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Abstract 
Reweighting a sample using weighting class adjustments is a common approach to deal 

with nonresponse. This approach uses a response model defined as a set of assumptions 

about the true but unknown response distribution that corresponds to the weighting class. 

A reweighted estimator is unbiased if the model coincides with the response distribution. 

However, in most cases, the response model will differ from the true response 

distribution. In this paper we examine the effect of using weights for reweighting when 

the model fails in stratified designs. The majority of results on model failure in 

nonresponse in the literature assume a simple random sampling where the weights are 

constant. 
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1. Reweighting 

 
A common strategy to reduce potential biases in estimates from surveys with 

nonresponse is to apply an adjustment factor based on a response model to the sampling 

weights. This is sometimes called reweighting. In order to define reweighting, we assume 

a finite population            and the total of   is   ∑    . Under a sample 

design,      with a defined probability of selection    for all units in  , an unbiased 

estimator of the total   is  ̂  ∑       .  

 

With nonresponse, we only observe a subset    (i.e.,    ). The reweighted estimator of 

the total would be  ̂  ∑       ⁄ , where    is the probability that the element i 

responds given that the sample s was selected if    were known. Using the theory of 

double sampling, the estimator  ̂  is unbiased (Särndal, et al., 1992) if we know    for 

all i. 

 

The quantity       ⁄  is an adjustment factor made to the sampling weight       ⁄  

that eliminates any bias due to nonresponse. In practice, the response probabilities, the 

  ’s, are not known and must be estimated   ̂  . The reweighted estimator of the total 

substitutes  ̂  for    
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The reweighted estimate  ̂  may not be unbiased, and the bias depends in part on how 

well the probabilities of response    are estimated by  ̂ . 
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We restrict our study to the class of reweighting estimators that estimate response 

propensities using classes or nonresponse adjustment cells denoted by c, for c = 1,…,C. 

The classes are often constructed so that the units within the same class have the same 

response propensity. Auxiliary variables such as demographic and socioeconomic 

characteristics are used to create weighting classes. For such a weighting class estimator, 

the reweighting estimator uses  ̂     ̂  ⁄  so (1) can be written as 
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. (2) 

 

Little and Vartivarian (2003) (referred to as LV in this paper) raised the question of 

whether the reweighting adjustment factors should be estimated using the selection 

weights or not. The weighting classes described in the literature primarily uses simple 

random samples where the weights are constant, and thus, the two approaches are 

identical. Theoretically, we know from the double sampling theory that using the 

sampling weights is appropriate if the assumed response model gives unbiased estimates. 

In practice, the model is almost always wrong, and there is little guidance on whether 

using the weights improves the quality of the estimates. While LV raised the question 

about using the weights, this was not the focus of their study and more research on this is 

needed.  

 

This paper expands upon the initial work of LV in a number of ways, and more directly 

assesses the effect of using weights for the nonresponse adjustment factor. We explore 

estimators of totals and ratios in addition to the means studied by LV. In doing this, we 

also point out some reasons for the observed performance of the means as defined in the 

LV study. In addition, we assess the effect of different sampling rates while LV restricted 

their work to designs in which the sampling rates in the strata were fixed. These 

extensions provide some interesting insights into the effect of using weights for 

computing reweighting factors. 

 

2. Previous Study 
 

Little and Vartivarian (2003) evaluated the performance of nine reweighted estimators of 

the population mean through simulation. They drew stratified samples from an artificial 

population with 10,000 elements. The population is classified into two strata (Z) and has 

two nonresponse adjustment cells (X) that cross strata. Table 1 shows the distribution of 

the population. In our study we use the same population. 

 
Table 1: Population Counts by Strata Z and Nonresponse Adjustment Cell X 

 
 Nonresponse adjustment cell 

Sampling strata X=0 X=1 

Z=0 3,064 3,931 

Z=1 2,079 926 
Source: Little and Vartivarian (2003). 

 

The variable of interest, Y, is a binary variable with a Bernoulli distribution where the 

probability of     is defined by a logistic model with          |         

  (   )    (   )               . The response propensity   is also 
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Bernoulli where the probability of     follows a logistic model with        |     

      (   )    (   )     (   )(   ) . Different populations and 

response propensities can be generated depending on the values of                 and 

     as shown in Table 2. In the simulation, a fixed sample size of 262 is selected for 

stratum Z=0 and 50 in Z=1 are drawn. The LV study evaluates the performance of the 

estimator through the root mean squared error (RMSE) of the estimates for different 

populations. 

 
Table 2: Models for Y and R 

 

Model for population Y  

Model for response 

propensity R                     

            2 2 2 

              2 2 0 

          2 0 0 

          0 2 0 

          0 0 0 
Source: Little and Vartivarian (2003). 

 

3. The Estimators 

 
We consider three reweighted estimators described in the LV paper. These estimators 

differ in the way the adjustment factor  ̂  is computed. The estimators are maximum 

likelihood ML(xz) estimator, weighted response estimator, and unweighted response 

estimator.  

 

Definitions 
Consider a stratified design for Y with elements y where the strata are denoted by 

z = 1,.., Z; a sample of size     is drawn from stratum z with a probability of selection 

  . Because of nonresponse, we only observe     respondents in stratum z. The 

adjustment for nonresponse is done within weighting classes defined by x=1,…, X. In this 

notation,     and     are the sample size and number of respondents in the cell created by 

the intersection of the nonresponse cell x and stratum z respectively (i.e.,    ). The 

estimators to be evaluated in this study are shown in Table 3. 

 

Table 3: Reweighted Estimators 

 

Estimator Expression Weight Response rate 
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Source: Little and Vartivarian (2003). 
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Since we are evaluating reweighted estimators, we begin by examining the differences in 

the way the adjustment factor  ̂   is computed. The formulas in Table 1 do not isolate the 

expression of  ̂   from the sampling weight. To make the extension to estimating totals 

such as  ̂  such a re-expression is useful. Substitute          ⁄  and define the 

sampling weight as          ⁄  where     is the total size in stratum z. This way of 

expressing the estimators of totals are presented in Table 4. 

 

Table 4: Alternative Expressions for the Reweighted Estimators for Totals 

 

Estimator Expression Adjustment factor 

Weighted response rate   
z x r xzrz

wrr
xwrr ywfY ˆˆ  
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Unweighted response rate   
z x r xzrz
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ML(xz) estimator   
z x r xzrz
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xzml ywfY ˆˆ  

xz

xzml
xz

r

n
f ˆ  

 

The expressions of the adjustment factors in Table 4 are also helpful for understanding 

the LV nomenclature. The estimator called the weighted response rate uses an adjustment 

factor computed as the inverse of the weighted response rate within the nonresponse cell 

using the stratum sampling weight       ⁄ . The estimator called unweighted response 

rate uses an adjustment factor computed as the inverse of the unweighted response rate 

within the nonresponse cell. In other words, the adjustment factor is the ratio of the count 

of the sample drawn to the observed count of respondents within the nonresponse cell. 

The “unweighted” estimator does not mean that the estimator is not weighted by the 

inverse of the selection probability, but rather that the estimator includes an adjustment 

that uses the unweighted response rate. 

 

An estimator of the mean  ̂   ̂  ̂ using the expression in Table 4 can be easily derived 

by defining  ̂ as       . One could incorrectly assume that the numerators and 

denominators of the estimators in Table 3 are ratios of totals  ̂ and  ̂ respectively. In 

particular, notice that the weighted mean has a fixed denominator of N in the estimators 

of Table 3. Nevertheless, the expressions for the mean  ̂ in Table 3 are valid estimators 

of the mean. We return to this issue shortly. 

 

4. Simple Cases 
 

Särndal et al. (1992) use the response homogeneity group (RHG) model to describe the 

properties of this estimator for simple random samples (SRS). It is shown that the 

estimator is unbiased and the adjustment factor is computed as  ̂        for adjustment 

cell x when the response propensities within cells are homogenous. When the response 

propensities within the group are not homogeneous, the estimator is biased. Note that in 

SRS the weights are constant, so the weighted and unweighted adjustments are identical. 

 

To generalize to a stratified design, think of the SRS sample as a stratified design with 

one stratum. The estimator is unbiased in the stratified design as long as the nonresponse 

adjustment cells are created within stratum. The form of the adjustment factor in this case 
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is  ̂          . This adjustment factor corresponds to the ML(xz) estimator in Table 4. 

Furthermore, since the cells do not cross strata, the sampling weights within the cells are 

the same and the adjustment factors for the weighted and unweighted estimators have the 

same expression. In other words, when the nonresponse adjustment cells do not cross 

strata, the weighted, unweighted, and ML(xz) estimators are identical. 

 

Looking at the expression of the factor for the ML(xz) estimator in Table 4, we see that 

by definition, the adjustment factor of the ML(xz) estimator is always computed within 

the cell created by the intersection of the sampling strata z and the nonresponse cell x 

(i.e., cell    ). Since the response propensities in the cells     are always 

homogenous for all nonresponse models evaluated in the LV study, theory says the 

estimator is unbiased. The simulations in Table V of the LV paper confirm this 

theoretical result.  

 

The weighted and unweighted estimators in the same simulations use nonresponse 

adjustment cells that cross strata (i.e., cell x  instead of cell    ) and in most of the 

simulation conditions, the response propensities are not homogeneous; therefore, the 

weighted and unweighted estimators are generally biased. If the weighted and 

unweighted estimators were based on the same information (the intersection cells), they 

would give results identical to the ML(xz) estimator. We are examining the effect of the 

adjustments when the models are not perfectly specified (which is almost always the case 

in practice), the ML(xz) estimator is not of interest to us in our study. 

 

There are several situations where the ML(xz), weighted, and unweighted estimators are 

similar or identical in expectation. One situation corresponds to the response model 

                      where the propensity to respond is the same in all cells. 

In this situation, although the unweighted and weighted estimators use z as nonresponse 

cells, in expectation, the adjustment factors are the same and unbiased. This is confirmed 

by the simulation results in Table V of the LV paper rows 5, 10, 15, 20, and 25. This 

result can also be shown algebraically noticing that in expectation the ratios         are 

constant. The simulation is consistent with a theoretical result that states when the model 

holds then the estimators are unbiased. 

 

Another situation where the response propensity is the same across strata z corresponds to 

the response model                       . In this case, the response 

propensities are also homogeneous within the cells z, which are used in the weighted and 

unweighted estimator and within the cell zx  used as adjustment cell in the ML(xz) 

estimator. In this case too, the estimators are the same in expectation and this result is 

confirmed by the simulation in Table V of the LV paper rows 3, 8, 13, 18, and 23. These 

results can also be shown algebraically. Finally, there is a situation where the weighted 

and unweighted estimators are equal in expectation but not necessarily the same as the 

ML(xz) estimator. This situation arises when the sample is proportionally allocated to the 

strata. In this case, the sampling weights and adjustment factors are the same for the 

weighted and unweighted estimators (i.e.,  ̂ 
     ̂ 

   ). 

 

In summary, when the nonresponse cells have a homogeneous response propensity, the 

estimators ML(xz), weighted and unweighted, have the same form and are unbiased. On 

the other hand, comparisons where the ML(xz) estimator uses homogeneous response 

groups as nonresponse cells while the weighted and unweighted estimators use non-

homogeneous response rates give unfair advantage to the ML(xz) estimator because it is 
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always unbiased while the weighted and weighted estimator are always biased because 

the model fails.  

 

The LV paper advocates the use of design (strata) information in creating the 

nonresponse cells. While we do not disagree with this suggestion, we would rephrase it to 

say that their results show the importance of correctly specifying the model. When the 

same model is used in the simulation situations, the weighted and unweighted estimators 

are essentially the same as the ML(xz) estimator, and comparisons are uninformative.  

 

5. The Estimators of the Mean 
 

In this section we examine the comparison between the weighted and unweighted 

estimator of the mean. The weighted estimator of the mean for the population of the LV 

paper can be written as  ̂     ̂     ̂    where  ̂    ∑ ∑ ∑  ̂ 
   

     . 

Substituting  ̂ 
    ∑  

      

   
  ∑  

      

   
  ⁄  and            we observe  ̂    

∑ ∑ ∑  ̂ 
   

         ⁄   . In other words, the weighted estimator can be written as 

 ̂     ̂     . 

 

Clearly, the weighted estimator of the mean  ̂    is not a ratio estimator (the 

denominator is not a random variable); the weighted estimator of the mean in the LV 

paper is linear estimator with a constant denominator. This is the direct result of the way 

the nonresponse factor adjusts the weights to always recover the total N. 

 

On the other hand, the unweighted estimator is a ratio estimator because the estimate of N 

in the unweighted estimator is a random variable. As a result, the unweighted mean  ̂    

and the weighted mean  ̂    have different statistical properties. The former takes 

advantage of the correlation between  ̂    and  ̂   . When the two are positively 

correlated, the bias for the unweighted estimator is reduced (as  ̂    increases so does 

 ̂    so the bias is reduced); this is one of the attractive features of ratio estimators. The 

weighted estimator does not benefit from the correlation because the denominator is 

fixed. We believe a better comparison for evaluating the utility of using the weights for 

computing the nonresponse factor is to use a weighted estimator that is a ratio.  

 

To do this, we evaluated the MSE for two ratios. In the first ratio we computed another 

variable Q with same distribution as Y. The second ratio is the mean of a domain of Y, 

where the domain is randomly determined within Y. As the domain begins to approach 

the full population, the denominator of the ratio has less variability and goes to N and the 

situation is similar to that investigated in LV. 

 

6. Findings 

 
We repeated the LV simulation but expanded it in some ways. We included estimators of 

the total and ratios as discussed above. The ratios include domain means that we believe 

are more reflective of estimates used in practice. We also varied the sampling rates while 

holding the total sample fixed; LV had fixed sample sizes by stratum. The simulation was 

written in R (R Development Core Team 2011) using the package survey (Lumley 2011) 

with 10,000 runs. We evaluated the estimator examining the root mean squared error 

(RMSE) and its components (bias and variance). Better estimators are those with a lower 
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RMSE. We note that for those cases that matched those in LV, our results confirm those 

they reported. 

 

6.1 Estimators of Totals 
Figure 1 shows the RMSE of the weighted and unweighted estimates for the total for the 

population defined by                         and response propensity 

                        . We chose this combination because the LV paper 

shows that the weighted estimator of the mean underperforms compared to the 

unweighted estimator in this situation. The horizontal axis represents the relative 

sampling rate defined as the ratio of the sampling rates computed as      
               . The simulation in the LV paper corresponds to the relative sampling 

rate of 2.25.  

 

As expected, the RMSE of the estimates are the same when the sample is proportionally 

allocated (the lines cross when the relative sampling rate = 1). However, while the RMSE 

of the unweighted mean is a function of the relative sampling rate, the RMSE of the 

weighted estimator is almost constant regardless of the sampling rate. Notice that in this 

case, if the unweighted total is used for the LV fixed rate of 2.25, then the RMSE is 

almost twice that for a weighted total. When the second stratum is oversampled with 

respect to the first stratum (relative sampling rate less than one), the unweighted total can 

be better, but its performance is not uniform.  

 

 
 

Figure 1: RMSE x 10,000 of Total Y for 10,000 runs 

 

Figures 2 and 3 show the bias and variance of the estimates of the total Y. The bias of the 

weighted estimator is constant and does not depend on the sampling rate. There is an 

increase of the variance at high sampling rates, but this effect is the result of the small 

sample size in one stratum and one nonresponse adjustment cell. If we restrict the 

nonresponse adjustment cells to include a minimum of 35 respondents, we expect the 

contribution of the variance to the RMSE to be approximately constant. In contrast, for 

the unweighted estimator the bias is highly variable and is the main contributor to the 

RMSE. It is interesting that in these simulations, using the weighted estimator does not 

increase the variability of the estimator greatly, which is a common concern raised about 

weighting the rates.  
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Figure 2: Variance of Total Y for 10,000 runs 

 

 
 

Figure 3: Bias of Total Y for 10,000 runs 

 

This suggests to us that weighting the rates is important. We think it is desirable to use 

estimators where the bias is not highly dependent on how the sample is allocated. In most 

surveys, the sample is allocated to achieve a predetermined precision and not to reduce 

the bias of a particular estimator by oversampling or undersampling nonresponse 

adjustment cells.  

 

6.2 Estimators of Ratios 
Before examining the comparisons of ratios, we review the comparison of the means as 

presented in the LV paper. Figure 4 shows the RMSE of the weighted and unweighted 

means from the LV paper for the population                         and 

response propensity                         . These results confirm the 

findings in the LV paper that the unweighted estimator performs better than the weighted 

estimator for a relative sampling rate =2.25 (the only rate they used). Figure 4 shows this 

conclusion does not hold for other rates; if the second stratum is oversampled, we reach 

the opposite conclusion. This highlights a generic problem of making generalizations 

from simulations.  
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Figure 4: RMSE x 10,000 of Mean Y for 10,000 runs 

 

Figures 5 and 6 show the components of the RMSE for the estimates of the means. As 

shown in the table, the main component of the RMSE is the bias because both estimates 

have comparable variances independent of the sampling rate.  

 

 
 

Figure 5: Variance of Mean Y for 10,000 runs 

 

 
 

Figure 6: Bias of Mean Y for 10,000 runs 
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As we mentioned before, the LV mean comparisons are between two different types of 

estimators (one is a ratio and the other is not). We examine the performance of 

comparable ratio estimators. We created another variable Q that has the same distribution 

of Y and computed the ratio estimate of Q/Y. We note that this example is not realistic 

because the model fails in the same way on both variables of the ratio. In practice, it is 

unlikely to have homogeneous response propensity within the cells for different variables 

unless they are highly correlated.  

Figure 7 shows the RMSE of the ratio Q/Y. The figure shows that the reweighted ratio 

performs better when the relative sampling rate is greater than one, while it slightly 

underperforms when the rate is less than one.  

 

 
 

Figure 7: RMSE x 10,000 of Ratio Q/Y for 10,000 runs 

 

Figures 8 and 9 show the components of the RMSE of the estimators of the ratio Q/Y. 

Similar to the previous findings, the bias of the reweighted estimator when the model 

fails is constant and it does not depend on the sampling rate. Furthermore, the variance of 

the reweighted estimator is lower than the variance of the unweighted estimator. This is 

the opposite to the conclusion of the LV paper.  

 

 
 

Figure 8: Variance of Ratio Q/Y for 10,000 runs 
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Figure 9: Bias of Ratio Q/Y for 10,000 runs 

 

We simulated two domain means of Y. Choosing a domain of Y ensures that the 

estimators compared are ratio estimators. The domains are a random one half and one 

fourth of Y. The first domain was randomly selected from Y independently of the strata 

and nonresponse adjustment cell. The second domain was randomly selected from the 

first domain. Figures 10 and 11 show the RMSE of the domain means of Y when the 

domains are 25 percent and 50 percent.  

 

Figure 10 shows that the weighted and unweighted estimators for the 25 percent domain 

have the same performance for a relative sampling rate greater than one. The weighted 

estimator also performs better when the relative sampling rates are less than one. The 

situation is different for the mean of the 50 percent domain. For a relative sampling rate 

greater than one, the unweighted estimator performs better. As in the 25 percent domain, 

the weighted estimator performs better when the relative sampling rate is less than one. 

 

 
 

Figure 10: RMSE x 10,000 of Mean Domain Y (25%) for 10,000 runs 
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Figure 11: RMSE x 10,000 of Mean Domain Y (50%) for 10,000 runs 

 

7. Comments and Conclusions  
 

We believe these simulations help understand the difference between using a weighted 

and unweighted nonresponse adjustment factor in several ways that were not addressed in 

LV. The LV study did not include any situation where the model failed for all estimators 

(the ML model was always satisfied, so in our context, it only provides a measure of the 

deviation from the ideal).  

 

With respect to the findings, we observed that the bias (and consequently the RMSE) of 

the unweighted estimator was highly affected by the sampling rates, while the weighted 

estimator was not. In fact, the bias of the weighted estimators in the cases we explored 

was constant across sampling rates, while the bias of the unweighted estimator could be 

very large for some rates. The variances of the estimates using the weighted rates were 

nearly the same as those of the unweighted estimators, showing that using weights does 

not always increase the variance of the estimates substantially.  

 

Another important extension was to other types of estimators. LV considered only means, 

but our extension showed that some of their findings did not apply to totals and ratios. In 

fact, the findings for totals were very different. In this vein, we also compared means in a 

way that we believe is more typical in practice by treating both as ratio estimators.  

 

Our research is driven by the belief that bias is the main problem to be addressed by 

nonresponse adjustment. While weighting the rates does not eliminate bias if the model is 

wrong (we are not aware of claims that it should), we have seen that in our limited 

simulations the bias is constant when the rates are weighted. This implies the bias is not a 

function of the sample allocation, which we consider to be an important and reassuring 

finding. While there are situations where the unweighted estimator has a lower bias than 

the weighted, these situations are difficult to predict in practice and to this would make it 

difficult to take advantage of this better performance. We find the highly variable bias of 

the unweighted estimator troubling. 

 

Finally, as we noted above, generalizations based on simulations are always tentative 

because other conditions that are not simulated may give very different findings. Our 

findings are based on simulations so we plan to explore some of these findings 

analytically so that we can better predict when the results might hold more generally.  
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