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An Estimation Method for Matrix Survey Sampling

Takis Merkourig

Abstract

Matrix sampling, sometimes referred to as a split-questiine, is a sampling design that involves
dividing a questionnaire into subsets of questions, pbssiberlapping, and then administering
these subsets to different subsamples of an initial sanipies design reduces the data collection
costs and addresses concerns related to response burdaataigiality, but also reduces the num-
ber of sample units that are asked each question. For matneys sampling with overlapping
subsets of questions, we propose an estimation methodxplaits correlations among variables
surveyed in the various subsamples in order to improve theigion of the survey estimates. The
proposed method uses a suitable calibration scheme, whéduivalent to a generalized regression
procedure based on the principle of best linear unbias@dasin. The method is computationally
very convenient, and facilitates variance estimation.

Key Words: Split-questionnaire, calibration, generalized regi@ssistimator, best linear unbiased
estimator, composite estimator

1. Introduction

Matrix sampling is a sampling design in which a large questionnaire is dividedubgess
of questions, possibly overlapping, and these subsets are then adrathiiedifferent
subsamples of an initial sample. In its various forms this design may serveesy\vair
purposes, such as reducing the length of the survey process aredsidd concerns related
to response burden and data quality associated with a large questiofirere.is a long
history of use of matrix sampling in other fields, primarily in educational statisiios,
there is a paucity of related research or practice in survey sampling. idwef matrix
sampling and a discussion of the issues arising in its implementation in surveysnsmi
Gonzalez and Eltinge (2007). For recent work on estimation for matrixeguwsampling,
see Gonzalez and Eltinge (2008), and Chipperfield and Steel (2009).

Recent uses of matrix sampling in various statistical agencies (e.g., US.Bafrea-
bor Statistics, British Office of National Statistics, Australian Bureau of Sta)stioark-
ing current trends and offering an outlook for future survey practiglate to the integra-
tion of a number of existing independent household surveys for the aualiftenefit of
streamlined survey operations, harmonized survey content and dateaoy. In this
non-ordinary matrix sampling setting, the distinct surveys may use subsaafigidarge
master sample or independent (and non-overlapping) samples fronmibesaulation. It
is to be noted that the advantages of matrix sampling are not always coritorgesing
subsamples (necessarily dependent) of an initial sample. On the coittraay, be more
practical in certain situations to use independent samples.

We consider four basic matrix sampling designs, varied in the number cdusyibss
and the questions administered to each subsample:

a. Different (non-overlapping) sets of questions are administeredfeyeatit (disjoint)
subsamples.

b. An additional common set of questions is administered to each subsampeigr d
(a). There are several reasons for surveying a core set oblesim all subsamples:
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Special interest in some of those variables, and required high precisiceidted es-
timates; some variables may define subpopulations, and be used in crdssidab
of survey results; the correlation of these variables may be used fouggrurposes,
the most important of which, in the context of this paper, is to enhance thisijore
of estimates for all variables.

c. This is a variant of design (a), which involves an additional subsarap&iving the
full questionnaire. The prime motivation for this scheme is to enhance thetianaly
capacity of the survey, by having responses to all questions from fite afrthe
additional sample, and to aid the the treatment of missing values.

d. This is a variant of design (c), in which the additional common set oftiunssis
administered to all subsamples. This design accommodates all survey negpiise
embodying all features of the previous designs.

In this paper we address the estimation problem in matrix sampling. A serioesdfiad
in splitting a questionnaire is the reduction of the size of the sample that is avdiable
each of the survey variables, which implies loss of precision of survay&®s. For ma-
trix sampling designs (b), (c) and (d), involving overlapping subsetsie§tions, the dual
estimation task is to combine data on common variables from different subsafoples
improved estimation, and to exploit correlations among variables surveyéteiredt sub-
samples for more efficient estimation for all variables. We propose an estinmagthod
that uses a suitable calibration scheme for the sampling weights of the combimetes
which is equivalent to a generalized regression procedure based qrititiple of best
linear unbiased estimation. For simplicity of the exposition we deal with a matrix sagnplin
setting in which instead of subsamples of an initial sample we have indepdndemin-
overlapping samples from the same population. In this context, the probleamifining
data from the two independent samples in case (b) has been dealt with inrdtetaesee,
for example, Renssen and Nieuwenbroek(1997), Merkouris (Z001)) and Wu (2004).
In the following Sections 2 and 3 we describe the proposed method fornd@gig We
conclude with a discussion in Section 4.

2. Best Linear Unbiased Estimation

A general estimation method for matrix sampling is illustrated for design (c) in thdesimp
case involving three independent samptgs S» and Ss, representing the populatidn,
with vectors of variables andy surveyed inS; and S,, respectively, and both vectors
surveyed inSs.

We denote byw; the vector of design weights for sampig, i = 1,2, 3, and byX;
andY,; the sample matrices for andy — the subscripts indicating the sample. We obtain
simple Horwitz-Thompson(H-T) estimatéé, (= X, w;) andX; of the population total
tx, for x, based orn5; and.Ss, respectively, and estimatész andYg of the totalt,,, for
y, based orby andSs. For more efficient estimation of the totalg andt,, we seek com-
posite estimateX© andY*, respectively, that incorporate all the available information on
x andy in the three samples. Such composite estimates that are best linear unbiased es
mates (BLUE), i.e., minimum-variance linear unbiased combinations of the foomatss
X1, Ys, X5 and Y3, are given in matrix form by

Xe SN
Y"vc - P(X17Y27X37Y3) 9 (1)
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whereP = (W'VIW)"'W/V~L1 P the matrixW expressing the condition of unbi-
asedness is such tHRW = I, andV is the variance-covariance matrix(@, Y3, X3, ¥3)'.
This estimation method was proposed by Chipperfield and Steel (2009pnotioled an-
alytic expressions of the BLUE for scalarsandy assuming simple random sampling and
knownV. They adopted the form of the BLUE found in the literature on composite estima-
tion in a different context of survey sampling; see Fuller (1990), Woltéi79) and Jones
(1980). In general, computation of the BLUE is not practical, as only gnojmation of
the true’P would be conceivable (based on an estim&8dut exceedingly difficult, es-
pecially if the number of variables or the number of samples is large. It waultbpeless
if domain estimates were also of interest.

A simpler formulation of this estimation procedure is as follows. First, we egphes
composite estimates in (1) explicitly as linear combinations of the H-T estirdate¥ -,
X;andYs, i.e.,

Xc = BIXXI + B2x?2 + B3xX3 + B4XY3
Y¢ = Bi1yX;1+Boy Yo+ B3y X3+ Byy Y3.

The condition of unbiasednes@;(f(c) =ty andE(YC) = ty, implies thaBsx = I-Bx,
Bix = —Box andByy, = I — By, B3, = —Byy. Thus,/P andW can be expressed as

_ le B2x I_le _B2x o I oI O
P_<B1y B,, -By I—B2y>’ W‘(o I 0 I)’

respectively, and the two composite estimates have necessarily the imgfess

X¢ = X3+ B (X; — X3) 4+ Box (Yo — Y3)

~ - N N ~ A 2
Y¢ = Y3+ Bly(Xl — Xg) + Bgy(Yg — Yg) ( )

Then writingP = (B, I — B), in obvious notation foB3, we can write (1) as

e\ (% (%) (X X1 - X
() -e(2) e () -(2)=(3%) o

the right-hand side of (3) being the matrix form of (2). The problem ofifigdhe optimal
(variance-minimizing)P of the BLUE |n (1) reduces then to that of finding the optimal
matrix B in (3). An estimated optlmdB is given by

50 —~ XS Xl X3 o1 X1 Xg
=-C ~ \Y;

and because of the assumed independence of the three samples it teduce

~ ~ ~ -1
o —( X3\ [—( X, — [ X
=Var| Var| - Var| - .

With such optimaléo the composite estimator (3) is an optimal regression estimator, and
thus the BLUE in (1) W|thP (W'V-IW)~ W'V~ (involving the estimated’, and
satisfying® = (B°,1 — B")) is an optimal regression estimator.

Writing the variance of an H-T estimator as a quadratic form in the associated v
able and with matrixA® = {(7y — mem)/memmr ) (in terms of first-and-second order
probabilities of selection), and using some matrix algebra, it can be shotvn tha

B’ = (XA X3) (X APX) ! = (XA X 5) (XA X + XA X))t

)
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where
-X; 0
X = 0 -Y,
X3 Y3

is the design matrix corresponding to the regression setup of the regressimator (3),
X 3 is the matrixX’ with the first two rows set equal to zerd;;, is the matrixX’ with the
third row set equal to zero, amil’ is the block-diagonal matrix didd.?) with the matrix
A associated with the sampts.

Although exact calculation &’ is theoretically and computationally easier than calcu-
lation of P, it is still a formidable task not least because the probabilitigsire not known
for most sampling designs. The alternative approach of variance estinbgti@plication
methods is also not practical. An approximately optimal composite regressioags is
developed in the next section.

3. Composite Generalized Regression Estimation

A computationally very convenient, but generally suboptimal, versioB ofs obtained

by replacing the matriceA? with the diagonal matriced;, whose entries are the sam-
pling weights ofS;. This gives the multivariate composite generalized regression estimator
(CGREG)

XCOGR N 5 [ X3 X3 s [ X1 — X3

whereB = (X3AX3) (X AX)"!, andA = diag(A;).

The generalized regression procedure leading to the estimator (4) isial spdibration
procedure, involving the combined sample= S;US2US3, whereby a vector of calibrated
weightsc is constructed to satisfy the constrai§'“"* = X{¢F andY{OR = Y{OR
while minimizing the generalized least-squares distéiece w)'A~!(c — w) betweenc
and the vectow of the survey weights a$. This vectorc is given by

c=w+AX(X'AX)(0-X'w),

and expression (4) is then obtained simply’é’g. Note that using the calibrated weights
of sampleS;3 only, we obtain the composite estimators in (4) directly in the simple linear
forms

XOGR — XéCg = Z CEX; YOCR — Yéc;), = Z CLYk-

Ss3 S3

Yet, a decomposition of the vector(Merkouris 2004) gives an analytical expression of (4)
of the form (2), which sheds light onto the structure of the CGREG estimaltars, if we
write X = (X, ¥), then

¢ =w+ LeX(X LgX) X — X3] + Lx® (¥ Ly®) " [Y, — Y3, (5)

whereLx = A(I — Px) with Px = X(X'AX)"'X'A, andLg = A(I — Pyg) with
Py = U (U'A®) 1P A. Itfollows that

XCGR = X;)C?) = Xg + le(Xl — Xg) =+ BQX(YQ — ?3) (6)
= BixX; + (I-Bix)X3+ Box(Y2 —Y3), (7)

in obvious notation fol3, and Box. Similar is the expression fo¥ ““%. It is seen
from (7) that the CGREG estimat®““ " derives its efficiency from combining the two
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elementary estimatoiX; andX3 (pooling information from sample$; and.S,) and from
borrowing strength from sampl®, through the correlation betwesnandy. The vectorc
can be expressed as

c=c, +LeX(X'LgX) 0 - Xc,],

where the vector
Cy, =W+ AT (T AD) 1[0 - ¥'w]

is generated by calibration of the design weights involving oBily Then, the estimator
XCGE takes the forms

XCGR _ X;;cs\p + X/3L\I1X(X,L\IIX)_1[X’1C1\II - Xécs\ll} (8)
= XG4 Bix[X; - X§F ®)
= BnX; + (I-B)XSE, (10)

whereX§'" is the generalized regression (GREG) estimaigr X; AW (' AW) ! (Y, —
Y3), incorporating the regression effect of the last term in (7). The matgression
coefficientB . is written explicitly asB1, = XLy X(X;A1X; + X;LgX) !, where
XoLoX = X3A3X3 — X3A3Y3(YoA2Ys + YiA3Y3) 1Y;A3X3. If x andy were
orthogonal (uncorrelated), or if information gnwas not used in the estimation©f, then
it would beXSGR = Xg andle = X;Ang(X;Ale + XéAng)il andI — le =
XA X (XA X + X5A3X3)"! . But the GREG estimatdX§* is more efficient than
the H-T estimatoiX 3, and sinceX; A1 X, + X;Ly X < X[A1X; + X5A3X; (in the
partial order of non-negative definite matrices), it is clear that more wesggiven to
XS in (10), throughl — B, = X ;A1 X (X[A1X; 4+ X;3LgX) !, than would have
been given to the component estima in the simple composite estimator involving
only information onx. This suggests that the CGREG estimator in (10), incorporating
information from sampl&s, is a more efficient estimator.

If A;, i = 1,2, is replaced byA?, in which case the estimatd&““" becomes the
optimal composite regression estimator, welgetB?, = Var(X,)[Var(X,) + Var(Xs) —

Cov(Xs, Y3)[Var(Yy)+Var(Ys)]~*Cov (X3, Y3)] L. Itis clear then that the stronger the
correlation betweer andy the larger thd — Bffx and more weight is given to component
X??R. In this connection, it can been shown that the approximate (large sanapiahce
of the optimal composite regression estimato¥as(X;)B?, , and thus the stronger the
correlation betweer andy the smaller becomes this variance.

In contrast withB‘l’x, the suboptimal regression coefficidd{, gives a CGREG esti-
mator X which in general is somewhat less efficient than the optimal composite re-
gression estimator. This observation extends to the overall regressffitient B vis a
vis the optimal coefficienB” defined above. The matri is, nevertheless, optimal in the
sense of minimizing the quadratic form in the sample residuals correspondimgregres-
sion setup leading to the CGREG estimator (4). For certain sampling deﬁgﬁsﬁo,
and the CGREG estimator is optimal. For instance, this is true when the desidjrtioea
samples is Poisson and thkth entry of the matrixA; is divided byg;, = m /(1 — mik)-
Other such designs include simple random sampling without replacement\(SRIRand
stratified (SRSWOR) with proper adjustmenisto the entries ofA; and with an intercept
included in the design matriX’ — see remark in the next paragraph. This property is
based on arguments found in Merkouris (2010). For general designgalue ofy;. = n;
should be used in the adjustment of the entried pfo take into account the differential in
effective sample sizes;.

The three samples may collect information on some common auxiliary varialides
which the population totals, are known. Then, the expression (7) of the CGREG estimator
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XCGE may include the additional ordinary GREG terBsy (t, — Z1) 4+ Bux (t; — Z2) +
Bsy(t, — Z3), whereZ;,i = 1,2, 3 is the H-T estimates df, based om\;. This estimator
has improved efficiency, as it incorporates additional information, anengmted by a
calibration procedure that includes the additional three constrafrits® = t,, and with
the design matrix@ augmented with the block-diagonal matéx= diag(Z;). In analogy
with (10), but with different matrix coefficierBB,, the composite estimatd " takes
now the form
XCGR = leX?R + (I - le)XSGRa

whereX " and X' are GREG estimators using all information prandz in the three
samples. This very realistic sampling setting, with the three samples having sommeoo
variables with known totals, is in fact a special case of matrix sampling dedjgnir
the simplest case whefy; is the unit columnl (with corresponding total the size of the
population), the regression setup contains an intercept and the CGRE@tesis optimal
for the sampling designs mentioned in the preceding paragraph.

4, Discussion

The proposed estimation method for matrix sampling produces composite estilwfators
totals which are approximately (for large samples) BLUE, that is, they greo=jmately
unbiased, as special regression estimators, and approximately of minimiamcear— in
certain sampling settings they are exactly BLUE.

The proposed method is computationally very convenient, requiring only desadap-
tation of the generalized regression procedure commonly used in statigicadies. Op-
erationally, it involves a single-step calibration of the weights of the combiaethke.
Estimates for all variables and at any population level can thus be obtaynesirig only
the relevant units of samplg; and their calibrated weights incorporating all the available
information from all three samples. Furthermore, carrying out the destiiblibration
procedure on the combined sample greatly facilitates variance estimation lmatiep
methods, such as the jackknife.

A generalization of the estimation method for matrix sampling with more than two
sets of questions is straightforward, making more evident the operationadrof the
calibration procedure. The estimation method for matrix sampling scheme @¥oan
dependent subsamples of an initial sample will be discussed elsewhere.
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