separate the ACS estimates from the overall variance estimates. 

Therefore, using the ACS estimates in variance estimation for the perturbed estimates is 

safe, and can improve the variance estimation due to both sampling error and perturbation 

error. Second, in formula (5), the perturbation noise can be attenuated through averaging 

across multiple perturbed estimates. The proposed perturbation approach intends to 

change the high risk values slightly for the purpose of retaining the data utility. Using the 

average as the point estimate may not reduce the disclosure risk adequately. 

 

Other than directly applying formula (5) to the CTPP products, we may just borrow the 

idea of estimating the perturbation variance through multiple perturbed data for 

improving stability. We can use one perturbed estimate, say  ̂ , as the point estimate for 

publication, and estimate its variance as 

 

     
2 2

1 4 1ˆ ˆ ˆˆ ˆvar ,
80

         i

kk im
 

 

where the first term is the usual ACS estimator, the best available for estimating the 

sampling error, and the second term is the variation between the m perturbed estimates. 

Again, the feasibility of using multiple perturbed data for variance estimation heavily 

depends on the efficiency of the data perturbation process and the table generating 

process. The current plan is to create single perturbed data for generating the CTPP tables 

to assure efficiency by sacrificing some degree of stability in estimating the perturbation 

variance. 

 

6. Appendix 

 

Assume the BRR half samples (Wolter, 2007) are fully orthogonal, we have  ̂  
 

 
∑  ̂   

and  ̂  
 

 
∑  ̂   in a perturbed dataset, where B is the number of BRR replicate weights. 

We further assume that perturbation does not introduce any bias, i.e.,    ̂   ̂ and 

   ̂   ̂ . Taking the expectation with respect to perturbation p, we obtain 

 

                                                
21

ˆ ˆ p bb
E

B
 

                                              =  2 21
ˆ ˆ p bb

E
B
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                                              =     2 21 ˆ ˆˆ ˆvar var      b p b pbB
 

Since the half samples are orthogonal, we have 
 

 
∑     ( ̂ )      ( ̂) . Then, 

 

   
221 1 ˆ ˆˆ ˆ      p b bb b

E
B B

. 

 

If the BRR replicate weights have been adjusted to account for nonresponse or 

poststratification, the above equation may only approximately hold.  
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