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Abstract
Matrix sampling, sometimes referred to as a split-questionnaire, is a sampling design that involves
dividing a questionnaire into subsets of questions, possibly overlapping, and then administering
these subsets to different subsamples of an initial sample.This design reduces the data collection
costs and addresses concerns related to response burden anddata quality, but also reduces the num-
ber of sample units that are asked each question. For matrix survey sampling with overlapping
subsets of questions, we propose an estimation method that exploits correlations among variables
surveyed in the various subsamples in order to improve the precision of the survey estimates. The
proposed method uses a suitable calibration scheme, which is equivalent to a generalized regression
procedure based on the principle of best linear unbiased estimation. The method is computationally
very convenient, and facilitates variance estimation.
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1. Introduction

Matrix sampling is a sampling design in which a large questionnaire is divided into subsets
of questions, possibly overlapping, and these subsets are then administered to different
subsamples of an initial sample. In its various forms this design may serve a variety of
purposes, such as reducing the length of the survey process and addressing concerns related
to response burden and data quality associated with a large questionnaire.There is a long
history of use of matrix sampling in other fields, primarily in educational statistics,but
there is a paucity of related research or practice in survey sampling. A review of matrix
sampling and a discussion of the issues arising in its implementation in surveys is given in
Gonzalez and Eltinge (2007). For recent work on estimation for matrix survey sampling,
see Gonzalez and Eltinge (2008), and Chipperfield and Steel (2009).

Recent uses of matrix sampling in various statistical agencies (e.g., US Bureau of La-
bor Statistics, British Office of National Statistics, Australian Bureau of Statistics), mark-
ing current trends and offering an outlook for future survey practice, relate to the integra-
tion of a number of existing independent household surveys for the additional benefit of
streamlined survey operations, harmonized survey content and data consistency. In this
non-ordinary matrix sampling setting, the distinct surveys may use subsamplesof a large
master sample or independent (and non-overlapping) samples from the same population. It
is to be noted that the advantages of matrix sampling are not always contingent on using
subsamples (necessarily dependent) of an initial sample. On the contrary,it may be more
practical in certain situations to use independent samples.

We consider four basic matrix sampling designs, varied in the number of subsamples
and the questions administered to each subsample:

a. Different (non-overlapping) sets of questions are administered to different (disjoint)
subsamples.

b. An additional common set of questions is administered to each subsample of design
(a). There are several reasons for surveying a core set of variables in all subsamples:

∗Athens University of Economics and Business, Patision 76, 10434 Athens, Greece

Section on Survey Research Methods – JSM 2010

4880



Special interest in some of those variables, and required high precision for related es-
timates; some variables may define subpopulations, and be used in cross-tabulations
of survey results; the correlation of these variables may be used for various purposes,
the most important of which, in the context of this paper, is to enhance the precision
of estimates for all variables.

c. This is a variant of design (a), which involves an additional subsample receiving the
full questionnaire. The prime motivation for this scheme is to enhance the analytic
capacity of the survey, by having responses to all questions from the units of the
additional sample, and to aid the the treatment of missing values.

d. This is a variant of design (c), in which the additional common set of questions is
administered to all subsamples. This design accommodates all survey requirements,
embodying all features of the previous designs.

In this paper we address the estimation problem in matrix sampling. A serious trade-off
in splitting a questionnaire is the reduction of the size of the sample that is availablefor
each of the survey variables, which implies loss of precision of survey estimates. For ma-
trix sampling designs (b), (c) and (d), involving overlapping subsets of questions, the dual
estimation task is to combine data on common variables from different subsamplesfor
improved estimation, and to exploit correlations among variables surveyed in different sub-
samples for more efficient estimation for all variables. We propose an estimation method
that uses a suitable calibration scheme for the sampling weights of the combined sample,
which is equivalent to a generalized regression procedure based on the principle of best
linear unbiased estimation. For simplicity of the exposition we deal with a matrix sampling
setting in which instead of subsamples of an initial sample we have independentbut non-
overlapping samples from the same population. In this context, the problem ofcombining
data from the two independent samples in case (b) has been dealt with in the literature; see,
for example, Renssen and Nieuwenbroek(1997), Merkouris (2004,2010) and Wu (2004).
In the following Sections 2 and 3 we describe the proposed method for design (c). We
conclude with a discussion in Section 4.

2. Best Linear Unbiased Estimation

A general estimation method for matrix sampling is illustrated for design (c) in the simple
case involving three independent samplesS1, S2 andS3, representing the populationU ,
with vectors of variablesx andy surveyed inS1 andS2, respectively, and both vectors
surveyed inS3.

We denote bywi the vector of design weights for sampleSi, i = 1, 2, 3, and byXi

andYi the sample matrices forx andy — the subscripts indicating the sample. We obtain
simple Horwitz-Thompson(H-T) estimateŝX1(= X

′

1w1) andX̂3 of the population total
tx, for x, based onS1 andS3, respectively, and estimateŝY2 andŶ3 of the totalty, for
y, based onS2 andS3. For more efficient estimation of the totalstx andty, we seek com-
posite estimateŝXc andŶc, respectively, that incorporate all the available information on
x andy in the three samples. Such composite estimates that are best linear unbiased esti-
mates (BLUE), i.e., minimum-variance linear unbiased combinations of the four estimates
X̂1, Ŷ2, X̂3 andŶ3, are given in matrix form by

(
X̂c

Ŷc

)
= P(X̂1, Ŷ2, X̂3, Ŷ3)

′

, (1)
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whereP = (W′V−1W)−1W′V−1, P the matrixW expressing the condition of unbi-
asedness is such thatPW = I, andV is the variance-covariance matrix of(X̂1, Ŷ2, X̂3, Ŷ3)

′

.
This estimation method was proposed by Chipperfield and Steel (2009), whoprovided an-
alytic expressions of the BLUE for scalarsx andy assuming simple random sampling and
knownV. They adopted the form of the BLUE found in the literature on composite estima-
tion in a different context of survey sampling; see Fuller (1990), Wolter (1979) and Jones
(1980). In general, computation of the BLUE is not practical, as only an approximation of
the trueP would be conceivable (based on an estimatedV) but exceedingly difficult, es-
pecially if the number of variables or the number of samples is large. It would be hopeless
if domain estimates were also of interest.

A simpler formulation of this estimation procedure is as follows. First, we express the
composite estimates in (1) explicitly as linear combinations of the H-T estimatesX̂1, Ŷ2,
X̂3 andŶ3, i.e.,

X̂c =

Ŷc =

B1xX̂1 +B2xŶ2 +B3xX̂3 +B4xŶ3

B1yX̂1 +B2yŶ2 +B3yX̂3 +B4yŶ3.

The condition of unbiasedness,E(X̂c) = tx andE(Ŷc) = ty, implies thatB3x = I−B1x,
B4x = −B2x andB4y = I−B2y, B3y = −B1y. Thus,P andW can be expressed as

P =

(
B1x B2x I−B1x −B2x

B1y B2y −B1y I−B2y

)
, W =

(
I 0 I 0

0 I 0 I

)
,

respectively, and the two composite estimates have necessarily the regression form

X̂c =

Ŷc =

X̂3 +B1x(X̂1 − X̂3) +B2x(Ŷ2 − Ŷ3)

Ŷ3 +B1y(X̂1 − X̂3) +B2y(Ŷ2 − Ŷ3).
(2)

Then writingP = (B, I−B), in obvious notation forB, we can write (1) as
(

X̂c

Ŷc

)
= B

(
X̂1

Ŷ2

)
+ (I−B)

(
X̂3

Ŷ3

)
=

(
X̂3

Ŷ3

)
+B

(
X̂1 − X̂3

Ŷ2 − Ŷ3

)
, (3)

the right-hand side of (3) being the matrix form of (2). The problem of finding the optimal
(variance-minimizing)P of the BLUE in (1) reduces then to that of finding the optimal
matrixB in (3). An estimated optimal̂B

o
is given by

B̂
o
= −Ĉov

( (
X̂3

Ŷ3

)
,

(
X̂1 − X̂3

Ŷ2 − Ŷ3

) )
V̂ar

−1

(
X̂1 − X̂3

Ŷ2 − Ŷ3

)
,

and because of the assumed independence of the three samples it reduces to

B̂
o
= V̂ar

(
X̂3

Ŷ3

)[
V̂ar

(
X̂1

Ŷ2

)
+ V̂ar

(
X̂3

Ŷ3

)]
−1

.

With such optimalB̂
o
, the composite estimator (3) is an optimal regression estimator, and

thus the BLUE in (1) withP̂ = (W′V̂−1W)−1W′V̂−1 (involving the estimated̂V, and
satisfyingP̂ = (B̂

o
, I − B̂

o
)) is an optimal regression estimator.

Writing the variance of an H-T estimator as a quadratic form in the associated vari-
able and with matrixΛ0 = {(πkl − πkπl)/πkπlπkl} (in terms of first-and-second order
probabilities of selection), and using some matrix algebra, it can be shown that

B̂
o
= (X

′

3Λ
0
X 3)(X

′

Λ0
X )−1 = (X

′

3Λ
0
X 3)(X

′

3Λ
0
X 3 +X

′

12Λ
0
X 12)

−1,
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where

X =




−X1 0

0 −Y2

X3 Y3




is the design matrix corresponding to the regression setup of the regression estimator (3),
X 3 is the matrixX with the first two rows set equal to zero,X 12 is the matrixX with the
third row set equal to zero, andΛ0 is the block-diagonal matrix diag(Λ0

i
) with the matrix

Λ0
i

associated with the sampleSi.
Although exact calculation of̂B

o
is theoretically and computationally easier than calcu-

lation ofP̂ , it is still a formidable task not least because the probabilitiesπkl are not known
for most sampling designs. The alternative approach of variance estimationby replication
methods is also not practical. An approximately optimal composite regression estimator is
developed in the next section.

3. Composite Generalized Regression Estimation

A computationally very convenient, but generally suboptimal, version ofB̂
o

is obtained
by replacing the matricesΛ0

i
with the diagonal matricesΛi, whose entries are the sam-

pling weights ofSi. This gives the multivariate composite generalized regression estimator
(CGREG)
(

X̂CGR

ŶCGR

)
= B̂

(
X̂1

Ŷ2

)
+ (I− B̂)

(
X̂3

Ŷ3

)
=

(
X̂3

Ŷ3

)
+ B̂

(
X̂1 − X̂3

Ŷ2 − Ŷ3

)
, (4)

whereB̂ = (X
′

3ΛX 3)(X
′

ΛX )−1, andΛ = diag(Λi).
The generalized regression procedure leading to the estimator (4) is a special calibration

procedure, involving the combined sampleS = S1∪S2∪S3, whereby a vector of calibrated
weightsc is constructed to satisfy the constraintsX̂CGR

1 = X̂CGR
3 andŶCGR

2 = ŶCGR
3

while minimizing the generalized least-squares distance(c − w)′Λ−1(c − w) betweenc
and the vectorw of the survey weights ofS. This vectorc is given by

c = w +ΛX (X
′

ΛX )−1(0−X
′

w),

and expression (4) is then obtained simply asX
′

3c. Note that using the calibrated weights
of sampleS3 only, we obtain the composite estimators in (4) directly in the simple linear
forms

X̂CGR = X
′

3c3 =
∑

S3

ckxk; ŶCGR = Y
′

3c3 =
∑

S3

ckyk.

Yet, a decomposition of the vectorc (Merkouris 2004) gives an analytical expression of (4)
of the form (2), which sheds light onto the structure of the CGREG estimator.Thus, if we
writeX = (X,Ψ), then

c = w + LΨX(X
′

LΨX)−1[X̂1 − X̂3] + LXΨ(Ψ
′

LXΨ)−1[Ŷ2 − Ŷ3], (5)

whereLX = Λ(I − PX) with PX = X(X
′

ΛX)−1X
′

Λ, andLΨ = Λ(I − PΨ) with
PΨ = Ψ(Ψ

′

ΛΨ)−1Ψ
′

Λ. It follows that

X̂CGR = X
′

3c3 = X̂3 + B̂1x(X̂1 − X̂3) + B̂2x(Ŷ2 − Ŷ3) (6)

= B̂1xX̂1 + (I− B̂1x)X̂3 + B̂2x(Ŷ2 − Ŷ3), (7)

in obvious notation for̂B1x and B̂2x. Similar is the expression for̂YCGR. It is seen
from (7) that the CGREG estimator̂XCGR derives its efficiency from combining the two
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elementary estimatorŝX1 andX̂3 (pooling information from samplesS1 andS2) and from
borrowing strength from sampleS2 through the correlation betweenx andy. The vectorc
can be expressed as

c = c
Ψ
+ LΨX(X

′

LΨX)−1[0− X
′

c
Ψ
],

where the vector
c
Ψ
= w +ΛΨ(Ψ

′

ΛΨ)−1[0−Ψ
′

w]

is generated by calibration of the design weights involving onlyΨ. Then, the estimator
X̂CGR takes the forms

X̂CGR = X
′

3c3Ψ
+X′

3LΨX(X
′

LΨX)−1[X
′

1c1Ψ
−X

′

3c3Ψ
] (8)

= X̂GR
3 + B̂1x[X̂1 − X̂GR

3 ] (9)

= B̂1xX̂1 + (I− B̂1x)X̂
GR
3 , (10)

whereX̂GR
3 is the generalized regression (GREG) estimatorX̂3+X

′

3ΛΨ(Ψ
′

ΛΨ)−1(Ŷ2−
Ŷ3), incorporating the regression effect of the last term in (7). The matrix regression
coefficientB̂1x is written explicitly asB̂1x = X

′

3LΨX(X
′

1Λ1X1 + X
′

3LΨX)−1, where
X

′

3LΨX = X
′

3Λ3X3 − X
′

3Λ3Y3(Y
′

2Λ2Y2 + Y
′

3Λ3Y3)
−1Y

′

3Λ3X3. If x andy were
orthogonal (uncorrelated), or if information ony was not used in the estimation oftx, then
it would beX̂GR

3 = X̂3 andB̂1x = X
′

3Λ3X3(X
′

1Λ1X1 + X
′

3Λ3X3)
−1 andI − B̂1x =

X
′

1Λ1X1(X
′

1Λ1X1 +X
′

3Λ3X3)
−1 . But the GREG estimator̂XGR

3 is more efficient than
the H-T estimator̂X3, and sinceX

′

1Λ1X1 + X
′

3LΨX < X
′

1Λ1X1 + X
′

3Λ3X3 (in the
partial order of non-negative definite matrices), it is clear that more weight is given to
X̂GR

3 in (10), throughI − B̂1x = X
′

1Λ1X1(X
′

1Λ1X1 + X
′

3LΨX)−1, than would have
been given to the component estimatorX̂3 in the simple composite estimator involving
only information onx. This suggests that the CGREG estimator in (10), incorporating
information from sampleS2, is a more efficient estimator.

If Λi, i = 1, 2, is replaced byΛ0
i
, in which case the estimator̂XCGR becomes the

optimal composite regression estimator, we getI− B̂o
1x = V̂ar(X̂1)[V̂ar(X̂1)+ V̂ar(X̂3)−

Ĉov(X̂3, Ŷ3)[V̂ar(Ŷ2)+V̂ar(Ŷ3)]
−1Ĉov

′

(X̂3, Ŷ3)]
−1. It is clear then that the stronger the

correlation betweenx andy the larger theI− B̂o
1x and more weight is given to component

X̂GR
3 . In this connection, it can been shown that the approximate (large sample) variance

of the optimal composite regression estimator iŝVar(X̂1)B̂
o
1x, and thus the stronger the

correlation betweenx andy the smaller becomes this variance.
In contrast withB̂o

1x, the suboptimal regression coefficientB̂1x gives a CGREG esti-
matorX̂CGR which in general is somewhat less efficient than the optimal composite re-
gression estimator. This observation extends to the overall regression coefficient B̂ vis a
vis the optimal coefficient̂B

o
defined above. The matrix̂B is, nevertheless, optimal in the

sense of minimizing the quadratic form in the sample residuals corresponding tothe regres-
sion setup leading to the CGREG estimator (4). For certain sampling designs,B̂ = B̂

o
,

and the CGREG estimator is optimal. For instance, this is true when the design for all three
samples is Poisson and thekth entry of the matrixΛi is divided byqik = πik/(1 − πik).
Other such designs include simple random sampling without replacement (SRRWOR) and
stratified (SRSWOR) with proper adjustmentsqik to the entries ofΛi and with an intercept
included in the design matrixX — see remark in the next paragraph. This property is
based on arguments found in Merkouris (2010). For general designs, the value ofqik = ni

should be used in the adjustment of the entries ofΛi to take into account the differential in
effective sample sizesni.

The three samples may collect information on some common auxiliary variablesz for
which the population totalstz are known. Then, the expression (7) of the CGREG estimator
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X̂CGR may include the additional ordinary GREG termsB̂3x(tz− Ẑ1)+ B̂4x(tz− Ẑ2)+
B̂5x(tz − Ẑ3), whereẐi, i = 1, 2, 3 is the H-T estimates oftz based onΛi. This estimator
has improved efficiency, as it incorporates additional information, and is generated by a
calibration procedure that includes the additional three constraintsẐCGR

i
= tz, and with

the design matrixX augmented with the block-diagonal matrixZ = diag(Zi). In analogy
with (10), but with different matrix coefficient̂B1x, the composite estimator̂XCGR takes
now the form

X̂CGR = B̂1xX̂
GR
1 + (I− B̂1x)X̂

GR
3 ,

whereX̂GR
1 andX̂GR

1 are GREG estimators using all information ony andz in the three
samples. This very realistic sampling setting, with the three samples having some common
variables with known totals, is in fact a special case of matrix sampling design (d). In
the simplest case whenZi is the unit column1 (with corresponding total the size of the
population), the regression setup contains an intercept and the CGREG estimator is optimal
for the sampling designs mentioned in the preceding paragraph.

4. Discussion

The proposed estimation method for matrix sampling produces composite estimatorsof
totals which are approximately (for large samples) BLUE, that is, they are approximately
unbiased, as special regression estimators, and approximately of minimum variance — in
certain sampling settings they are exactly BLUE.

The proposed method is computationally very convenient, requiring only a simple adap-
tation of the generalized regression procedure commonly used in statistical agencies. Op-
erationally, it involves a single-step calibration of the weights of the combined sample.
Estimates for all variables and at any population level can thus be obtained by using only
the relevant units of sampleS3 and their calibrated weights incorporating all the available
information from all three samples. Furthermore, carrying out the described calibration
procedure on the combined sample greatly facilitates variance estimation by replication
methods, such as the jackknife.

A generalization of the estimation method for matrix sampling with more than two
sets of questions is straightforward, making more evident the operational power of the
calibration procedure. The estimation method for matrix sampling scheme (d), and for
dependent subsamples of an initial sample will be discussed elsewhere.
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