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Abstract 

The UK Labour Force Survey (LFS) is a quarterly survey based on a rotating panel design, 
which generates about 80% sample overlap between two successive quarters and can induce 
correlated  sampling errors and rotation group bias (RGB). The standard time series analysis 
packages fail to account for the effect of the sampling error autocorrelation (SEA) and the 
use of these procedures may produce spurious trends. This paper represents the first attempt 
to set up a structural time series model for the UK Labour Force Survey series that accounts 
for the correlation between panel estimates. The proposed model is a first step towards the 
development of a state-space model to estimate the rotation group effects and discontinuities 
that may arise due to the transferring of the LFS to the Integrated Household Survey. 
 
Key Words: Labour Force Series, Panel Survey, Rotating Group Bias, Univariate Structural 
Time Series Model. 
 

1 Introduction 
 
The UK Labour Force Survey (LFS) is a quarterly survey based on a rotating panel design. 
Each quarter the LFS surveys five panels and each panel is composed of approximately 12000 
households. Individuals stay in the sample for five consecutive waves with 20% rotation so 
that four panels are resurveyed each quarter and one panel is new.  The implication for this 
rotation pattern is that it induces 80% sample overlap between two successive quarters and 
overlaps over more than two quarters.  As a result, the survey sampling errors are correlated 
over time.  
 
The standard time series analysis packages fail to account for the effect of this sampling error 
autocorrelation (SEA). Hence, the use of these procedures may produce spurious trends that 
reflect an underlying trend-cycle induced by the survey rotation pattern. This issue was 
observed and studied by Hausman and Watson (1985); illustrated empirically by Pfeffermann, 
Feder and Signorelli (1991, 1998) and Tiller (1992); as well as highlighted by Smith (1999): 
 

“When a time series of population values is estimated from a survey the sampling 
errors complicate the analysis. Complex rotation patterns give rise to complex 
covariance structures which are superimposed on the covariance structure of the time 
series and should be taken account of in any analysis.” 

 
In order to decouple the SEA effect from the time series evolution of the true population quantity 
of interest, the time series model for the survey estimate is defined as the combination of two 
distinct models. One to describe the evolution of the unobservable population quantities over 
time and the other that represents the time series relationship between the sampling errors of the 
sample estimates. 
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Scott, Smith and Jones (1977) were the first to propose time series models for the sampling 
error process taking into account the survey rotation pattern. They examined single-stage and 
two-stage overlapping surveys and used different ARMA models for representing the sampling 
error process to take into account the dependence of the autovariance structure of the sampling 
errors on the pattern of the overlap. In addition, they provided an interesting discussion about 
which ARMA models would be appropriate under different survey designs. Regarding the 
sampling error process, they suggested an AR(1) would be reasonable for completely 
overlapping surveys. For partially overlapping surveys, in which the units are rotated out of the 
sample after q occasions, a moving-average process of order q (MA(q)) was recommended 
because the autocorrelation function for such models is zero for lags greater than q.  
 
Another problem with the rotating panel design of the LFS is that the number of times 
respondents have been exposed to the survey may affect the data reported, resulting in 
systematic differences between panels in one time period. This phenomenon is known as 
rotation group bias (RGB) and is well documented in the literature (Bailar (1975), Kumar and 
Lee (1983), Binder and Hidiroglou (1988) and Pfeffermann (1991)).  
 
This paper chronicles progress in a project to set up a Multivariate State-Space Model 
(MSSM) to account for SEA and RGB in quarterly LFS unemployment estimates. Attention 
is focused on the development of a Univariate State-Space Model (USSM) as a first step in 
separating any spurious trend or other effect that may arise from SEA due to sample overlap. 
The proposal of a MSSM to correct for RGB will be presented in a later paper.  
 

2. Univariate State-Space Model without RGB 
 
This section sets up  the  USSM for the LFS to take into account the SEA. The advantage of the 
USSM is that it decomposes the unobservable sampling error from the trend and seasonal 
components from the model. If the variation in the sampling errors is not taken into account, 
their autocorrelation structure may be absorbed into either the seasonal or the trend 
components (Pfeffermann, 1991, Silva, 1996, Tiller, 1992). 

2.1. Model Setup  
 
Consider the following decomposition for a quarterly survey estimate 
                                        

t t ty eθ= +                   (1) 
 

where ty  is the design unbiased survey estimate, tθ  is the unknown population quantity and  

te  is the survey error. By analogy with a signal extraction approach, θ t  is the signal and et  is 
the noise. In this context, one is interested in estimating the unobservable signal θ t  (and the 
corresponding structural components) based on the past and current observations, y  ,  ,y t1 … , in 
the presence of noise. 
 
The Basic Structural Model (BSM) for the signal tθ  is 
                                           t t t tL S Iθ = + +                      (1a) 

                                           1 1
L

t t t tL L R η− −= + +               (1b) 

                                           1
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where tL  is the trend component, tR  is the increment for the trend,  tS  is the seasonal 

component, tI  is the irregular component and L
tη , R

tη  and S
tη  are the error terms associated 

with the trend, slope and seasonal components respectively.  
 
The time series process for the survey error te  is defined as  

                                           t

p

j
jtjt ee ζφ += ∑

=
−

1
                (1e) 

since the nature of the rotating panel design of the LFS induces autocorrelations of the survey 

error in the sample estimates. This study assumes the survey errors te  follow an AR (p) 

process, where p is the order of autoregressive process.  

The complete model for t t t ,  , yeθ   from equations (1a-1e) can then be formulated as a state-

space model where the state-vector includes components from both the tθ  and te  processes.  

2.2.   State-Space formulation for the signal 
 
The BSM for the signal tθ  can be written in the following state-space form: 

           ttt I+= θθθ αZ                    (2a)            

                                            θθθθθ
t1tt ηGαTα += −             (2b) 

where  

( )00101== θθ ZZ t              

( ) '
21 −−= tttttt SSSRLθα      

The transition equation for the signal process is given by 
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For each component, the disturbances L
tη , R

tη  and S
tη  are assumed to be mutually 

uncorrelated normal deviates with mean zero and variances 2
Lσ , 2

Rσ  , 2
Sσ  respectively.  

2.3.   State-Space Formulation for the Noise (Sampling Errors) 
 
Considering that the LFS has a rotation pattern in which a household is interviewed once 
every quarter, for five consecutive quarters, the sampling errors contain  persistent (although 
low) autocorrelation which may be absorbed into the seasonal and trend component if not 
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[ ] [ ]000100101, == eZZZ θ

taken into account in the modelling procedure. The following AR (4) order is used for 
illustrating the state-space formulation of the sampling error process { }te .  
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2.4 Joint State-Space Model for Signal and Noise 
 
Both the signal and noise component can then be incorporated into a USSM, as follows: 
 

ttt Iy += Zα   ( )2,0~ It NI σ    (4a) 

ttt GηTαα +=                                             (4b) 

 
where (4a) is the measurement equation and (4b) is the transition equation. In the 
measurement equation (4a), Z is a known design matrix, tα is a vector of unknown state 
components and tI  is an irregular (disturbance) term. 
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In the transition equation (4b), T is the transition matrix and tη  is disturbance vector 
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The variance-covariance matrix for the disturbances is given by:   

                           ( ) ( )2222 ,,, ζσσσσ SRLt diagV =η  

2.5 Kalman Filter and Maximum Likelihood Estimation 
 
In the model, the unobserved components are estimated by means of Kalman filter 
recursively. As all components are non-stationary with the exception of the survey errors, the 
non-stationary components are initialised with a very large variance (ie 100000) relative to 
the magnitude of the series. The unknown parameters (hyperparameters) such as variances of 
the disturbances are estimated by using Maximum Likelihood techniques4.The model was 
fitted in SAS version 9.1.3 using its matrix language procedure.  
 

3. Sampling Error Calculations 
 
The application of the Kalman filter requires the estimation of the unknown autoregressive 
(AR) parameters ( jφ ) of the sampling error process. The AR coefficients were obtained from 
the Yule-Walker equations based on the estimated SEAs. These, in turn, were estimated using 
the so-called “Pseudo-Error” approach proposed by Pfeffermann, et al. (1996, 1998).  

                                                 
4 Readers can refer to Harvey (1989), and Durbin and Koopman (2001) for further technical details   
   about Kalman Filter recursion and Maximum Likelihood estimation.  
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3.1 Pseudo-Error Approach 
 
In the case of a rotating panel survey, the model for the sampling errors can be identified by 
analysing the pseudo-errors given by:    ,y - y = e t

(k)
t

(k)
t

~  where  y(k)
t  is the observed survey 

estimate of panel k at time t. That is,  y(k)
t  is a panel estimate based on data from a single time 

period t and only includes values from a set of households that join and leave the survey at the 
same time (a panel k)5. If there is no rotation bias, it follows that: 

 
 
 
 
 
 
 
 
 
 
 
 
 
where e(k)

t  is the unobserved sampling error of panel k at time t . Thus, contrasts in e (k)
t

~  are in 
fact functions of the panel sampling errors only. Assuming that the sampling errors are 
uncorrelated if the panels do not overlap, and also that the autocorrelation structure of } e { (k)

t  
depends on the lag but not on the panel, it can be shown that 

) e  ,e CORR( = ) e  ,e CORR( (k)
h-t

(k)
t

(k)
h-t

(k)
t

~~ .  
 
Models for the panel sampling errors can be specified by applying simple time series model 
identification procedures to the various pseudo-error series, } e { (k)

t
~ , K  ,  ,1 = k … . Hence, after 

generating a pseudo-error series, its autocorrelation function can be estimated using time series 
procedures from any standard statistical software. Note, however, that this course of action 
depends on the restrictive assumption that the autocorrelation structure of the sampling errors 
does not vary between panels. 
 
To overcome this problem, Pfeffermann, Bell and Signorelli (1996) proposed a method that 
allows for different panel autocorrelation structures and showed that the autocorrelation function 
ρ h  of the sampling errors can be obtained as: 
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Therefore, according to Pfeffermann et al. (1996, 1998), the SEA can be estimated based on 
the autocovariance function of pseudo-errors, which can be observed and computed for each 

                                                 
5 For the UK LFS, k=5 since in each quarter the sample is composed of five rotating panels.  
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panel. Silva (1996) details the proof and provides the pseudo-error approach for multivariate 
time series.  
 
In a practical situation, an estimate for the autocorrelation function ρ h  is computed using the 
sample autocorrelation function of the pseudo-error series. In addition, using the Yule-Walker 
equations (see Wei,1993, p.135) and the estimated autocorrelation function, the analyst can 
obtain estimates for the partial autocorrelation function of the sampling error process as well as 
preliminary estimates for the parameters of AR(p) time series model.       
 

4. Empirical Results 
 
4.1.  Sampling Error Autocorrelation Function     
 
The quarterly unemployment rate series from the UK LFS in the period from 1992 Q2 to 
2008 Q3 was used in this study. As there are five waves in the sampling design of the LFS 
and the respondent in a particular wave is completely rotated out after five periods (t, t+1, t+2, 
t+3, t+4), AR models up to order 4 were tested for the sampling error. One can note however 
that a MA(4) could also be used to represent the sampling error underlying process as 
suggested by Scott, Smith and Jones (1977). The reasons for testing AR(p) models first is the 
correspondence between low order AR models with higher order MA models and also that 
other authors have already showed empirically that AR models with low orders are adequate 
to model sampling errors in the case partial overlapping surveys (see Brakel and Krieg, 2009 
and Silva, 1996 and 2001) 
 
Table 1 shows the results of autocovariance, autocorrelation and autoregressive parameter 
estimates under separate panels. The standard error of the estimated autocorrelations is equal 
to T1  where T is the length of the series. Therefore, only correlations with an absolute 
value larger that 0.246 are significantly different from zero at a 5% significance level. In this 
case, only a few estimates are significant (when looking at the panel/wave estimates 
separately). The estimated autocorrelation for wave/panel 1 may be more reliable assuming 
that no rotation group bias impacts the responses of the households in the first interview. 
 
                 Table 1: Autocovariance, autocorrelation and autoregressive parameter  
                                estimates under separate panels         .  
 

Wave  Parameter Estimates Lag 
    1 2 3 4 

1 Autocovariance 0.033 0.032 0.006 0.013 
  Autocorrelations 0.467 0.442 0.077 0.174 
  Partial autocorrelations 0.467 0.286 -0.284 0.162 
  Autoregressive parameters 0.461 0.319 -0.351 0.162 
2 Autocovariance -0.015 0.009 -0.014 0.012 
  Autocorrelations -0.412 0.234 -0.366 0.310 
  Partial autocorrelations -0.412 0.077 -0.298 0.086 
  Autoregressive parameters -0.331 -0.033 -0.267 0.086 
3 Autocovariance -0.006 0.000 -0.003 -0.007 
  Autocorrelations -0.109 -0.004 -0.054 -0.125 
  Partial autocorrelations -0.109 -0.016 -0.057 -0.140 
  Autoregressive parameters -0.119 -0.025 -0.073 -0.140 
4 Autocovariance -0.011 -0.002 -0.001 -0.003 
  Autocorrelations -0.202 -0.036 -0.016 -0.049 
  Partial autocorrelations -0.202 -0.080 -0.042 -0.068 
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  Autoregressive parameters -0.224 -0.096 -0.057 -0.068 
5 Autocovariance 0.008 0.001 0.011 -0.002 
  Autocorrelations 0.113 0.008 0.164 -0.024 
  Partial autocorrelations 0.113 -0.004 0.165 -0.063 
  Autoregressive parameters 0.125 -0.025 0.173 -0.063 

Aggregate Autocovariance 0.000 0.002 0.000 0.000 
  Autocorrelations 0.028 0.132 -0.003 0.042 
  Partial autocorrelations 0.028 0.131 -0.010 0.025 
  Autoregressive parameters 0.026 0.128 -0.011 0.025 

 
Moreover, when analysing the aggregate value that corresponds to the published 
unemployment series there is no evidence of SEA despite the sample overlap. This may be 
due to the time interval between interviews (three months so lag 2 refers to interviews that 
take place six months apart).  
 
In addition, as the UK LFS sample design is unclustered there is no restriction to replace one 
household by another in the same area (sort of similar household) when the original one is 
rotated out of the sample.  
 
Although the autocorrelations of the aggregate series are not significantly different from zero, 
a decision to fit an AR (1) model for the sampling errors was taken in order to test the 
modelling procedure and to prepare the work for the next stage of modelling the panel series 
concurrently (via a multivariate model) to account for RGB and discontinuities.  

Table 2 presents the estimates of the AR coefficients for models of orders 1 to 4.   Instead of 
using the pseudo-error approach to estimate the AR coefficients, they could be treated as 
hyperparameters and be estimated using maximum likelihood in the state-space model. 
However, recent experiences from Statistics Netherlands (Brakel and Krieg, 2009) suggested 
that the model does not work very well if the AR parameters are estimated within the state-
space model. Therefore, for this first experiment of fitting a state-space model to the UK 
series, the pseudo-error approach was chosen: the coefficients and disturbance variance of the 
sampling error process were hence calculated outside the Kalman Filter procedure.  

                             Table 2: Parameter Estimates of AR (1 – 4) 

     

  

 

 

 

           

Table 3 summarises several diagnostics statistics for models with different orders. The results 
show that AR (1) performs best because it has the lowest forecast error according to all 
prediction measures. Therefore, an AR (1) model was chosen under the pseudo-error 
approach for the USSM. 

 

 

 

 

                           

AR Orders AR(1) 
Coefficient 

AR(2) 
Coefficient 

AR(3) 
Coefficient 

AR(4) 
Coefficient 

AR(1) 0.0282 n.a n.a n.a 
AR(2) 0.0245 0.1314 n.a n.a 
AR(3) 0.0258 0.1316 -0.0099 n.a 
AR(4) 0.0260 0.1282 -0.0106 0.0254 
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                               Table 3: Different AR Order Results Comparison  

AR 
Orders 

Mean Bias Mean 
Abs Bias

Mean 
Relative 
Bias 

Root-Square 
relative 
Error 

1-stage ahead 
Prediction 
Error variance 

AR(1) 0.0019 0.1740 0.1639 0.0011 0.0502 
AR(2) 0.0021 0.1750 0.1671 0.0011 0.0512 
AR(3) 0.0022 0.1752 0.1667 0.0011 0.0511 
AR(4) 0.0023 0.1747 0.1677 0.0011 0.0506 

 
The AR (1) model with the parameter estimated under the pseudo-error approach was then 
formulated into a state-space form and the variance of the corresponding random disturbance 
was calculated. The sampling error follows the AR (1) model:  

10.028t t te e ζ−= +  
 
4.3 Results of the USSM for UK Unemployment Rate 
 
Estimates of UK unemployment rate trend and seasonal components as well as their 
corresponding confidence intervals derived from USSM are presented in the Figures 1 and 2 
below. 

Figure 1 Trend Component with 95% CI
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Figure 2 Seasonal Component with 95% CI
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The results of estimating their trend and seasonal components using the USSM and X-12-
ARIMA (US Bureau of Census) are displayed in Figures 3, 4, 5 and 6.6  

 

Figure 3 Trend Comparison 
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Figure 3 shows that the trend estimates obtained from USSM and from X-12-ARIMA are 
very close, but there are miner differences at turning points. 

 

            

Figure 4 Seasonal Comparison 
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Figure 4 shows the seasonal amplitude estimated from USSM is slightly wider than that 
estimated from X-12-ARIMA.  
 
 

 
 

                                                 
6 X-12-ARIMA is the standard seasonal adjustment package used by ONS. 
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Figure 5 IrregularComparison 
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Figure 5 displays the estimated irregular ( te + tζ ) derived from USSM and derived from X-
12-ARIMA. The estimated error item ( te + tζ ) derived from USSM accounts for sampling 
error variation so is in general larger than the estimated irregular derived from X-12-ARIMA. 
 

6. Summary 
 

• This paper describes the use of a state-space model to estimate structural time series 
components for the UK LFS while taking the SEA into account.  

• The advantages of the USSM are as follows.  
1. SEA can be identified and estimated and the sampling error time series process can 

be modelled using a state-space formulation. 
2. Once the variance-covariance matrix is calculated, the state components, the trend  

and seasonal effects can be estimated through the Kalman filter. Using the Kalman 
filter, current estimates can be recursively filtered and past predictors can be updated.  

 
7. Further work 

 
• Take the claimant count into account as an auxiliary variable to improve the USSM.  

• Develop the MSSM model to capture RGB effects.  

• Further develop the MSSM to model discontinuities that may occur in the future due to 
survey redesign. 
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