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Abstract 

The Representativity Indicators (or R-indicators) are statistics designed to supplement the 

traditional response rate when evaluating the potential for nonresponse bias from a 

survey. The response rate provides information on the amount of nonresponse in a survey 

and the R-indicators are designed to measure the similarity between respondents and the 

original sample or population. In this paper, the estimation of the R-indicator is discussed 

using a standard Logistic Model and using a Generalized Exponential Model (GEM) to 

estimate response propensity. The GEM is used to compute weight adjustments, such as 

nonresponse adjustment factors in SUDAAN Release 10. The linearized variance 

estimate of the R-indicator is presented as well as several related statistics including the 

population variance and standard deviation of the response propensity as well as 

correlation between response propensity and other study variables of interest. The 

variance estimates will account for both the complex design and the model used to 

estimate response propensity. 

Keywords:  Response Propensity, R-indicator, Survey Quality, Weight Adjustment 

1.  Introduction 

Nonresponse bias associated with an estimate can be expressed as a function of two 

parameters, the response rate and the difference between the respondents and 

nonrespondents [see for example, (Bose, 2001) or (Biemer and Lyberg, 2003)]. 

Mathematically, this can be expressed as: 

    nrrrnrrrr YYYYYYYyBias  )1()1()(   (1.1) 

Where   is the response rate, Y  is the mean over the entire population, rY  is the mean 

over respondents and nrY  is the mean over nonrespondents. So Equation (1.1) suggests 

the bias will increase as the response rate decreases and as the “similarity” between the 

respondents and nonrespondents decreases with respect to some characteristic iy  for each 

population unit i. 

Given equation (1.1), to the extent possible survey researchers are interested in 

monitoring and measuring the two main components of nonresponse bias both during 

data collection and at its conclusion. Specifically, researchers will look at: 

 Response Rates. Both weighted and unweighted response rates are typically examined. 

Survey researchers will often compared these rates between surveys that are 

methodologically similar and between groups within a survey to identify any notable 

and statistically significant differences. 

 Difference in an Estimate Between Respondents and Nonrespondents. This can be 

more difficult to measure because, by definition, a researcher will not know the value 

of an estimate for the nonrespondents, i.e. the nrY . In some cases, additional studies are 

done such as a nonresponse follow-up study in order to estimate the nrY . In other cases, 
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researchers might identify variables that are correlated with 
i

y  and are known for both 

respondents and nonrespondents in order to evaluate the potential difference  nrr YY  . 

Equation (1.1) also illustrates another important point when evaluating the potential for 

nonresponse bias in an estimate. Namely, measuring response rates only is not sufficient 

to draw conclusions about the potential for nonresponse bias. For example, a larger 

nonresponse bias can exist in an estimate in the presence of a higher response rate – this 

will occur when the difference between the rY  and the nrY  is large. 

In the last few years, some survey researchers have begun looking at a set of statistics to 

indirectly measure nonresponse bias in estimates produced from a respondent sample 

prior to making any correction for the nonresponse, i.e. prior to adjusting the respondent 

data using either imputation or some sort of nonresponse adjustment factor applied to the 

sample weight. These are called Representativity Indicators, or R-indicators for short. 

See for example, (Schouten and Cobben, 2007), (Schuten, Cobben and Bethlehem, 2009); 

(Skinner, Shlomo, Schouten, Zang, Bethlehem, 2009) and (Cobben, Schouten, 2007). The 

R-indicators provide a measure of how representative the respondents are compared to 

the sample or population from which they were drawn. 

One of the more common R-indicators is one proposed by Schouten and Cobben (2007) 

and is defined as:  
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This R-indicator is a function of the standard deviation of the response propensities ( S ) 

associated with each unit of the population i. It is fairly straightforward to show that R is 

bounded by 0 and 1, similar to a response rate. Furthermore, note that: 

 A smaller value of R will result when the standard deviation of the response propensity 

is large. A higher standard deviation is an indication of a greater degree of variability in 

response propensity and an indication that a respondent sample is less likely to be 

“representative” of the population or sample from which it was drawn before any 

nonresponse adjustment is applied. When a respondent sample is less likely to be 

representative of the population or sample from which it was drawn one would expect 

the difference nrr YY   will likely be greater. Clearly, however, this is not always true.  

 It follows then that large values of R result when the standard deviation of the response 

propensity is small. A smaller standard deviation means the response propensities tend 

to be more similar and therefore a sample will likely be more “representative” of a 

population. And again, intuitively if the respondent sample is more representative of a 

population than one would expect the difference nrr YY   to be smaller. 

The R-indicator was proposed by Schouten and Cobben as a measure of deviation from 

what they refer to as strong representativity. They indicate an R-indicator value of 1 

would indicate strong representativity and a value of 0 indicates the maximum deviation 

from strong representativity. Here, strong representativity is defined as: 

   ]1|1Pr[ iii sr   for all i in the population. (1.3) 

Where 
i

r  is a 0/1 indicator for response and 
i

s  is a 0/1 indicator for being sampled.  
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The Schouten and Cobben (2007) paper further discusses how this R-indicator is related 

to the maximum absolute bias of an estimate. The paper notes that the absolute bias of 

any estimate is bounded by a function of the R-indicator as follows: 
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The inequality in equation (1.4) is due to an approximation by (Bethlehem, 1988). In 

Equation (1.4), the HTŷ  is the Horvitz-Thompson estimator of the mean of some variable 

iy  computed among respondents only and yS  is the standard deviation of the iy ’s. 

In practice, the response propensities for each unit i in the population are not known. 

Therefore, the R-indicator defined in Equation (1.2) is estimated from the sample by the 

following: 
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Where wi is the sample design weight associated with unit i. In this discussion we 

assumed the response propensities i̂  are estimated using some model (e.g. a Logistic 

Model) as )ˆ,~(ˆ  ii xf  where ix~  is a row vector of explanatory variables and ̂  is a 

column vector of the estimated model parameters. 

In this paper, the discussion of the R-indicator and several related statistics are addressed. 

Specifically, this paper will present a discussion of: 

 The Linearized Variance Estimator for R̂ . This is discussed in Section 3. The 

variance estimator includes both the contribution of the sample design to the variance 

as well as the variance associated with estimating the model parameters.  

 Alternate Statistics Similar to R̂  and Their Linearized Variance Estimators. 

Using the same underlying ideas of the R-indicator, a few additional statistics are 

proposed that would be more appropriate to examine when computing weight 

adjustments (e.g. nonresponse weight adjustments). These are discussed in Section 4. 

These include the simple standard deviation of the estimated response propensity and 

the relative standard deviation. 

 Correlations, Partial Correlations and Semi-Partial Correlations and Their 

Linearize Variance Estimators. Another method of examining the relationship 

between response propensity and a particular item of interest is to look at correlations, 

partial correlations or semi-partial correlations. These are discussed in Section 5. 

The discussion presented in this paper is centered on two aspects of the R-indicator and 

the other related statistics:  (1) the computation of these statistics from a sample when 

one is estimating response propensity directly using a Logistic Model or indirectly using 

a weight adjustment model and (2) the linearized variance estimator for these statistics. 

An example comparison of these different statistics, along with their estimated standard 

errors, is presented in Section 6.  

All of the statistics discussed in this paper are planned enhancements for the next release 

of the SUDAAN Software product (SUDAAN, 2008) scheduled for August, 2011. A user 
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will be able to request these statistics, and their variances, from SUDAAN’s LOGISTIC 

and WTADJUST procedures. In preparation for this enhancement, all statistics discussed 

in the example presented in Section 6 were created using SAS Version 9.2 so that this 

example could be used as one of the test jobs for the next release of SUDAAN. This 

paper concludes with a brief discussion that provides a few programming suggestions for 

testing the computation of linearized variates in SAS. 

2.  Estimating the Response Propensity 

In practice, there are numerous methods of estimating response propensity to a survey, 

i.e. deriving the )ˆ,~(ˆ  ii xf . In this paper, two methodologies are considered:  

1. Standard Logistic Model. In this case, the response propensity for i is estimated by 

  1ˆ~

1)ˆ,~(ˆ





 ix

ii exf . In a weighted logistic regression analysis, the maximum 

likelihood estimates of the model parameters, i.e. the ̂ , are determined by solving 

the solving the weighted score functions: 

 



n

i
iiii xrw
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0'~)ˆ(  ,    where ir  is a 0/1 response indicator (2.1) 

2. Set Propensity Equal to Inverse of Nonresponse Adjustment. A second method of 

estimating response propensity is to create a nonresponse weight adjustment directly 

using some technique such as a weighting class approach, a modeling approach or 

some other calibration approach. The estimated response propensity would then be 

defined as the reciprocal of the weight adjustment.  

To illustrate the second method, in this paper a modeling/calibration approach to deriving 

a nonresponse weight adjustment  1ˆˆ..  iiei   is considered. Specifically, the 

Generalized Exponential Model that is used in SUDAAN Release 10 (SUDAAN, 2008) 

and discussed in (Folsom and Singh, 2001) is considered. This model is based on work 

originally proposed by (Deville and Sarndal, 1992). With this model, the weight 

adjustment i̂  is estimated by: 
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In this model, ii ul ,  and ic  are constants set by the user. Note that that as ̂~
ix  then 

ii l̂  and as ̂~
ix  then ii u̂ . So il  and iu  are absolute bounds set by the user on 

the estimated i̂ . The parameter ic  is a user-specified centering constant and 
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  is a constant used to facilitate convergence. 

With this weight adjustment model, the ̂  are determined by solving the calibration 

equations 0'~1
ˆ
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3.  R-indicator and Its Linearized Variance Estimate 

We consider the following estimator of the Schouten and Cobben R-indicator for any 

particular domain of interest  : 
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Equation (3.1) is the same as equation (1.5) except for the addition of the domain 

indicator 
i

d . The variable 1
i

d  if unit i belongs to   and 0
i

d  otherwise. This term 

is inserted into the discussion at this point as a way of clarifying the formulas when a 

particular domain of interest is being considered. 

Since R̂  is a sample estimate, it has a standard error which in this case is both a function 

of the sample design as well as the model used to estimate the response propensities .i   

The process of deriving an estimated standard error estimate of R̂  is discussed in this 

section. 

Computing an estimate of the )ˆ(RVar  is relatively straightforward with replication 

methods such as the Jackknife method, Bootstrapping or the Method of Random Groups. 

An example that estimated the )ˆ(RVar  using bootstrap samples is presented in (Schouten, 

Cobben and Bethlehem, 2009).  

In addition to replication methods, another method for estimating variances of a nonlinear 

statistic is based on the first-order Taylor series approximation of the deviation of the 

estimate from its expected value. This technique involves first computing the Taylor 

series linearization for a statistic. We will refer to these linearized values as k  for each 

sample unit k. These linearized variates k ’s are then inserted into a formula that 

correctly reflects the sample design in order to yield the desired variance estimate.  

For example, consider one of the most common designs – a design that involves sampling 

with replacement at the first stage within some strata and with or without replacement 

sampling at subsequent stages. If h represents strata, i represents the first stage unit and k 

the unit selected within each first stage unit then an estimate of the variance of a total is:  
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For simplicity, the reference to stratum and PSU is dropped from the discussion and we 

consider the linearized variate k . Binder (1996) presents an easy-to-implement, general 

discussion of how to compute the linearized variates k  when the original statistic can be 

written as a function of weighted totals. In a similar manner, Shah (2002) discusses how 

the unweighted linearized variate for a statistic associated with unit k can be found by 

differentiating the statistic with respect to its sample weight. The final weighted 

linearized variate k  that is used in the sample design formula such as Equation (3.2) is 

then the sample weight times this derivative. Shah’s shortcut method is used to derive the 

linearized variates associated with R̂  in this paper. 

Suppose we want to compute the linearized variate k  for record k associated with R̂ . To 

obtain the proper derivative of R̂  with respect to kw , and to properly account for the 

model used to estimate the response propensities, we’ll need to compute 
k

i

w


 for each 

unit i in the sample. This is obtained by implicitly differentiating the score functions or 

calibration equations noted in Section 2 depending on whether one is estimating response 
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propensity using a standard Logistic Model for using the Generalized Exponential Model. 

For illustrations purposes, consider the score functions of the Logistic Model [equation 

(2.1)]. Implicitly differentiating this with respect to 
k

w  yields: 
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Which after a little re-arranging, yields: 
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Next, note that since we are considering a Logistic Model then   1ˆ~
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Therefore, the weighted linearized variate associated with R̂  for record k, assuming a 

Logistic Model is used to estimate the i̂ ’s, is: 
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In comparison, if we assume the i̂ ’s are known without error, then 0
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linearized variate associated with R̂  becomes: 
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So the second term in equation (3.7) provides the estimated contribution to the variance 

associated with estimating the i̂ ’s from a Logistic Model. 

If the Generalized Exponential Model is used to estimate i̂ ’s the mathematics follows in 

a similar fashion. The linearized variate associated with R̂  for record k, assuming a 

Generalized Exponential Model is used to estimate 1ˆ  ii  , is: 
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4.  Standard Deviation and Relative Standard Deviation of the  

Response Propensity, and Their Linearized Variance Estimate 

In practice, response propensities are not always estimated directly. In many instances, 

survey researchers will account for nonrespone to a study by computing a nonresponse 

adjustment factor to the sample weights using some technique such as a Weighting Class 
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method, a Model-based method or some other Calibration method. If a nonresponse 

adjustment procedure is used in a study that, by definition, yields adjustment factors that 

are greater than or equal to one, defining an estimated response propensity as the inverse 

of the nonresponse adjustment factor and using the ideas presented in Section 3 are a 

reasonable way to estimate the R-indicator. However, if the adjustment methodology 

yields factors that are less than one then defining response propensity as the inverse of 

the adjustment factor will yield estimated response propensities that are greater than one 

– a situation that is not particularly appealing when estimating the R-indicator. This 

would be similar to estimating a response rate using a response indicator ir  that is in fact 

greater than one for some members of the sample. 

Exhibit 1. Alternate Statistics to the R-indicator and Their Linearized Variate 
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The obvious alternative to the R-indicator that will still provide a measure of 

representativeness of a respondent sample is to examine the standard deviation of weight 

adjustments and the inverse of the weight adjustments (see Exhibit 1.) Unlike the R-

indicator, the standard deviation of a weight adjustment (or the inverse of the weight 

adjustment) is not bounded above by 1, so a comparison of a standard deviation between 

surveys can be difficult to interpret. To account for this we also propose looking at the 

relative standard deviation of the weight adjustment (or inverse weight adjustment) as a 

way of normalizing the standard deviation. This will allow one to compare 

representativity between studies with a little more confidence, although even the relative 

standard deviation is not bounded above by any particular number. 
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Exhibit 1 displays the statistics and their linearized variates for several statistics related 

to response propensity and a nonresponse weight adjustment. These linearized variates 

were computed in a manner that was analogous to that described in Section 3.  

5.  Pearson Correlation, Partial Correlation and Semi-Partial Correlation 

and Their Linearized Variance Estimate 

As noted in Section 1, the R-indicator indirectly measures the potential bias of an 

estimate due to nonresponse by providing a measure of representativity of the respondent 

sample. The R-indicator clearly has many advantages. For instance, similar to a response 

rate: 

 The R-indicator is bounded by 0 and 1. 

 One can interpret larger values of the R-indicator to be “better” in some sense than 

smaller values. Larger values indicate a smaller standard deviation in the response 

propensities and a greater likelihood that the respondent sample “represents” the 

population or sample from which it originated from. 

 And the computation of the R-indicator (and its estimate, R̂ ) is independent of any 

particular data item collected in the study. Therefore, similar to the response rate, this 

statistic can be interpreted as a quality measure for the entire survey, i.e. it does not 

apply only to a subset of the items collected from respondents. 

However, one of the primary disadvantages of the R-indicator is that it provides 

information on the potential for nonresponse bias in an estimate computed from the 

respondent sample, prior to making any adjustments to the respondent sample for the 

nonresponse. In practice, survey statisticians typically apply some correction to the 

respondents – such as a nonresponse weight adjustment or imputation – to account for at 

least some of the potential nonignorable nonresponse mechanism underlying the response 

process. With this in mind, it would also be advantageous to examine the potential for 

nonresponse bias after the respondent sample has been “corrected” to account for the 

nonresponse. 

Much like the R-indicator, another set of measures that can provide some information on 

the potential relationship between response propensity and another variable of interest is 

the Pearson correlation and other statistics related to this including the partial 

correlation and semi-partial correlation. In general, the partial correlation is designed 

to measure the strength of a relationship between two variables after correcting each 

variable for a set of predictors. The set of predictors used to correct each variable is often 

the same, but this is not necessary. The partial correlation is computed using the residuals 

from two models that measure the difference between the variables and their model-based 

expected values. The semi-partial correlation is somewhat similar to the partial 

correlation. The semi-partial correlation is designed to measure the strength of a 

relationship between a variable after correcting it for a set of predictors, and some second 

variable. The semi-partial correlation is defined as the correlation between the residuals 

from a one variable and a second variable.  

Since both the partial correlation and the semi-partial correlation are measuring the 

strength of an association after correcting at least one of them for a set of predictors, they 

can be used to provide information on the potential for nonresponse bias after weights 

have been corrected for the nonresponse. This can be done by computing the correlation 

between residuals formed using the response propensity and some second variable (semi-

partial correlation) or by computing the correlation between the residuals using response 
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propensity and the residuals obtained after modeling the second variable (partial 

correlation). For example, if a nonresponse adjustment factor is defined as the inverse 

response propensity estimated from a Logistic Model with age, race/Ethnicity and gender 

as explanatory variables then a partial correlation or a semi-partial correlation will 

provide information on the strength of the relationship between the propensity residuals 

and some other variable, after the response propensity has been adjusted for the 

demographic variables.  

Some notable features of the correlation statistics include: 

 Like the R-indicator, the correlation is bounded above and below (in this case by 1 and 

-1.)  This allows one to easily compare correlations between data items and between 

surveys. 

 Larger absolute values of the correlation indicate a greater strength of association 

between the variables. 

 As noted above, a partial correlation and the semi-partial correlation offers the 

advantage of providing information on the relationship between response propensity 

and some second variable of interest after the response propensity is corrected for some 

set of variables. This enables one to measure the potential for nonresponse bias after 

weights are corrected for nonresponse since the partial correlation is designed to 

measure the strength of association between items after correcting the propensity for a 

set of variables. 

On the other hand, two disadvantages of the correlation measures are: 

 By definition, it will vary for different survey items so these would not be a very good 

measure of “total” survey quality.  

 Any correlation involving response propensity is typically computed using both the 

survey respondents and nonrespondents. This means the second variable should be 

known for nonrespondents. So typically the correlations are restricted to data items 

available on the sample frame or obtained in earlier stages of a multistage sample 

design. 

The second limitation can be addressed by fitting the response propensity model using 

both respondents and nonrespondents, and subsequently treating the respondents as a 

domain of interest when computing the correlations. Treating the respondents as a 

domain of interest means the second data item only needs to be known for respondents. 

In practice, computing a partial correlation for a subdomain defined by respondents does 

not seem to work well, however computing a standard correlation by restricting the 

domain of interest to the respondents does. An example that illustrates this is discussed in 

Section 6. 

Mathematically, a sample estimate of the correlation between some function of the 

model-predicted response propensity  iiF ̂  and a function of a second variable 

)ˆ( ii GG   {here )ˆ,~(ˆ  ii yg , iy~  is a vector of explanatory variables and ̂  are 

estimated model parameters} is defined by 
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Since CORR  is a sample estimate, it has a standard error that depends on both the 

sample design and the model used to estimate i  (and if applicable, the model used to 

estimate i .)  Using an approach that is similar to what was outlined in Section 3, the 

linearized variate corresponding to the correlation for record k is: 
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As a second example, if one were interested in estimating the correlation between a 

weight adjustment 
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Other similar correlations, semi-partial correlations and partial correlations follow in a 

similar fashion. 

6.  Example 

As noted in Section 1, the purpose of this research was primarily to derive the R-

indicator and several related statistics when response propensity is estimated using a 

Logistic or a Generalized Exponential Model. In addition, we computed the linearized 

variates for these statistics. These statistics and their standard error estimates will be 

forthcoming in a future release of the SUDAAN statistical software and this research was 

designed, in part, to test the computation of the new statistics and verify their standard 

error estimates. A few comments on how the standard error estimates were validated are 

presented in Section 7. In this section we present an example that was used in the testing 

process.  

To illustrate these statistics, public use file data was used from the 2008 National Survey 

on Drug Use and Health (NSDUH). This survey is conducted by the Office of Applied 

Studies within the United States Substance Abuse and Mental Health Services 

Administration (SAMHSA). The primary purpose of NSDUH is to measure the 
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prevalence and correlates of drug use in the United States. This is a household, multistage 

study with data collected quarterly. The target population for this study is the civilian, 

noninstitutionalized population of the United States who were 12 years of age or older at 

the time of the survey.  For additional information on this study, see (Office of Applied 

Studies, SAMHSA).  

In this example, it was assumed that individuals who indicated they were a past year 

cigarette user was a survey “nonrespondent”. Since cigarette use is correlated with 

numerous outcome measures collected in this study, assuming the cigarette users are 

nonrespondents resulted in a nonignorable response mechanism for most items being 

considered. 

Exhibit 2 presents the estimates of R-indicators assuming the response propensity was 

estimated using a Logistic Model and a General Exponential Model with the main effects 

of age group, race/Ethicity, gender, health status, metropolitan size, education and marital 

indicator used as predictors. The R-indicator was discussed in Sections 2 and 3. Also 

presented in this exhibit are the standard errors of the R-indicators assuming the model 

predicted response propensities are known without error [see equation (3.8)] and 

assuming the propensities are estimated from a model [equation (3.7) and (3.9)].  

Exhibit 2. R-Indicators and their Estimated Standard Error  

Domain 

Logistic Model Generalized Exponential Model 

R-

Indicator 

Std Error 

Ignoring Model 

Std Error 

Full  

R-

Indicator 

Std Error 

Ignoring Model 

Std Error 

Full  
 

Total .7258 .0012 .0064 .7195 .0012 .0064 
 

Age Group 

   12-17 .9197 .0006 .0042 .9141 .0007 .0041 

   18-25 .7779 .0015 .0075 .7692 .0016 .0078 

   26-34 .7471 .0027 .0092 .7406 .0028 .0092 
   35+ .8010 .0020 .0078 .7970 .0021 .0078 
 

Race/Ethnicity 

   Hispanic .7391 .0027 .0065 .7379 .0028 .0060 
   NonHisp, Black .7283 .0026 .0086 .7238 .0028 .0086 

   Other .7250 .0012 .0066 .7185 .0013 .0065 
 

Gender 

   Male .7095 .0016 .0069 .7026 .0017 .0069 

   Female .7556 .0014 .0067 .7504 .0015 .0066 

Note:  Std Error Ignoring Model=Standard errors were computed assuming response propensities were known without 

error. Std Error Full = Standard error account for the model estimation of the response propensities.  

In general the R-indicators in Exhibit 2 are in the .7 to .9 range, with the largest R-

indicators being associated with the 12-17 year-old age group. The larger R-indicator 

means the variability in the predicted response propensities among 12-17 year-olds is 

less, and therefore the nonresponse bias associated with estimates for 12-17 year-olds is 

likely to be less (assuming the propensity model is true.)  The standard error estimates 

associated with the R-indicators are fairly equal between the Logistic Model and 

Generalized Exponential Model predictions. But note that if the term that accounts for the 

model prediction of the response propensity is included in the standard error estimate, the 

standard errors are considerably bigger than assuming the propensities are known without 

error. Over all, we found including the term in the variance estimate that accounts for the 

model-based prediction of response propensity will increase the standard error estimate 

by an average of 333% in this table. This large increase suggests omitting this term would 

likely significantly bias the standard error estimate associated with the R-indicator. 

Exhibit 3 displays the mean, standard deviation and relative standard deviation of both 

the response propensity and the weight adjustment. This was discussed in Section 4. In 

this exhibit, response propensities were estimated using a Logistic Model and the weight 
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adjustments were estimated using the Generalized Exponential Model. Similar to Exhibit 

2, this exhibit shows that including the term that accounts for the model prediction of the 

response propensity (or weight adjustment) will increase the standard error estimate 

substantially which again demonstrates omitting this term can lead to standard error 

estimates that are significantly biased. On average, in this exhibit we found including the 

second term in the standard error estimate increases the standard error by over 320%. 

Exhibit 3. Additional Statistics and their Estimated Standard Error Using Linearization 

Domain 

Mean  Std Deviation Relative Std Deviation 

Esti-

mate 

Std Error 

Ignoring 

Model 

Std 

Error 

Full 

Esti-

mate 

Std Error 

Ignoring 

Model 

Std 

Error 

Full 

Esti-

mate 

Std Error 

Ignoring 

Model 

Std 

Error 

Full 
Response 
Propensities t  
 

Total .7207 .0012 .0042 .1403 .0006 .0032 .1946 .0011 .0047 
 

Age Group 

   12-17 .8512 .0006 .0033 .0429 .0003 .0020 .0504 .0004 .0024 

   18-25 .5506 .0014 .0057 .1154 .0008 .0039 .2096 .0014 .0073 

   26-34 .5966 .0026 .0096 .1297 .0014 .0046 .2174 .0027 .0097 
   35+ .7640 .0013 .0057 .1015 .0011 .0039 .1329 .0015 .0055 
Weight 
Adjustments t  
 

Total 1.4586 .0029 .0104 .3831 .0027 .0161 .2626 .0016 .0099 
 

Age Group 

   12-17 1.1779 .0008 .0046 .0613 .0005 .0032 .0521 .0004 .0027 

   18-25 1.9068 .0050 .0224 .4512 .0038 .0245 .2366 .0018 .0113 
   26-34 1.7757 .0090 .0359 .4816 .0087 .0346 .2712 .0041 .0151 

   35+ 1.3366 .0028 .0114 .2132 .0036 .0131 .1595 .0025 .0090 

Note: Response propensities were estimated using a Logistic Model. Weight adjustments were estimated using a 
Generalized Exponential Model. Std Error Ignoring Model=Standard errors were computed assuming response 

propensities were known without error. Std Error Full = Standard error account for the model estimation of the response 

propensities. 

Exhibit 4 displays some results from estimating the correlation, semi-partial correlation 

and partial correlation between response propensity and two outcome measures (past year 

alcohol use and any illicit drug use except marijuana.)  The top half of the table shows 

statistics computed using the entire sample and the bottom half shows statistics computed 

for respondents-only. The correlations computed using the respondents-only treat the 

respondents as a domain 
i

d  of interest when applying the formulas from Section 5. 

Also, the correlations computed using the respondents-only reflect what one would likely 

want to do in a “typical” study – so the response propensity model was fit using the entire 

sample, a second model was fit to the second variable (e.g. past year alcohol use) using 

only the respondents and correlations were computed between propensity and the second 

variable among respondents-only. 

The correlations between the dependent variables (column #1), between the model 

predictions (column #2) and between response propensity and the second variable 

(column #3) are negative for most of the outcome measures displayed in Exhibit 4, and 

this is expected. Past year cigarette users are considered nonrespondents in this example 

and we know cigarette smoking tends to be positively correlated with the outcome 

measures presented in these exhibits. So the negative correlation indicates as response 

propensity increases the probability of exhibiting one of secondary outcome measures, 

such as past year alcohol use, decreases. In other words, survey respondents (nosmokers) 

are likely to not use the substances defined by the rows in this table. The estimates in 

Exhibit 4 also indicate the standard error of the correlations is relatively small for most 

estimates, indicating most of these correlations are statistically different from zero.  
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Exhibit 4. Correlations Between Response Propensity and Selected Outcome Measures 

Domain 

#1 Correlation 

Between 

Dependent 

Variables 

#2 Correlation 

Between Model 

Predictions 

#3 Correlation 

Between 

Propensity and 

Variable 

#4 Correlation 

Btwn Propensity 

Residuals and 

Variable 

(Semi-Partial 

Correlation) 

#5 Correlation 

Between Residuals 

(Partial 

Correlation) 

Corr 

Std 

Error 

Full Corr 

Std 

Error 

Full Corr 

Std 

Error 

Full Corr 

Std 

Error 

Full Corr 

Std 

Error 

Full 

Total Sample 

Alcohol Use 

   Total -.2045 .0072 -.5719 .0164 -.0815 .0088 -.1887 .0075 -.1984 .0078 

   Age Group 

      12-17 -.4530 .0098 -.7751 .0358 -.0287 .0126 -.4515 .0099 -.4546 .0100 
      18-25 -.2800 .0082 -.4849 .0331 .0106 .0119 -.2895 .0083 -.2877 .0082 

      26-34 -.2045 .0162 -.3172 .0352 -.0382 .0226 -.2051 .0165 -.1981 .0160 

      35+ -.1047 .0115 -.2328 .0284 .1495 .0124 -.1431 .0117 -.1476 .0120 

Total Sample 

Any Illicit But Mrj   

Total -.2359 .0077 -.5547 .0232 -.1656 .0078 -.1948 .0077 -.1983 .0079 

   Age Group 

      12-17 -.3326 .0144 -.7789 .0350 -.0398 .0103 -.3294 .0144 -.3323 .0144 

      18-25 -.2915 .0098 -.4972 .0335 -.1272 .0101 -.2697 .0102 -.2692 .0103 
      26-34 -.2343 .0187 -.3351 .0373 -.1554 .0174 -.2046 .0185 -.2008 .0184 

      35+ -.1601 .0139 -.2419 .0296 -.0729 .0121 -.1465 .0141 -.1475 .0140 

Respondents-Only 

Alcohol Use 

   Total n/a  -.4530 .0199 -.0119 .0125 .0119 .0125 -.1415 .0112 

   Age Group 

      12-17 n/a  -.7772 .0386 .0114 .0123 -.0114 .0123 -.1120 .0137 

      18-25 n/a  -.4531 .0392 .0862 .0161 -.0862 .0161 -.1587 .0164 

      26-34 n/a  -.2598 .0450 .0134 .0284 -.0134 .0284 -.0533 .0282 
      35+ n/a  -.2089 .0289 .1942 .0180 -.1942 .0180 -.2279 .0183 

Respondents-Only 

Any Illicit But Mrj  

   Total n/a  -.4073 .0369 -.0703 .0083 .0703 .0083 .0225 .0074 

   Age Group 

      12-17 n/a  -.7758 .0478 -.0110 .0091 .0110 .0091 -.0294 .0123 

      18-25 n/a  -.4712 .0558 -.0634 .0134 .0634 .0134 .0354 .0140 
      26-34 n/a  -.2929 .0628 -.0667 .0219 .0667 .0219 .0531 .0220 

      35+ n/a  -.2182 .0347 -.0369 .0155 .0369 .0155 .0305 .0152 

Note:  Std Error Full = Standard error account for the model estimation of the predicted values.   Alcohol Use 

and Any Illicit But Mrj refer to past year alcohol use and past year any illicit drug use except marijuana. 

Notice from Exhibit 4 that if we look at the respondents-only results, the correlation 

between the response propensity and a variable (column #3) and the correlation between 

the response propensity residuals and a variable (column #4) differ by a factor of -1 and 

the standard error estimates are identical. Again, this is expected. This table is examining 

statistics computed among respondents-only. And the residuals used in the correlation in 

column #4 are  ii pr ˆ  which reduces to  ip̂1  when looking at respondents-only. In 

column #3 the correlations are computing using ip̂ . So the correlations in column #3 and 

#4 should only differ by a factor of -1. 

Exhibit 5 presents a graphical representation of the some of the results from Exhibit 4. 

This exhibit shows that the correlations between the total sample and respondent-only 

domains are very similar if one were to look at the correlation between the model 

predictions and between the model predicted response propensity and the second 

variable. These are columns #2 and #3 in Exhibit 4. However, the patterns in the partial 

correlations are different (column #5). Exhibit 5 indicates, for example, that when 

examining past year alcohol use that the partial correlation is greatest for the 35+ years 

olds and the smallest for the 12-17 year-olds when computed using the total sample. 
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However, when looking at the respondent-only sample, the partial correlations are 

smallest for the 35+ year-olds and greatest for the 26-34 year-olds.  

Additional empirical studies will need to be conducted, but from this simple example it 

appears that examining correlations by restricting the domain of interest to just the 

respondents is a feasible alternative when examining correlations between response 

propensity and second variable, however it does not appear to be useful when examining 

partial correlations between response propensity and a second variable if the second 

variable is known only known for respondents 
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Note:  Correlations in bar chart are taken from Columns #2, #3 and #5 in Exhibits 4  

7.  Some Comments about Deriving These Statistics in SAS and SUDAAN 

The estimates presented in the example in Section 6 were computed using the IML 

procedure in SAS 9.2. As noted in Section 1, all of these statistics will be available in the 

next release of SUDAAN which is scheduled to be released in August, 2011. The SAS 

code and example illustrated in Section 6 were developed to test the new statistics that 

will be coming in SUDAAN. 

The formulas for the linearized variance esimate of the R-indicator, the related statistics 

and the correlations all require the use of the information matrix associated with the 

model used to estimate response propensity (as well as the model used to predict a second 

variable if one were computing partial correlations.)  Consequently, all modeling and 

code development was done in SAS IML to facilitate the use of matrices in the formulas. 

One could also use established procedures in SAS (such as SAS’s REGRESS or 

LOGISTIC procedures) to back out needed factors for the linearized variance estimates. 

But this added step seems unnecessary with moderately sized data sets and when only a 

relatively small number of predictors are used in the models. 

When programming the linearized variance estimator one would naturally seek out 

methods that can be used to verify the accuracy of both the mathematics and the program 

used to derive the linearized variates. A few things that can be done for this verification 

include: 

 In general, variance estimates obtained using the Linearization Method will be very 

close to what is obtained using the Delete-1 Jackknife Method, even though these two 

methods use very different algorithms to derive a sampling error estimate. The Delete-1 

Exhibit 5. Comparing Correlations Computed For Total Sample and 

Respondents-Only, By The Four Age Groups 

 

Column 2 Column 3 Column 5 Column 2 Column 3 Column 5 

Past Year Alcohol Use Past Year Any Illicit Drug Use Except Marijuana 
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Jackknife Method is a replication variance estimation method that involves forming 

replicate estimates by removing one primary sampling unit (PSU) at a time and 

adjusting the sample weights of the other PSUs in the same strata to account for the 

missing PSU. This was done for all estimates displayed in Section 6. For all estimates, 

the difference between the Taylor Series standard error estimate and the Delete-1 

Jackknife standard error estimate was less than .0001. 

 One can also check the linearized value of a subset of individual records using the 

definition of the derivative. Recall from Section 3 that the weighted linearized variate 

for record k associated with some statistics defined by a general function 

..)....,..(
11 kk

wwxxf  was computed as
k

kk
w

f
w




 . One can verify the computation of 

the derivative for record k by computing 
h

wwxxfhwwxxf

w

f kkkk

k

..)....,..(..)....,..( 1111 





  

for some small value of h. This check was done with the first 100 or so records on the 

file for many of the statistics presented in Section 6. 
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