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Abstract 

 
Sequential probability minimum replacement sample designs provide a practical 
methodology for selecting PPS samples that satisfy the requirement of positive pairwise 

probabilities and nonnegative variance weights. The exact solutions for the variance 

weights can lead to some unacceptable variance estimates such as zero estimates 

regardless of the observed values. This paper explores some alternative approximate 
variance estimators that avoid this problem.  Although not strictly unbiased, the variance 

estimates from alternate estimators can be shown to be nearly unbiased and to have less 

variability than the unbiased variance estimators based on the exact variance weights.  
Some comparisons to PPS systematic designs are also addressed with alternate variance 

weights. 
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The discussion in this paper follows from the discussion in a paper presented in the D.G. 

Horvitz Memorial session at the 2009 Joint Statistical Meetings (Chromy 2009).       

 

1. Overview 

 
PPS sampling is widely used to provide an opportunity to achieve a zero or near zero 

variance when the variable being observed is proportional to or nearly proportional to the 
size measure used in selecting the sample. It is also commonly used in selecting initial 

stages of the sample in multi-stage designs. Hansen and Hurwitz (1943) provide unbiased 

estimates for totals and their variances when utilizing with replacement PPS sampling.  

Horvitz and Thompson (1952) developed a general theory for unbiased estimation of a 
population total and the variance of the estimate when selecting PPS samples without 

replacement. They noted that unbiased estimation of the variance was only possible if the 

pairwise probabilities of selection were positive.  Even when the pairwise probabilities 
are positive, their computation is sufficiently complex that many practitioners use simpler 

approximate variance formulas which either ignore the gains from utilizing without 

replacement sampling or approximate the gain with an approximate finite population 

factor incorporated into Hansen-Hurwitz’ with replacement variance estimation formula. 
 

This paper examines the bias for some approximate variance estimation formulas when 

applied to variables in a simulated population when using two PPS without replacement 
designs: PPS-sequential (Chromy 1979, 1981) and PPS systematic (Madow 1949).  Both 

methods are available in SAS Proc SurveySelect (SAS Institute Inc., 2004) and both 

procedures are designed to take advantage of implicit stratification achieved through 
sorting the sampling frame by a frame variable related to the variables of interest. 

Williams and Chromy (1980) proposed a serpentine ordering method based on one or 
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more categorical variables and a final continuous variable.  The option for serpentine 

sorting is also available in SAS Proc SurveySelect. 
 

Note that both PPS sequential and PPS systematic designs can be used to select 

probability minimum replacement (PMR) designs.  PMR designs allow use of size 

measures greater than 1 over the sample size when size measures are highly unequal and 
the sample size is fairly large. To accommodate PMR designs it is useful to think in terms 

of expected sample size at the unit level (number of times a unit is selected).  In PMR 

designs, a unit will be selected either  )(
i

nE  or   1)( +
i

nE times. When all expected 

sample sizes are less than 1, the special case of PPS without replacement results. Notation 

for PMR designs is employed in this paper, but the simulated population used for the 
empirical study reduced to the special PPS without replacement case. To compare the 

usual without replacement notation to the PMR notation, it useful to define the 

probabilities  { }1)( +==
iii

nEnPπ  and    { }1)(,1)( +=+== jjiiij nEnnEnPπ  . 

 

3. PPS Sample Designs 

 
3.1 PPS Sequential Designs: When applied in the PPS without replacement sampling 

context with samples of size at least two, PPS sequential designs produce positive 

pairwise probabilities for all pairs of units with positive probability, ��� � 0 .for all � � 	.  
When applied in a PMR case, in addition to requiring a sample of at least size 2, it is also 

necessary for ∑ ��
�
�� � 2; then ������� � 0 and ��� � 0 .for all � � 	. 

 

The population total, � � ∑ ��
�
�� , then has an unbiased estimator, �� � ∑ ��/�

��
�����.The Yates-Grundy (1953) form of the variance estimator is then 
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Note than the value )}()()({ jiji nnEnEnE −  in the variance expression is the negative 

covariance of the achieved sample sizes for units i and j.  For PPS sequential designs, the 

covariance of any two sample sizes is always less than or equal to zero.  It tends toward 

zero as units in the frame get farther apart. As a result, all terms in the variance and in the 

variance estimator are positive or zero.   
 

3.2 PPS Systematic Designs: While the primary focus of this paper is on approximate 

variance estimators for the PPS sequential sampling, the same types of approximations 
can be applied to PPS systematic sampling designs. Systematic sampling also has the 

PMR property and has the same form of the formula for estimating the population total.  

The Yates-Grundy variance expression can also be applied to PPS systematic, but no 

unbiased variance estimator exists since  ������� � 0  and ��� � 0 for some � � 	.  
Systematic sampling and PPS systematic sampling greatly reduce the number of possible 

samples. The unit sample sizes for elements that can appear in the same sample together 
have a positive covariance and therefore the associated coefficients in the Yates-Grundy 
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variance expression are negative. Positive coefficients in the variance formula are 

associated with sample elements that cannot occur together in the same sample.     
 

5. Approximate Successive Difference Variance Estimators 

 

The approximate variance estimators considered in this research are successive difference 
estimators. Pairs of elements included in the estimator are limited to those that appear 

adjacent to each other in the ordered sample. Note that successive difference estimators 

can be viewed as the average of two pseudo stratum estimators with each pseudo strata 
containing two sample elements. For even n, one set of pseudo strata includes the pairs 

(1,2), (3,4),…,(n-3,n-2), (n-1, n) and the other contains the pairs (2,3), (4,5),….,(n-2,n-1), 

(n,1).  For odd n, the pseudo stratum approach requires the formation of one pseudo 
stratum with 3 elements.  The successive difference estimator avoids problems with odd 

sample sizes.  Because of the relationship of the pseudo stratum estimator to the 

successive difference estimator, the results reported in this paper should also apply to 

approximate variance estimators based on the pseudo strata of size 2.  
 

The approximate successive difference variance estimators studied were based on the 

with replacement (WR) form of the variance applied to pseudo stratum samples of size 2.  
A finite population correction factor is added to the formula to adjust for sampling 

without replacement (or with minimum replacement).  The general form is 
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The subscript t denotes the type of approximate finite population correction factor 

applied.   All four alternative variance estimators studied can be represented in this 

general form; the approximate finite population correction factors defining each 
approximation are shown in Table 1. 

 

Table 1.  Approximate Estimators Defined by Assumed Finite Population Correction 

t Description Computation 

1 With replacement (WR) �� ������ � 1 

2 Without replacement approximation 1 (WOR1) 
�� "����� �

# $ 2
#

 

3 Without replacement approximation 2 (WOR2), 
a particular solution from Kott (1998) �� %����� �

#&�� $ 2

#&��
 

#&�� �
1

�����
'

1

�����
 

4 Without replacement approximation 3 (WOR3) 
�� (����� �

2 $ �� $ ��

2
 

 
This paper is limited to examining the expected values of these approximate variance 

estimators in a simulated population with all variables known. The expected value of the 

each approximate estimator can be evaluated in the simulated population as: 
2
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The conditional expectation with adjacency was computed by decomposing the overall 

expectation of the product of the sample sizes into four components based on the 
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outcomes of the PPS sequential selection procedure: the achieved sample sizes for units i 

and j and the cumulative sample sizes achieved through units i and j. Only those 
components with the cumulative sample counts differing by exactly one were included in 

computing the adjusted expectation. 

 

For PPS systematic sampling the probability of being selected and being adjacent in the 
sample was more straightforward and involved determining the range of uniform (0,1) 

random numbers that would result in the selection of both units and then checking for 

their cumulative expected sample size separating the two was less than 1.
1
   

 

6. Generation of a Hypothetical Population 

 
The sampling schemes used in this empirical study were based on selecting PPS samples 

of size 10 from a population of size 50 with unequal sizes.  It was contrived to permit 

serpentine ordering with over a two-level categorical variable and a continuous sorting 

variable that was ascending for the first 25 units belonging to category 1 and descending 
for the last 25 units belonging to category 2. This is the type of situation that samplers 

assume exists and makes sampling from an ordered list particularly effective when using 

either PPS sequential or PPS systematic sampling. 
 

The steps in generating the hypothetical population were: 

1. Generate an approximate size measure, Z, from the lognormal distribution with 
normal mean of 8.8 for category 1 units and 9.2 for category 2 units.  Both categories 

were simulated with a normal variance of 0.5.   

2. Generate a true size from the lognormal with parameters, log Z and 0.05. 

3. Generate a sorting variable, V, from the normal(0,1) distribution. 
4. Generate a proportion variable, P, from the beta distribution to achieve intraclass 

correlations, ρ=0.01, 0.02, 0.04, 0.06, 0.10 by setting α=0.1(1-ρ)/ρ and β=0.9(1-ρ)/ρ. 

5. Setting the magnitude of the ordered disturbance variable, γ, to 0.01, 0.02, 0.04, 0.06, 
and 0.10. 

6. Generating  80 variables, Y, from the model, Y=PXe
γV  

based on the four intraclass 

correlation variables and five ordered disturbance variables all replicated four times. 

 
It was then possible compute the expected value of the unbiased variance estimator and 

for each of the four approximate estimators for the PPS sequential design.  Note that the 

formula for the expected value matches the formula for the true variance when using the 
PPS sequential design.   

 

While no unbiased variance estimator exists for the variance from a PPS systematic 
sample, it is possible to compute the true variance using the same formula and to compute 

the expectation of the approximate variance estimators.  

 

7. Empirical Comparisons 
 

7.1  PPS Sequential Sampling: Figure 1 shows variance weights for the simulated 

population when using PPS sequential sampling.  Note in the left panel, that these 
weights become small (<0.001) as units get farther apart.  The positive coefficients in the 

corners reflect that the method allows for a random start and the ordered frame can be 

                                                
1 Additional detail can be provided by the author, but a full description would dominate the 

remainder of the discussion in this paper. 
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viewed as being arrayed around a circle. Picking a random start on the circle then 

guarantees that the products of all pairs of sample sizes have positive expectation.  The 
WR approximation weights are shown in the right panel actually become zero when units 

are farther apart and no longer can be adjacent in any selected sample. The WR weights 

are an upper bound for the WOR approximate weights.  

 

Figure 1.  Left Panel: Positive Pair Weights (>0.001) for PPS Sequential Sampling 

for a PPS Sequential Sample of 10 out of 50: True Variance (Expectation of 

Unbiased Estimator) 

Right Panel: Positive Pair Weights for the Expected Value of the Approximate 

Variance Estimators for PPS Sequential Sampling (>0.001 for the WR  

approximation) 

              
 

Table 2 shows relative standard errors for the simulated variable outcomes.  The entries 

are the average over four replications with five levels of the perturbation factor and four 
levels of the intraclass correlation.  The approximation based on the WR weights is 

consistently high and is generally considered to be conservative by practitioners.  The 

other three approximations tend to over-correct and have expected values below the true 
value but only moderately so.  Their stability relative to the unbiased estimates remains to 

be investigated.  The relationship of the expected values of the approximate estimates 

appears to remain fairly close and consistent across different levels of implicit 
stratification effects and intraclass correlations used to generate the observed variables.  

Further investigation of these relationships with some variation in the sampling rate 

appears warranted before making a general recommendation. Based on the expected 

values alone and on the current availability of computing power, the use of the unbiased 
estimator for single stage designs should be strongly considered as more software 

products support this approach.  
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Table 2.  Relative Standard Errors (Percent) of Estimates and Four 

Approximations for PPS Sequential Samples of Size10 from a Simulated 

Population of Size  50: Averages Over 4 Replications for Five Levels of a 

Perturbation Factor, V, Simulating Increased Ordering Effects and Four Levels of 

an Intraclass Correlation, RHO, Simulating Increased Variability at the PSU Level 

V RHO TRUE WR WOR1 WOR2 WOR3 

0.01 0.01 7.9 8.3 7.5 7.4 7.2 

0.01 0.05 17.9 19.7 17.6 17.3 16.9 

0.01 0.10 26.3 28.0 25.1 24.6 24.2 

0.01 0.20 34.7 36.5 32.7 32.0 31.4 

0.02 0.01 8.8 9.2 8.2 8.1 7.9 

0.02 0.05 18.9 20.5 18.3 17.7 17.4 

0.02 0.10 24.9 27.5 24.6 24.2 23.8 

0.02 0.20 41.1 43.7 39.1 38.9 38.1 

0.04 0.01 8.3 8.9 7.9 7.8 7.7 

0.04 0.05 16.0 17.4 15.5 15.3 15.0 

0.04 0.10 26.7 29.7 26.5 26.0 25.4 

0.04 0.20 39.1 41.6 37.2 36.4 35.8 

0.06 0.01 7.5 8.1 7.2 7.1 6.9 

0.06 0.05 17.8 19.9 17.8 17.5 17.1 

0.06 0.10 26.9 29.6 26.5 25.9 25.4 

0.06 0.20 41.7 44.7 40.0 40.0 39.3 

0.10 0.01 8.0 8.7 7.7 7.7 7.5 

0.10 0.05 19.3 21.7 19.4 18.9 18.5 

0.10 0.10 26.4 27.5 24.6 24.2 23.8 

0.10 0.20 35.2 38.5 34.5 33.7 33.0 

Average 22.7 24.5 21.9 21.5 21.1 

 

 

7.2 PPS Systematic Sampling: Figure 2 shows the pattern of variance weights for the 

simulated population when using PPS systematic sampling.  The left panel illustrates that 
contributions to the true variance come from essentially all pairs.  The expected sample 

sizes for units that can be in the same systematic sample are positively correlated yielding 

a positive covariance. Since the weights in the Yates-Grundy form of the variance 
estimate are negative covariances of the achieved sample sizes, this means that units that 

can appear in the same sample have negative contributions to the true variance. When 

using an approximation based on successive differences, a positive applied to a nearest 

neighbour subset of pairs that have negative weights in the true variance expression as 
shown in the right panel of Figure 2.  

 

Table 3 shows relative standard errors for the simulated variables when using PPS 
systematic sampling.  True values and four approximations are shown.  The WR 

approximation is conservatively high in every case studied.  The WOR approximations 

are also generally high with several exceptions where the opposite is true.  One might 
expect that as the implicit stratification effect due to ordering on a perturbation factor 

increases that the true variance would increase more rapidly than approximations since 
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the true variance weights pairs that are not necessarily near each other. This occurs for 

some cases, but not consistently.  
 

Figure 2. Results for PPS Systematic Sampling of 10 out of 50 

Left Panel: Non-zero Variance Weights (Absolute Value >0.001) 

Center Panel: Negative Variance Weights (<0.001) 

Right Panel: Positive Variance Weights for WR Approximation  

 
 

8. General Conclusions 

 

In comparing the suitability of successive difference approximations for PPS sequential 
and PPS systematic designs, approximations for the PPS sequential design will be close 

because at least one of two conditions is likely to hold: (1) adjacent units capture the 

benefits of implicit stratification, and (2) the weights in the unbiased variance estimator 
tend toward zero for elements that are not likely to be adjacent in the sample.  

Approximations for the PPS systematic depend solely on the first condition. This may 

explain the less consistent of behaviour of the expected values of approximations for PPS 

systematic sampling. These conclusions should also apply to approximations based on 
pseudo strata formed by portioning the ordered list of selected units. 

 

The WR approximation to the variance for PPS sequential and PPS systematic appears to 
be the safe road to follow for those who do not wish to overstate the statistical 

significance of their results.  This appears to hold up well without excessively 

overestimating standard errors with a sampling rate as high as 1 in 5 used in the 

simulations.  Using the approximate WOR formulas runs some risk of underestimating 
the true variance, but this did not appear to be excessive. At higher sampling rates, use of 

the WR formula may clearly lead to denying the precision of the data and some 

recognition of the finite population correction may be essential.  In multistage sampling, 
the concern about overestimating the variance is diminished if the first stage component 

of variance is moderately small.  Further modeling and simulation of multi-stage designs 

is needed to enlighten decisions about the use of finite population correction factors for 
multi-stage designs.   
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Table 3.  Relative Standard Errors (Percent) of Estimates and Four 

Approximations for PPS Systematic Samples of Size10 from a Simulated 

Population of Size  50: Averages Over 4 Replications for Five Levels of a 

Perturbation Factor, V, Simulating Increasing Ordering Effects and Four Levels of 

an Intraclass Correlation, RHO, Simulating Increased Variability at the PSU Level 

V RHO TRUE WR WOR1 WOR2 WOR3 

0.01 0.01 6.1 9.3 8.3 8.2 8.1 

0.01 0.05 17.3 20.7 18.5 18.1 17.7 

0.01 0.10 25.3 29.3 26.2 25.7 25.1 

0.01 0.20 28.7 38.4 34.4 33.5 32.8 

0.02 0.01 8.8 9.2 8.3 8.1 8.0 

0.02 0.05 14.9 21.6 19.4 18.6 18.2 

0.02 0.10 23.4 29.0 25.9 25.3 24.9 

0.02 0.20 44.9 46.6 41.7 41.6 40.6 

0.04 0.01 8.6 9.3 8.4 8.2 8.1 

0.04 0.05 12.7 18.8 16.8 16.5 16.1 

0.04 0.10 26.9 30.8 27.5 26.9 26.2 

0.04 0.20 36.8 45.2 40.4 39.5 38.7 

0.06 0.01 6.8 8.4 7.5 7.3 7.2 

0.06 0.05 18.7 21.0 18.8 18.4 18.1 

0.06 0.10 23.4 31.1 27.8 27.2 26.7 

0.06 0.20 39.9 47.9 42.8 42.8 41.8 

0.10 0.01 7.0 9.2 8.2 8.1 8.0 

0.10 0.05 19.4 23.3 20.8 20.3 19.8 

0.10 0.10 22.8 29.5 26.4 25.8 25.4 

0.10 0.20 36.6 40.5 36.3 35.3 34.5 

Average 21.4 26.0 23.2 22.8 22.3 
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