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Abstract 
In survey sampling, a sample unit`s study variables are expanded to population totals by 

probability design based (DB) or model based (MB) expansions that implicitly treat a 

unit`s study variables as totals over entities called atoms contained in a unit. Expansions 

would make little sense if applied to unit statistics other than atom totals, for example, 

industry surveys where units are businesses, atoms are employees, and unit study 

variables are establishment totals for hours, wages, and number of workers. Other 

examples are household, mail, and ecological surveys. Woodruff (2010, 2009), derived 

Pre-sampling Model Based Inference from this atom structure, a structure that depends 

on probability sampling of population units and of atoms that comprise each unit. It 

provides estimates that retain the best properties of both MB and DB inference and that 

eliminate the main shortcomings of each. The result can be order-of-magnitude error 

reduction. Sampling error under repeated sampling from stratified cluster designs is the 

basis for comparison of the Combined Ratio Estimator and the Pre-sampling Model 

Based Estimator.  Formulae for sampling errors are derived and analyzed. 

 

Key Words: Model Based Inference, Design Based Inference, Pre-sampling Inference 

 

 

1. Introduction 

 
Sampling inference should be based on randomization, should be multivariate since most 

surveys collect data on more than one study variable, should be robust against common 

difficulties in sampling applications and seek to minimize or avoid post sampling 

adjustments like outlier and non-response corrections.  Model conjecture based on sample 

data or historical data is another potential source of error that should be eliminated or at 

least minimized.  These are the goals of Pre-Sampling Model Based Inference (PSMB), a 

methodology that was partially developed in several papers, Woodruff (2007, 2008, 

2009, 2010).   

 

PSMB models are not conjectured from sample data or historical data but rather derived 

deductively from stochastic structure found in many populations.  This structure imposes 

a model on study variables that is a direct consequence of randomization and this model 

in turn provides access to the powerful theorems on Best Linear Unbiased Estimation. 

The mathematics supporting this methodology is initiated in this paper.  

 

PSMB procedures expand sampling theory from randomized sample selection to both 

randomized sample selection and randomized unit synthesis.  By doing so, it provides 

insights to the interaction between the sample design and the stochastic properties of the 

study variables being measured by the sample survey.  It also provides estimates of 

population totals that are often far closer to the mark than commonly used Design Based 

estimates.   
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PSMB combines the best features of both Design Based inference and Model Based 

inference while avoiding their main shortcomings. In this paper, estimation error is 

defined and analyzed with respect to repeated sampling under stratified cluster sampling 

designs. The repeated sampling variance of the BLUE derived under Pre-sampling 

models can be orders of magnitude smaller than the repeated sampling variance of 

common design based alternatives.  Repeated sampling variance expressions for several 

PSMB estimators and the standard Design Based estimators: Horwitz-Thompson, 

Combined Ratio Estimator, and Separate Ratio Estimator are derived within the expanded 

context of both randomized unit selection and randomized unit synthesis. 

 

In survey sampling, a sample unit`s study variables are expanded to population totals. 

These expansions implicitly treat a unit`s study variables as totals over entities contained 

in each population unit. These entities are called “atoms” in PSMB theory.  Neither 

Model Based nor Design Based expansions make much sense if applied to unit study 

variables other than these atom totals.   

 

For example, in mail surveys the sampling frame of population units consists of mail 

containers.  The USPS samples these containers to estimate total weight, postage, pieces 

etc. by mail flow (e.g. all mail of a given class coming from France to New York by air in 

February).  The atoms are the mail pieces within each container and the unit (container) 

study variables are the number of pieces it contains and its totals over these pieces of 

weight and postage.  These unit totals are expanded to the population to provide estimates 

of population totals for these items. Woodruff (2010, 2009), derived PSMB Inference 

from this atom structure within population units, a structure that applies the randomized 

assignment of atoms to units in the population or a close approximation to randomized 

assignment.  

 

The atom structure within the population units also helps identify sample design 

problems that can be avoided or at least reduced by looking at sample design through the 

lens of the theorems below.  They highlight designs to avoid in Design Based inference 

and characteristics of population study variables that particularly aggravate these design 

problems.  They make explicit the characteristics of population study variables that are 

implicitly assumed (and unstated) in most sampling texts. The theorems below deal with 

univariate data structures and are an initial effort to explain mathematically the 

simulation results contained in previous papers (referenced above) which provide mostly 

multivariate results.   

 

This paper makes a modest beginning in expanding sampling theory from randomized 

sample selection to both randomized sample selection and randomized unit synthesis.  

These techniques express sampling error in terms of both the sample design and the 

stochastic structure of the study variables. This leads to improved inference by exposing 

situations where a particular sample design can be inefficient and suggests ways to 

improve inference. 

 

2. Structures, Techniques, and Theorems  

 

2.1 The Atom Structure for Population Units                 

A two component Atom Population Model (APM) is used to describe atom study 

variables and through them, the unit study variables.  Let  denote the value of the 

study variable for atom l of unit j in cluster i. Since there are two quite different random 
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processes considered here, a subscript A will distinguish expectation and variance with 

respect to the Atom Population Model (APM) from expectation and variance with respect 

to the sample design given in Section 2.2 below. 

  

Definition 2.1.1  The notation   means that the expected value of  with 

respect to the APM, denoted  , is  and its variance, denoted   , is .   

 

The atom population model (APM) is given by (2.1.1) and (2.1.2):  

 

The  are iid, , and their support is positive.    (2.1.1)  

 

The number of atoms in a unit is also a random variable and this number is denoted  

for unit j in cluster i.  

  

The  are iid,   , and the support of the  is contained in the positive 

integers.              (2.1.2) 

 

The unit Y-variable for population unit j in cluster i is:    .  (2.1.3) 

From this APM, the mean and variance of   are: 

 

 and   or  , with the 

  independent for all i and j.  

  

Conditional on the number of atoms in a unit, the following unit population model is a 

direct consequence of (2.1.1): 

 

  where  and the  are independent.              (2.1.4)  

                                           

The APM (2.1.1) presumes little about the set of atoms  - stochastic independence 

and the existence of their mean,  and variance, . This structure is found in many 

populations and although minimal, this APM allows great unit-to-unit variation in unit 

study variables according to the number of atoms in a unit.  This model is generalized in 

Woodruff (2009, 2010) to several atom types within each unit which permits yet greater 

unit heterogeneity according the distribution of the different atoms types within a unit. 

The APM imposes a population model at the unit level that can be complex enough to 

substantially capture unit behaviour via these minimal APM assumptions.  Model 

conjecture and potential model failure are lesser concerns.  

 

 [from (2.3.2)] is the Best Linear Unbiased Estimator (BLUE) under model (2.1.4). 

Since (2.1.4) holds for all study variables (each with its own unique constants ) 

it follows immediately that if   is another study variable that is also an auxiliary 

variable (population total of the  known), then there exist constants  such 

that: 

 

  where  and the  are independent.          (2.1.5) 
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In fact,   and  where  is the  in (2.1.1) for 

the Y-variate,  is the  for the X-variate, and  is their atom level covariance (See 

Section 3).  Since all study variables are related to the  by (2.1.4) with their own 

particular constants, , all study variables are related to one another by (2.1.5) with 

their own unique constants, , for each different pair.  Thus, in particular, all 

study variables are related to the auxiliary variable, X, by (2.1.5) and a PSMB BLUE is 

an immediate consequence.   

 

Given (2.1.5), this PSMB BLUE for the population total is  (3.1.1), the estimator 

available when the  are not auxiliary variables (their population total is unknown) 

but the  are auxiliary variables. This estimator was used by the US Postal Service to 

estimate mail volumes (units were mail containers and atoms were their contents, mail 

pieces) and by the Bureau of Labor Statistics to estimate employment totals (units were 

business establishments and atoms were their employees).  Both these agencies derived 

this estimator from the model (2.1.5) which was conjectured by data mining.  The APM 

is an alternative to these model conjectures but with substantially less conjecture from 

potentially misleading historical or sample data.  

 

2.2 Sample Design and Sample Design Parameters                                                                                                

The population consists of N units partitioned into K clusters (each unit is in one and only 

one cluster).  Let  be the set of units in cluster i and let  be the set of all  the N units 

in the population so that   . 

 

Let S denote an SRSWOR (simple random sample without replacement) of size k from 

the K clusters.   

 

Let  denote the number of units in , and  be an SRSWOR of size  from the   

units in .   

 

2.3 Estimators and their Sampling Errors                                                                                  

The Horwitz-Thompson estimator for the population total of the  under the design in 

Section 2.2 is denoted  and is: 

 

=         (2.3.1) 

Let A=    , the population`s total number of atoms and = , 

the total number of atoms in the sample. 

 

The Pre-Sampling Model Based estimator (PSMB) for the finite population total of the 

study variables is  where  is the BLUE for  under (2.1.1) and (2.1.2).  Denote this 

Pre-Sampling Model Based estimator , then 

 

 =       where = .    (2.3.2)  
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 weights all sample atom data,  equally with the weight,  .The expectation of  

under repeated sampling from the cluster sample design is: 

  . 

Definition 2.3.1  Expectation, , without subscript and variance, , without a 

subscript denote expectation and variance with respect to repeated sampling under the 

sample design in Section 2.2. 

   

Mean squares that occur in the expressions for sampling variance derived under the 

design in Section 2.2 are approximated with their model expectations under (2.1.1) and 

(2.1.2).  These expectations seem appropriate approximations for large cluster sizes since 

the mean squares converge to their expected values as the cluster sizes increase [Law of 

Large Numbers (LLN)].  

 

By the Taylor Series linear approximation of the ratio,  , around the expected values of 

numerator and denominator, the variance of this ratio can be approximated as: 

 

   = .   

Let  ,  (the approximation    is used below in the estimation 

of mean squares).  Then   

and writing this as the sum of the expected value of the conditional variance given the 

sample outcome S and the variance of the expected value likewise given S, 

 

=  + 

 

=    

 

where   ,  and    . 

 

Var( )=Var( )=  = 

 

  ). 

 

Similarly (found in most sampling texts) the variance of the Horwitz-Thompson 

estimator under the clustered design in Section 2.2 is: 

 

Section on Survey Research Methods – JSM 2011

764



Var( )= 

+  

 

where    and . 

Let   ,  =  ,  ,     , 

 

 , and   =   

 

then writing Var( ) and Var( ) in terms of these  and  ,  

 

Var( ) =   (2.3.3) 

Var( )  =       (2.3.4) 

 

Var( ) and Var( ) each consist of two parts, one part is sample design components 

(number of clusters, cluster sizes, number of sample clusters, and cluster sample sizes) 

and the other part is means squares (the ).  The Law of Large Numbers 

(LLN) implies that the mean square terms converge to their expectations under the APM 

in section 2.1 as cluster sizes increase.  This suggests these mean square terms can be 

approximated with their expectations under the APM (2.1.1) and (2.1.2).  These APM 

expectations and approximations are as follows: 

 

   , from: where   is defined in Section 2.1. 

 

  ,  from  , 

 

   ,  from    ,  

 

   from 

  .  

 

Then Var( ) and Var( ) with respect to repeated sampling can be approximated: 

 

       where 

 

 and        (2.3.5) 

Note:  is the average of the cluster sample sizes assigned to each and every cluster 

(whether selected or not).   

 

Var( )       (2.3.6) 
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where   ,    ,  , and M  

. 

  , the expected sample size in units where expectation is with respect to 

repeated sampling under the cluster design in Section 2.2.  When the cluster sample sizes 

in units are proportional to the cluster sizes in units, 

, then: 

 

.  

 

In particular, the condition  implies the design is self-weighting 

and under a self weighting design: 

 

    (2.3.7) 

   

 is the expected sample size in atoms, a number that can be in the hundreds, 

thousands, or greater.  Thus if  or  are not zero or near zero, this ratio can be quite 

large.  Simulation results in Woodruff (2009), show the ratio,  , can easily be in 

the hundreds or greater.   

 

When all the  are identical, all the  are identical, and all the  are identical, 

then  =  and when these conditions are inserted into (2.3.5) and (2.3.6), 

.  

 

Substituting the model expectations under (2.1.1) and (2.1.2) of ,  ,   ,  and  

in (2.3.5) and (2.3.6) expresses repeated sampling error in terms of both sample design 

parameters and stochastic properties of the study variable(s) under the APM and helps 

determine when a sample design may be problematic for a particular study variable.  

 

Inequalities relating  and  need the following lemmas.  Let  be a 

proposed total sample size in units determined by administrative considerations.  The 

expected total sample size under the design 2.2 is  and thus the reasonable constraint 

is that  and this is used in the lemmas below. 

 

Lemma 2.1 For a fixed set of positive integers , the set of positive integers 

 that minimizes  subject to the constraint that , is   

  and the value of  at these  is  .  

 

Proof:  Use the method of Lagrange multipliers to solve the system of K+1 linear 

equations for the : 

   for  and  
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where . 

The solution is as stated in the Lemma 2.1.   Q.E.D. 

Lemma 2.2 For a fixed set of positive integers , the set of positive integers 

 that minimizes  subject to the constraint  is   

  and the value of  at these  is  . 

 

Proof: Similar to Lemma 2.1 proof.  Q.E.D. 

 

Theorem 2.3      

under the cluster design described in Section 2.2 and where .  

 

Proof:  From (2.3.6) 

      

and by Lemma 2.2,  so that , 

 

  

      (2.3.8) 

 

 
 

and by Lemma 2.1,   so that 

 

             (2.3.9) 

 

Combining these two inequalities, (2.3.8) and (2.3.9): 

 

     (2.3.10) 

Q.E.D. 

 

Theorem 2.1 states that , a purely model based estimator, has considerably smaller 

repeated sampling variance than the Horwitz-Thompson estimator. This proof also 

provides a lower bound for the difference between  and , a 

difference that can apparently be quite large as observed in numerous simulations and by 

inspection of:  

 

 . 
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The proof of Theorem 2.3 implies that (2.3.7),   which was 

derived under a self-weighting design, is true in general for all designs given by Section 

2.2.  

(2.3.10) clarifies the roll of cluster size variation in the variance of the Horwitz-

Thompson estimator ( ).  When  increases, the variance of  increases while 

 is unaffected.  This situation occurs in mail sampling where cluster sizes are 

unknown in advance, highly variable, and cluster sample sizes are based on available 

resources which are roughly constant.   

   

In Theorem 2.3, unit atom counts are used as auxiliary variables.  These will seldom be 

available for units not in the sample and therefore seldom available as auxiliary variables.  

This still makes a useful introduction to the sampling properties of the  compared to 

design based alternatives and possibly provides a more appropriate definition of design 

effect.   

 

 will next be compared to the ratio of two Horwitz-Thomson estimators using the A-

variate as auxiliary variable.  Denote and define this estimator as: 

 

 ,         (2.3.11) 

 

where = ,     =       and A=  . 

 

Approximating  with a Taylor series about the expected values (under repeated 

sampling) of numerator and denominator, the variance of  is approximately: 

 

   

 

where  ,   ,      

  ,   and     =    where   

and  =  . 

 

As above, these quantities can be approximated with their expectations under (2.1), and 

(2.2) : R  , from .   , from  , and 

  , from .  

 

Then: 

    and      (2.3.12) 
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   (2.3.13) 

Since the last two terms in (2.3.13) are positive, the variance of  is greater than the 

variance of    and (2.3.13) proves the following theorem.  

Theorem 2.4   

under the cluster design in Section 2.2 and the APM in Section 2.1. 

 

    under a self-weighting design & in general. (2.3.14) 

 

The  are cluster totals of study variables and to the degree that these totals very from 

cluster to cluster, the variance of  increases.  The analogous term for the  is the 

variance of the cluster means of the study variable which tend to be relatively stable 

(compared to cluster totals). This explains the increase in repeated sampling variance of 

  compared to  as cluster size variability increases; more on this is found in 

Woodruff (2010, 2009, and 2008).    

 

3. More Than One Study Variable 

 

3.1 Horwitz-Thompson Ratio Estimator                                                                

Consider the ratio estimator based on a more realistic auxiliary variable, a study variable 

that is not a unit`s atom count, but it`s atom sum of another study variable, X.   Let  

be the value of this study variable for atom l of unit j in cluster i, just as , was defined.   

 

Independence of  and  is no longer an appropriate assumption and a multivariate 

APM is more appropriate.   

 

In what follows, the notation    means the expectation and covariance matrix 

with respect to the APM of the vector valued random variable   are  and B 

respectively.  Then let: 

 

    and  the  are iid for all i, j, and l.  

 

Defining the  and  as the  are given by (2.1.3) it follows that 

 

  & these are iid for all i & j. 

 

Letting  ,  

 

  , for all i and j.  
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  &  

. 

Thus it follows immediately that, 

 

  and this implies, 

 

  

 

where  

 

From the above,  

 

  which implies that  

 

  and  

 

  where   

 

The Horwitz-Thompson Estimator for the population total of the X-variate, its sampling 

variance, and its covariance with the Horwitz-Thompson Estimator for the  Y-variate are: 

 

=  

 

Var( ) . 

 

. 

 

 ,  ,  , and  are defined analogously to  ,  ,  , and  

respectively. The APM expectations that provide the APM approximations to  ,  , 

 , and  are: 

 

 

 
  

  

 

Similarly for the ratio estimator  ,  
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 where   

the population total for the auxiliary variable X. 

 

Next consider a simple un-weighted ratio estimator:     .    (3.1.1)   

This is the BLUE under (2.1.5). 

 

  where  and 

the ratio: 

 

     by Lemma 

2.1 and Lemma 2.2. 

 

This proves the following theorem. 

 

Theorem 2.5   Under the cluster sample design considered in this paper, 

 . 

 

In case the cluster sample sizes are constant, say , then the 

ratio:   .  Thus when the cluster sizes vary a great deal and cluster 

sample sizes are nearly constant, the un-weighted ratio estimator, , should replace the 

HT-weighted ratio estimator (this situation was encountered with USPS mail surveys) 

where  ranged from 1 to 5 and   was used in place of  .   In that case, it was 

justified by a model conjectured from historical data – a second route to the PSMB 

BLUE, . 

 

3.2 Stratification and the Combined Ratio Estimator                                             

Finally consider the Combined Ratio Estimator, Cochran (1977), for the population total 

of the Y-variate where there are H strata.  Let h be the stratum subscript  and 

within each stratum let there be a unique APM with APM parameters subscripted by h. 

 

Let these APM parameters be denoted  analogous to the 

 in Section 3.1.  Let , ,  ,  , , and  be the stratum 

h sampling parameters defined exactly as are  in Section 2.2 for 

an un-stratified population. 

 

The population total of the Y-variate is  where  and 

similarly for . 
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Let   be the Horwitz-Thompson estimator for the stratum h total of the Y-variate, 

. Then . The Combined Ratio Estimator is: 

 

. 

 

By approximating  with a plane passing through the expected values of numerator 

and denominator, the variance of  can be approximated as: 

 where   and  . 

Let .   for all h if and only if all stratum 

ratios  are identical.  Let   ,  , 

and   then from (2.3.6). 

 
 

When the  are not all identical then  for at least some h and the 

variance of  does not reduce to sums of  but rather to sums of  

.  In particular, 

  contains the square of the mean number of atoms per unit in 

stratum h so unless  is vanishingly small the variance of the combined ratio estimator 

will be quite large.  This result was found in Woodruff (2009) by a more tortuous route.  

It apparently implies that in many sampling problems where the APMs described in this 

paper apply, one should use a Combined Ratio Estimator only when all stratum ratios are 

nearly identical, otherwise the separate ratio estimator is better.  

 

3.3 Summary                                                                                                        

The sampling variances under the cluster sampling design and the APM described above 

of the seven estimators considered in this paper are: 

 

1)   

 

2)   

 

3)  Var( )     
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4)  

 

5)  

    

 

6)   

 

 

7)       where        

and  is the separate ratio estimator,   . 

 
These formulae can be used to estimate variance via estimation of the APM 
parameters from the sample atoms – the number of sample atoms can be quite large 
even when sample size in units is modest.  This is an alternative to the variance 
estimation methodology described in Woodruff (2009).    
  

4. Conclusions 

 

This paper provides some mathematical foundation for Pre-sampling Model Based 

Inference where repeated sampling error under stratified cluster designs is the criterion 

for comparison.  Previous papers, Woodruff (2010,2009,2008,2007) relied on simulation 

studies to compare repeated sampling error.  The mathematics derived in this paper 

provides a more general foundation for PSMB and provides explanation for the 

simulation results in those earlier papers.  

  

The theorems presented above highlight situations (sample designs and study variables) 

where design based inference should be avoided. They do this by expressing sampling 

error in terms of both sample design parameters and APM parameters (the stochastic 

structure the study variables inherit from the APM).  

 

The goals of PSMB inference were stated in the Introduction`s first paragraph. Sampling 

inference should be based on the impartiality of randomization, it should be multivariate 

(as are most sample surveys), and it should avoid (or at least minimize) well intentioned 

but opinioned tinkering (outlier adjustment and model conjecture). To accomplish these 

goals, it should provide a population model imposed by randomization, it should avoid a 

model conjectured from sample data or historical population data, it should be structured 

for application of theorems about Best Linear Unbiased Estimation under an imposed 

population model, and provide estimates that are robust against sample design 

inefficiencies, non-response, and outliers.   
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Pre-sampling Model Based Inference is motivated by these goals and developed to 

exploit data structures found in many populations. Expansion estimation, whether Model 

Based or Design Based, implicitly assumes the atom structure that is made explicit 

through the APMs in Section 2.1. This atom structure appears to be a valid description of 

many types of population units – containers of mail, buckets of water draw from a 

stream, fields of crops on a farm, business establishments. If the context in which the 

contents of these containers, buckets, or fields is such that their randomized synthesis is a 

reasonable description, then PSMB inference provides a viable alternative to Model 

Based and Design Based Inference. This is particularly the case when design 

inefficiencies magnify the repeated sampling error of Design Based estimates and reliable 

models are not available.    

  

The theorems in this paper require further generalization to cases of several auxiliary 

variables and several atom types as studied in Woodruff (2009, 2010).  Although unit 

study variables cannot be considered iid, since each unit has a different mix of atom 

types, the individual atom study variables may well be approximated as such and the 

multivariate version of PSMB in Woodruff (2009, 2010) applied. This paper and those 

referenced above suggest that probability sampling theory can be usefully expanded from 

randomized unit selection to both randomized unit selection and randomized unit 

synthesis.  Continuing along this path, probability sampling theory can be enhanced by 

paralleling and expanding upon subjects found in the standard sampling texts, Cochran 

(1977), using methodologies initiated here.  
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