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Abstract
The National Science Foundation’s Survey of Doctorate Recipients is conducted every two

or three years and collects detailed information on individuals receiving PhDs in science
and engineering in the U.S. and some others with PhDs from abroad in these areas. Survey
weights adjust for oversampling and nonresponse on a cross-sectional basis. A significant
portion of the sample (e.g., 60% on 3 or more surveys from 1993-2006) appears in multiple
survey years and can be linked across time. No longitudinal weight exists that would
enable estimation of statistical models or comparison of finite population characteristics
using data from multiple survey waves together. This paper explores calibration estimation
for construction of such a longitudinal weight. Three requirements are considered when
producing longitudinal weights. First, the weight needs to be calculable from existing data,
which means either the public use data sets or the restricted use versions that NSF releases
under strict licensing. Second, the weight needs to be useful for reproducing key cross-
sectional analyses. This is both a requirement for consistency and an attempt to produce
advantages in estimation via correlations. Third, the weight should be low in variability,
because high variability weights are associated with low precision in estimation. Choices of
initial weights and calibration targets are compared in a series of analyses.

Key Words: Calibration weighting, longitudinal study, panel study, raking, SESTAT,
survey sampling.

1. Introduction

The National Science Foundation’s Survey of Doctorate Recipients is conducted
every two or three years and collects detailed information on individuals receiving
PhDs in science and engineering in the U.S. and some others with PhDs from
abroad in these areas. Survey weights adjust for oversampling and nonresponse on
a cross-sectional basis. The survey is used as the basis for reports such as NSF (2008,
2011). Every survey year the target population is a little bit different because people
enter (e.g., new Ph.D. recipients in the U.S.) or leave (e.g., deaths) the population.
Numerous variables are included in the data set. Variables cover labor force status,
academic rank and tenure, salary, field and institution of degree and employment,
age, sex, race/ethnicity, marital status, spouse employment, whether children are at
home and their ages, U.S. citizenship, work responsibilities, management position,
professional memberships, reasons for taking a post doctoral position, and questions
about a career path job.

Survey weights adjust for oversampling and nonresponse on a cross-sectional
basis. That means that analysis using the survey data with the survey weights in
a given year is representative of a corresponding population. The survey weights
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are not designed explicitly for longitudinal analysis of data sampled in different
survey years. This fact does not mean, however, that no longitudinal analysis is
possible. Indeed, a significant portion of the sample (e.g., 60% on 3 or more surveys
from 1993-2006) appears in multiple survey years and can be linked across time.
Despite this fact, there are no longitudinal weights for the survey that would enable
estimation of statistical models or comparison of finite population characteristics
using data from multiple survey waves together.

1.1 Longitunidal analysis and the SDR

The type of analysis of change over time that can be accomplished with the Survey of
Doctorate Recipients is focused on cohorts defined by survey years. If one wants to
estimate rates of progression or factors associated with advancement in employment
within a field of study, then one can do so using a particular cohort or survey
year. For example, if one wants to estimate the probability of proceeding from
PhD in 1991-1992 to postdoc to tenured faculty member within ten years in the
biological, agricultural and environmental life sciences, one can examine the recent
PhD graduates in this area sampled in the 1993 survey who can be linked over time
in the 1995, 1997, 1999, 2001, and 2003 surveys. One then could look at the same
question for other years, such as the 1993-1994 PhD graduates appearing first in
the 1995 survey and linked through the 2006 survey.

A consequence of conducting cross-sectional analyses is that sample sizes are
more limited than they would be if longitudinal analysis was planned into the design.
For example, there could be graduates in from 1991-1992 who did not enter the
survey until a survey year after 1993, such as 1995. Individuals such as these
cannot be readily combined with the 1993 survey data, because their 1995 survey
weights are designed only for cross-sectional estimation.

Another limitation occurs when estimating statistical models of change over
time. Imagine estimating change in salaries over time (years 1991 to 2002, sur-
veys 1993 to 2003) by field of study and demographic characteristics, such as sex,
rank, Carnegie ranking of institution, and U.S. citizenship. Ideally one would use
all respondents from all survey years. What should one do with the cross-sectional
survey weights that each respondent has for each survey in which they participate?
If there were one longitudinal survey weight for each unique respondent, then com-
bining respondents from different survey years would be more readily doable.

1.2 Surveys designed for longitudinal analysis

Before proceeding to describe calibration weighting to create longitudinal survey
weights, it should be noted that some surveys directly plan for longitudinal, panel,
or time series analysis.

The American Community Survey (ACS; http://www.census.gov/acs/www/)
selects five years of household sample cases at once (U. S. Census Bureau 2009;
chapter 4). Within each county, the sample for five years is selected all together and
then split into five parts. Doing so produces consistent weights for combining sample
respondents together. This is particularly important for estimation of characteristics
in small places. The ACS is not longitudinal, however, because individuals are
included in only one survey year of data collection.

The Current Population Survey (CPS; http://www.bls.gov/cps/;
http://www.census.gov/cps/) is designed to measure the level of and changes in
employment, unemployment, and labor force participation. The CPS is longitudinal
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in that individuals are measured for four months initially and then for another four
months after an eight month break (U. S. Census Bureau 2006). Longitudinal
weights are discussed in chapter 10 (starting on page 10-14). These weights are
constructed for flows based on population controls from the U. S. Census Bureau.
As discussed below, such information is not available to researchers utilizing the
NSF SDR data.

There are many other surveys – longitudinal surveys and panel surveys – that
are designed to measure change over time. Several of these surveys plan survey
estimation and weighting with this goal in mind. Examples of these surveys in-
clude the Survey of Income and Program Participation (SIPP), the National Lon-
gitudinal Surveys (http://www.bls.gov/nls/), the Panel Study of Income Dynamics
(http://psidonline.isr.umich.edu/), the 2009 Panel Survey of Consumer Finances
(http://www.federalreserve.gov/pubs/oss/oss2/scfindex.html), and the Medical Ex-
penditure Panel Survey (http://www.meps.ahrq.gov/mepsweb/). it is beyond the
scope of this article to review the methodology utilized in these and other studies.

Surveys in the area of environmental monitoring are intended to enable estima-
tion over time. One development in this area is generalized least squares estimation
as in Breidt and Fuller (1999). Within each survey year, one could estimate the
outcome for a variable of interest conditional on certain covariate variables. For
each year, one then estimates variance based on sample and weights in a given year.
One would then estimate the covariance between estimates in pairs of years. There
is covariance that depends on the overlap of samples across time. An estimate of
change is then computed as a function of these totals. The variance of the change
estimate is then a function of the estimated variances and covariances. The USDA’s
National Resources Inventory is a survey that utilizes this methodology in estima-
tion. Panel surveys and surveys over time are considered by Duncan and Kalton
(1987), Fuller (1999), and McDonald (2003) and references therein. Comparison to
these and other survey designs will be considered at a later time.

1.3 Outline

This paper explores calibration estimation (Deville and Särndal 1992 and references
given below) for construction of longitudinal weights for cross-sectional sample sur-
veys. Section 2 discusses calibration and formation of longitudinal survey weights
from cross-sectional weights. Section 3 outlines a simulation study plan. Section 4
gives preliminary results. Section 5 discusses findings, limitations, and future work.
The paper ends with references and acknowledgments, which include a disclaimer.

2. Calibration for Longitudinal Weighting

2.1 Calibration Weighting

Calibration estimation and calibration weighting methods were described by Deville
and Särndal (1992). The connection to raking adjustment was demonstrated in
Deville, Särndal, and Sautory (1993). Reviews of the literature and methods for
calibration in sample surveys can be found in Kim and Park (2010) and Särndal
(2007). Calibration methods in survey sampling allow one to adjust survey weights
so that they are close to initial weights, such as the sampling design weights, but
satisfy certain constraints. The closeness of the weights is described by a distance
function. For example, if xk is a value for a variableX on subject k in the sample and

Section on Survey Research Methods – JSM 2011

1362



the total for variable X in the population is known to be tx, then a constraint could
be that the weighted total of the x-values in the sample equal tx:

∑
k∈s xkwk = tx.

Let {dk} be original survey (design) weights. Let tx =
∑

U xk is a known total
in the population with indices U ; xk can be a vector. The calibrated weights {wk}
are “close” to {dk} but satisfy a set of calibration equations:

∑
swkxk =

∑
U xk.

There are various ways to compute the weights, including in the R survey package
(Lumley 2011). Calibration weighting can match (published) control totals and
reduce mean squared error. A reduction in mean squared error might occur when
the x variable is sufficiently correlated with an outcome y variable.

Calibration can be implemented in a way to control the minimum and maximum
value of weights and to match one or more control totals. It is therefore a very
flexible methodology. Indeed, Zhang (2000) describes how calibration can produce
adjusted weights equivalent to those produced with post stratification.

In the context of nonresponse weighting, one can specify the desired post stratifi-
cation adjustments in terms of control totals for calibration weighting. For example,
the goal could be to have the sum of weights for respondents in a weighting class or
post stratification cell match the sum of weights of sampled units in that cell. One
might also want to place an upper bound on the largest weight in the cell. Then the
survey calibration algorithm provides a procedure for adjusting the current weights.
The Research Triangle Institute (RTI 2008) implements a general methodology that
enables this form of calibration. Inherent in the use of calibration, cell-based ad-
justment, and raking is the need to select variables and subgroups to define the
control targets. These methods will be more successful in removing non-response
bias if cells and control variables are related to probabilities of non-response and
to variables used for analyses. Mirel et al. (2010) used the RTI SUDAAN program
to compare weighting class and more general calibration adjustments for weights in
the NHANES (2003-2004).

In some survey settings, researchers have used calibration to adjust weights to
match estimated control totals. Estimated control totals have their own degrees of
uncertainty associated with them. Variance estimation with calibrated estimators
when the calibration is based on estimated totals receives further comment in the
discussion section below.

2.2 Longitudinal Calibration

The principle motivation for creating longitudinal weights is a desire to be able to
take multiple survey years together. Combining data from survey years increase
sample size versus a single cohort. Although the NSF SDR survey is large by most
standards, the number of individuals in certain discipline by rank by demographic
group combinations in a single survey year can be small. One complication with
combining data from different survey years is that each individual in each year has
survey weight for that year.

Calibration weights for estimation with longitudinal data in the National Long
Term Care Survey (NLTCS; http://www.nltcs.aas.duke.edu/) has been considered
by Ash (2005). Cross-sectional weights for this survey are computed so that weights
sum to population totals. This is an example of classical post stratification. When
the interest is the difference between totals at two time points, there are two sets
of population totals (earlier totals, later totals) that are available. Ash (2005)
uses calibration estimation to adjust weights for both sets of known total controls.
The author investigated one- and two-step calibration approaches, which differ in
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whether the various calibration totals are used simultaneously or one after another
in weight adjustment. The NLTCS uses repeated replications in variance estimation.

The interest in the current paper differs from the interest of Ash (2005) in a few
important ways. First, the goal here is to use several survey years together, not
only two. Second, the known population totals are not available; rather, estimated
totals can be produced in each survey year. Third, a broader set of estimands is
being considered; these are describe further below. Otherwise, the current paper
shares much of the same interest as the paper by Ash (2005).

Three requirements are considered when producing longitudinal weights. First,
the weight needs to be calculable from existing data, which means either the public
use data sets or the restricted use versions that NSF releases under strict licensing.
The exact population totals and the exact definition of post stratification cells are
not known to the researchers outside of the organization that produced the data.
Second, the weight needs to be useful for reproducing key cross-sectional analyses.
This is both a requirement for consistency and an attempt to produce advantages
in estimation via correlations. If a calibrated set of weights could not reliably
reproduce analyses of interest (not with exact correspondence necessarily but with
reasonable proximity in some metric), then users would be unlikely to utilize the new
weight set. Third, the weight should be low in variability, because high variability
weights are associated with low precision in estimation. The third requirement
potentially affects all weight adjustment procedures and applications. In the area
of nonresponse adjustment, fine adjustments to weights often have the potential to
remove more nonresponse bias than coarse adjustments, but the resulting weights
are often more variable, which can negatively affect the standard errors for some
estimators.

The process of calibrating cross-sectional weights to produce a set of longitudinal
weights for analysis of data from combined survey years can be divided into five
steps.

1. Selection of initial weights for each subject that appears in at least one survey
year.

2. Selection and computation/estimation of control targets from one or more
survey years.

3. Selection of a calibration method from the available options. Some calibration
methods require making choices such as minimum and maximum allowable
weight.

4. Computation of calibrated weights.

5. Evaluation of the calibrated weights in terms of analyses of interest. The
evaluation includes computation of point estimates as well as standard errors.

Section 3 presents the prototype scenario that is used in simulations and discusses
the steps listed above in this context.

3. Simulated population, simulation parameters, calibration options,
and estimands

3.1 Simulated population

Table 1 illustrates a prototype scenario for a cross-sectional survey. The populations
in years 1, 2, and 3 are U1, U2, and U3, respectively. Within each population is a
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Table 1: Prototype scenario for longitudinal weighting.

Year Year 1 Year 2 Year 3
Population U1 U2 U3
Domain d1 d2 d3
Variables X1, Y1 X2, Y2 X3, Y3
Sample s1 s2 s3

Table 2: Overlap of populations in prototype scenario for longitudinal weighting.
Simulation population sizes. Row numbers pertain to left portion only.

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3
Row U1 U2 U3 U1 U2 U3
1 x 1000 0 0
2 x x 1000 1000 0
3 x x x 6000 6000 6000
4 x x x 0 1000 1000
5 x 0 0 1000
6 x x
7 x N1 = 8000 N2 = 8000 N3 = 8000

domain or subpopulation of interest, dj ⊂ Uj , such as female doctorate recipients,
recent graduates, minority doctorate recipients, or graduates with a degree is a
specific field of study. Variables measured in the population can be numerous, but
for estimation and calibration work they will be divided into two sets in survey year
j: Xj are variables used as covariates or control variables, Yj are outcome variables
of interest to the study. Within each population, a sample is selected: sj ⊂ Uj in
survey year j.

The populations overlap as depicted in left portion of Table 2. The rows are
not intended to be proportional to population size. Rows 1-4 denote the population
in survey year 1. Rows 2-6 denote the population in survey year 2. Rows 3-4 and
6-7 denote the population in survey year 3. Some elements in the three populations
appear in only one survey year: row 1 in year 1, row 5 in year 2, and row 7 in year 3.
Other elements appear in two of the three populations: row 2 in years 1 and 2 and
row 6 in years 2 and 3. In some applications, such as labor force surveys, elements
could appear in years 1 and 3, but not in year 2. Such a scenario is not considered
in this work, but should fit within the general framework proposed below. Other
elements, represented by rows 3 and 4, exist in all three populations.

In the simulation, the population size in each year is taken to be N1 = N2 =
N3 = 8000. It is assumed that each year 1000 individuals enter and each year 1000
leave the population. The right portion of Table 2 gives population sizes illustrating
the sizes of overlaps across years. Note that the rows do not necessarily correspond
to rows in previous tables.

The sampling design for the Survey of Doctorate Recipients is described on
the National Science Foundation NCSES (2011) website. The prototype sampling
design is depicted in Table tab3. The rows are not intended to be proportional to
sample size. The sample in survey year 1 is s1 ⊂ U1, which is represented in rows
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Table 3: Prototype sampling design for prototype scenario for longitudinal weight-
ing. x means that the units were not in the population that year.

Row Year Year 1 Year 2 Year 3
Population U1 U2 U3

1 stratum 1 s1 x x
2 stratum 1 s1 s34
3 stratum 1 s1 s21 x
4 stratum 1 s1 s21 s31
5 stratum 2 x s22
6 stratum 2 x s22 s32
7 stratum 3 x x s33

1-4. The sample in survey year 2 is s2 = {s21, s22} ⊂ U2 and is represented in rows
3-6. Elements in rows 3 and 4 that were selected in s1 are included again in s2.
Together they are denoted s21 =⊂ s2. Other elements in U2 are selected for the
survey year 2 sample from elements in the population in U2 that were not in the
population in year U1. The subset s22 ⊂ s2 with s22 ⊂ U2 ∖ U1 is in rows 5 and
6. These elements correspond to new PhD’s in the Survey of Doctorate Recipients;
they received their degrees and entered the survey target population after the years
included in survey year 1.

The x’s in the table indicate that the population in the given column (survey
year) did not include the elements covered by the rows. For example, rows 5-7
represent elements that were not members of population U1, rows 1 and 7 were not
in population U2, and rows 1, 3, and 5 were not in population U3. Not depicted in
the table are members of the population there were not sampled. For example, the
elements not sampled in survey year 1 are U1 ∖ s1.

The sample in survey year 3 can be found in rows 2, 4, 6, and 7. Elements in
row 2 are selected from those that were selected in years 1 and 2 (s31 ⊂ s21 ⊂ s1).
Units in row 6 (s32) are selected from the elements that were new to the population
in survey year 2 and selected in s22 ⊂ s2. Units in row 7 (s33) are selected from
the new members of population U3. Additional units (row 2, s34) are selected from
U1

∩
U3 that were selected in year 1, but not in year 2.

The set s1 is sampled from stratum 1, which is U1. The set s22 is sampled
from stratum 2, which is U2 ∖ U1. The set s33 is sampled from stratum 3, which is
U3 ∖ (U1 ∪ U2). Note that s21 ⊂ s1 and s31 ⊂ s21 are taken from stratum 1, s32 is
taken from stratum 2 (U2 ∖ U1; s32 ⊂ U3

∩
U2 ∖ U1), and s34 is drawn from stratum

1 (U1; s34 ⊂ s1, s34 ∩ s31 = ∅, s34 ⊂ U1
∩
U3). Sampling rates for the simulation

will be determined within strata.
Table 4 presents cross-sectional weights that would be determined for each sur-

vey year. Weighting formulas can differ by strata. Each year a subject is included
in the sample it receives a weight. The final column of Table 4 illustrates the goal of
a composite or single weight for each subject included in one or more of the samples
in survey years 1, 2, and 3.

In the simulation, n1 = 600 subjects are randomly sampled (simple random
sampling without replacement) in year 1. In year 2, n21 = 400 are randomly
sampled from those in s1 and n22 = 200 are selected from the 1000 new members
of population U2. So n2 = 600 as well. In year 3, n31 = 300 are randomly sampled
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Table 4: Sample weights computed cross-sectionally within strata in prototype
scenario for longitudinal weighting. Weighting formulas can differ by strata. Final
column is the composite weight for three survey years together.

Year Year 1 Year 2 Year 3 Composite
Population U1 U2 U3 U

stratum 1 s1, w1 w
stratum 1 s1, w1 s34, w3 w
stratum 1 s1, w1 s21, w2 w
stratum 1 s1, w1 s21, w2 s31, w3 w
stratum 2 s22, w2 w
stratum 2 s22, w2 s32, w3 w
stratum 3 s33, w3 w

Table 5: Population simulation conditions. Individuals have their values randomly
generated independently.

Domain Z ∼ Bernoulli(1/4)
X1 ∼ N(97.5 + 10Z, 302) Y1 ∼ N(8000 + 10X1 + 600Z, 1402)
X2 ∼ N(X1 + 10Z, 302) Y2 ∼ N(9000 + 10X2 + 800Z, 1402)
X3 ∼ N(X2 + 10Z, 302) Y3 ∼ N(10000 + 10X3 + 1000Z, 1402)

from those in s21, n32 = 100 are randomly sampled from those in s22, n33 = 150 are
randomly sampled from the 1000 new members of population U3, and n34 = 50 are
selected from the 200 units selected originally in year 1, but not picked in year 2
(s34 ⊂ U3

∩
(s1 ∖ s21)). Table 6 illustrates the sample sizes in the simulation study.

Survey weights in the simulation are computed as the inverse of the probability of
selection within strata. That is, the weight is N/n where N is a relevant population
size and n is the sample size. Table 7 gives initial survey weights. The lower weights
among new additions to the populations in years 2 and 3 reflect oversampling.

It remains to give details of how the population variables are to be simulated. A
domain of interest will be determined by a variable Z with Z = 1 meaning that the
subject is a member of the domain and Z = 0 indicating non membership. Variable
Z is generated as a Bernoulli random variable with probability � = 0.25. Auxiliary
variables X1, X2, and X3 and outcome variables Y1, Y2, and Y3 are generated from
univariate normal distributions as given in Table 5.

Future work simulations could consider a number of modifications. Of interest
would be a smaller domain (� < 0.25), correlations between X’s, between Y ’s, and
between X’s and Y ’s that are weaker or stronger, and non normal data.

3.2 Calibration options

Step 1 in the calibration procedure is to choose initial weights. For initial weights,
four options are being considered: (1) Equal weighting (N/n = 10000/800) for
elements in s = s1 ∪ s22 ∪ s33. (2) The earliest available weight (w1 for s1, w2

for s22, w3 for s33). (3) The average of available weights for each case. (4) The
latest available weight (w3 for s3, w2 for s2 excluding s3, w1 for the rest). Step 2
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Table 6: Prototype sampling design for prototype scenario for longitudinal weight-
ing: sample sizes for simulation study. Samples in years 1 and 2 are listed multiple
times in order to illustrate the relationship to later years.

Year Year 1 Year 2 Year 3
Population U1 U2 U3

stratum 1 s1, n1=600 0 0
stratum 1 s1, n1=600 0 s34, n34=50
stratum 1 s1, n1=600 s21, n21=400 0
stratum 1 s1, n1=600 s21, n21=400 s31, n31=300
stratum 2 0 s22, n22=200 0
stratum 2 0 s22, n22=200 s32, n32=100
stratum 3 0 0 s33, n33=150

Total n1 = 600 n2 = 600 n3 = 600

Table 7: Prototype sampling design for prototype scenario for longitudinal weight-
ing: initial sample design weights for simulation study.

Year Year 1 Year 2 Year 3
Population U1 U2 U3

stratum 1 s1, w1 = 8000
600 = 13.3 0 0

stratum 1 s1, w1 = 8000
600 = 13.3 0 s34, w34 = 1000

50 = 20

stratum 1 s1, w1 = 8000
600 = 13.3 s21, w21 = 7000

400 = 17.5 0

stratum 1 s1, w1 = 8000
600 = 13.3 s21, w21 = 7000

400 = 17.5 s31, w31 = 6000
300 =20

stratum 2 0 s22, w22 = 1000
200 = 5 0

stratum 2 0 s22, w22 = 1000
200 = 5 s32, w32 = 1000

100 = 10

stratum 3 0 0 s33, w33 = 1000
150 = 6.7

Total of w1 = 8000 w2 = 8000 w3 = 8000

Weights
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in the process of calibrating cross-sectional weights to produce a set of longitudinal
weights for analysis of data from combined survey years is to identify targets for
calibration. Potential targets that could be used singly or in combination include:
(A) Population sizes N1, N2, N3. (B) X total estimates (t̂X1, t̂X2, t̂X3). (C) Domain
sizes (Nd1, Nd2, Nd3). (D) X total estimates in the domain (t̂X1d, t̂X2d, t̂X3d). In
the simulation, some combinations of calibration control totals are used. The sets
of control totals are (1) A, (2) A and B, (3) A and C, (4) A, B, and C, and (5)
A through D. Some are known values, such as population sizes, whereas others are
estimates themselves. Others, including second moments and interactions among
variables, could be possible.

A difference between this simulation and application to the actual NSF Survey
of Doctorate Recipients, or to any other survey for that matter, is that there could
potentially be several domains and auxiliary variables to consider. It is an open
question as to how many variables can or should be used in survey weight calibration.
In general, calibrating on many variables has the potential to increase variability
of resulting weights, which could dramatically increase standard errors for some
estimates.

Step 3 is to select a calibration method. Only two are being considered in this
work: raking and linear regression calibration. Both are implemented in the R
package survey, which addresses Step 4. Ash (2005) considered one-step or two-
step calibration. Here we consider calibration in a single step. A further option
that could be considered in later work is calibration after a logarithmic transforma-
tion of the weights. Such as transformation ensures that all weights are positive.
Calibration methods receive further comment in the discussion.

One of the requirements of the calibrated weights is that the the weight needs
to be useful for reproducing key cross-sectional analyses. This is given as both a
requirement for consistency and an attempt to produce advantages in estimation
via correlations. In addition, it is of interest to examine the impact of weighting
on a longitudinal analysis. Estimands and corresponding estimators considered for
evaluation are listed below. The last option that is listed below is discussed further
in the next section.

1. Means in year j: estimation using sample sj and new weights w, j = 1, 2, 3.
Comparison is made to estimation using sample sj and weights for sample
year j, wj .

2. Domain means in year j: estimation using sample sj ∩ dj and new weights
w, j = 1, 2, 3. Comparison is made to estimation using sample sj ∩ dj and
weights for sample year j, wj .

3. Change in means: estimation using cases sampled in both years.

4. Change in domain means: estimation using cases sampled in both years.

5. Linear mixed effects model estimate of slope in population U : estimation of
regression slope using single stage cluster sample.

3.3 A focal analysis and an associated question about modeling in finite
populations

What analysis would benefit from considering population U = U1 ∪ U2 ∪ U3? One
analysis that would clearly benefit from using subjects sampled in all three years
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would be a regression of Y on X over the three time periods. The composite
population sample should have larger sample size and more observations than any
one year sample.

If the data were generated from a longitudinal study without reference to a finite
population, one likely would use a linear mixed effects model with random effects for
individuals. Each individual could have up to three measurements over time. How
should such a modeling endeavor be presented in the context of a finite population
framework?

One possibility is to consider a generalized least squares estimation as in Breidt
and Fuller (1999). Within each stratum or subsample, one could estimate the
average salary in a given year conditional on certain variables, such as demographics
and field of degree. For each estimated average, one then estimates variance based
on sample and weights in a given year. One would then estimate the covariance
between estimates in pairs of years. An estimate of change is then computed as
a function of these totals. The variance of the change estimate is then a function
of the estimated variances and covariances. See also Duncan and Kalton (1987),
Fuller (1999), and McDonald (2003) and references therein. Future work will explore
recent references and this approach.

Another option would be to consider each subject to be a cluster and each
cluster to consist of measurements over time. One then could use a cluster analysis
variance formula with the svyglm function in the R survey package to estimate a
linear model with time and other variables as predictors. Is a linear mixed effects
growth model with random effect for subject really equivalent to a single stage
cluster sample with each subject being a cluster and the model including a time
predictor? In other words, how should one implement repeated measures or growth
curve models in a finite population survey context? Future work will examine the
correspondence and possible lack thereof between linear mixed effects growth models
and cluster sampling with a linear model with time covariates.

4. Simulation Results

4.1 Simulation Study Implementation

The simulation study was implemented as follows. The population, sample, weight-
ing, and variable details describe above were utilized. Conduct the following steps
b = 1, . . . , B = 1000 times:

1. Generate a population in years 1, 2, and 3 from the models given above.

2. Select a sample in years 1, 2 and 3 according to the stated sampling scheme.

3. Compute and estimate control totals.

4. For each combination of starting weights and groups of control totals, compute
calibration weights using raking. Raking cannot be used when methods A
through D are used together due to the interaction between domain size and
domain total.

5. For each combination of starting weights and groups of control totals, compute
calibration weights using linear regression calibration. All groups of controls
can be used with linear regression calibration.
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6. Estimate each estimand and its standard error using each set of calibrated
weights.

The results are summarized by computing the average of estimates, the standard
deviation of estimates, the average of estimated standard errors, the standard de-
viation of estimated standard deviations, and the percent of simulations in which a
confidence interval for the estimand covers the true value in the composite popula-
tion.

4.2 Summary of Results

Results are given in summary fashion only in this paper. Future presentations will
present numerical and graphical summaries as well as extensive tables. Estimation
in general seems to work well, but there is one dominant issue that is being ad-
dressed in ongoing work. In short, it appears that it is very important for variance
estimation to take into account the fact that some control totals are estimated from
survey data. Estimated control totals have their own uncertainty, which needs to be
propagated in analyses. Some literature on this topic is reviewed in the discussion
section below. It will make more sense to present more extensive results once meth-
ods for properly accounting for uncertainty in estimation with calibrated weights
is incorporated into analyses. Propagation of uncertainty in another scenario was
considered by Lahiri and Larsen (2005).

For the calibration methods (raking and linear regression) and the initial weight
options (the four listed above) considered, very similar results were obtained. That
is, estimates and estimated standard errors differed in a minor amount across the
method-weight combinations. There are two differences to mention in comparing
raking and linear regression. Raking does not produce negative weights, but it
was possible for linear regression calibration to produce negative weights. Negative
weights can be used in estimation, but in general they are not desirable. One cannot
interpret calibration weights in the same way as one tends to interpret survey design
weights or nonresponse adjusted weights; namely, as indicating the portion of the
population that the observation associated with the weight represents. Calibration
weights are supposed to be close to the initial weights but also satisfy the calibration
constraints. The raking option, however, could not handle the full combination of
options A-D; the R program ran into problems with the implied interaction among
the X and domain indicator variables. Negative weights and choices for weight
restrictions are mentioned in the discussion.

After calibration using data and targets from three years, estimates in a given
survey year using the new weights accurately reproduce estimates from a single
survey year using the original sampling weights for that year. Estimates of change
(1 versus 2, 1 versus 3, or 2 versus 3) also are preserved.

When population size and domain size are used as calibration targets, estimated
standard errors for yearly totals and change between years are approximately the
same as before. When calibration targets include the X-variable total or both the
overall and the domain X-variable totals, standard errors are estimated to be much
smaller (e.g., 60-80% of the value) than the original estimated standard errors. In
general smaller standard errors is desirable. In this case, however, coverage of the
known population values by confidence intervals based on the calibrated standard
error estimates is lower than the nominal 95% level (e.g., 70-85% coverage). A
reduction in coverage below the nominal level is not desirable. This drop in coverage
is discussed in the next section.
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For the focal longitudinal analysis, a mixed effects model was fit to the popula-
tion data. The fixed effects slope parameter estimates were compared to estimates
from the sample data, where estimation was implemented as described above in
Section 3.3. The model being estimated has a slope which is multiplied by year (1,
2, or 3). There is a clear benefit to using data from all three survey years instead of
data only from year one. Data for subjects collected first in survey year 2 have data
in years 2 and 3 or in year 2 only. If they have data in years 2 and 3, then their
data is informative about the slope. If they are collected only in one year, then
their data is informative about the intercept. The estimate of the slope is nearly
the same as with only year one data with a much lower standard error. There is
adequate confidence interval coverage when calibrating on population or domain
size. Calibration on X totals reduces standard error further and reduces coverage
a little bit.

5. Discussion

A critical question is, why was there a drop in confidence interval coverage with
calibration on X totals? The likely reason is that calibration is being implemented
to control weights to a survey estimate rather than to a population total. As men-
tioned, the survey estimates have their own uncertainty that should be propagated
into the standard errors. It is hypothesized that variance estimation with longitu-
dinally calibrated survey weights must take into account the fact that some of the
target control values are estimated from the separate surveys rather than based on
a known population value. Resampling methods have been considered by some au-
thors in similar contexts. There are replicate weights for the restricted use NSF SDR
data; the replicate weights must be requested separately from the usual restricted
use data.

Dever and Valliant (2010) cite examples of surveys in which researchers have
estimated control totals and then used post stratification. Dever and Valliant (2010)
then study the estimated-control post stratified estimatior (ECPE). The authors
present a linearization variance estimator and three delete-one jackknife variance
estimators. The results of their work support the need for development of theory
and methods in this area.

Elliott et al. (2010) combine samples from two sources in order to improve esti-
mation. In order to combine samples, the authors estimate weights that they refer
to as pseudo-weights. In order to incorporate uncertainty due to weight estimation,
the authors use a jackknife approach. For each jackknife sample, the authors re-
estimate the pseudo-weights. In their simulation, the jackknife approach reduces or
eliminates undercoverage of 95% confidence intervals.

Breidt and Opsomer (2008) study post stratification where the post strata are
formed based on an estimated classification function. They call this endogenous
post stratification (ESP). Under certain conditions including a fixed number of
parameters in the classification model, the authors demonstrate consistency of es-
timation and a central limit theorem. In simulations, they show scenarios in which
the estimated classification aspect of ESP estimation (EPSE) has a small effect.
The authors simulate mean squared errors (MSE) under three methods, but do not
discuss variance estimation or confidence interval coverage.

The calibration ideas were applied to a few variables for three years (1993, 1995,
and 1997) from the NSF SDR public use data files. Initial evidence suggests that
calibration can create useful longitudinal weights. Weights preserve means and
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group sizes by year without inflating standard errors much in these preliminary
applications. It is anticipated that as more control totals, especially estimated
control totals, are added to the calibration targets that methods to properly account
for variance will make a bigger difference from naive variance estimation methods.

Three further issues can be mentioned for consideration. First, although the
populations from different survey years are being combined, there are some under-
lying true population exclusions. For example, some individuals, such as recent
Ph.D. recipients, are not members of the population until they obtain their Ph.D.
Analyses might logically exclude some individuals for some relationships due to this
fact or due to their leaving the population.

Second, a more serious complication is variance estimation. The NSF SDR
utilizes Generalized Variance Functions (GVFs) for variance estimation (Jang 2001).
GVFs are functional relationships, which, in this case, are specific to the given
survey year (by gender and major field). A multi-year analysis will need to consider
what to do with the existence of multiple GVFs. An alternative is to use the NSF
SDR replicate weights. One then must determine whether it is necessary to calibrate
separately each set of replicate weights. This can be considered in the context of
variance estimation methodologies such as Dever and Valliant (2010). GVFs were
not an issue in the simulation.

Only two calibration methods were considered in this work: raking and linear
regression calibration. Both were implemented in a single step as opposed to two or
more steps (Ash 2005). It is sometimes possible with calibration to also restrict the
range of weights. With certain distance functions, calibration equations, and weight
restrictions, it is possible that there is no exact solution to the calibration problem.
Some programs then seek the solution that minimizes discrepancies from the target
controls. Presumably these solutions encounter one or more of the restrictions on
weights. Another option that could be considered in later work is calibration after a
logarithmic transformation of the weights. Such as transformation is used to ensure
all positive weights. It is possible to place bounds on the weights after log trans-
formation as well. Methods for choosing a distance function, a transformation, and
weight bounds need to be developed in general and in the problem of longitudinal
weighting in particular. Some distance functions and weight bounds were consid-
ered in Deville and Särndal’s (1992) paper. The Research Triangle Institute (RTI
2008) implements a general methodology that enables this form of calibration. Of
course, inherent in the use of calibration is the challenge of selecting variables and
subgroups to define the control targets.
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