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Abstract
Statistical models are often used to assist estimation of descriptive statistics from surveys. Perhaps
the most common estimator is the Generalized Regression Estimator (GREG) which is design con-
sistent, uses a linear assisting model, and results in a set of calibrated weights. However, when the
variable of interest is binary, binomial, or multinomial, it may be more appropriate to use a logistic
assisting model instead of the standard linear model. In this paper we develop point and variance
estimators for totals of finite population characteristics from a clustered sample assisted by a logistic
regression model. Using a national Public Use Microdata set we compare the design-based prop-
erties of the new estimator to the GREG and the Horvitz-Thompson estimator under two clustered
sample designs.
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1. Introduction

Data collected from surveys are often organized into discrete categories. Analyzing such
categorical data from a complex survey often requires specialized techniques. In this pa-
per, we describe one technique used to estimate the total of a categorical variable from a
complex survey with clustering. The method we propose is an extension of the Generalized
REGression estimator (GREG).

Generalized regression is a popular design-based method used in the production of
descriptive statistics from survey data. Generalized regression is attractive because it re-
sults in a common set of weights that can be used for all variables in a dataset, estimated
totals from the survey can be made to match known population controls, and often the sam-
pling variance of an estimator is reduced through borrowing strength from a linear assisting
model.

Although the GREG is design-consistent regardless of the form of the assisting model,
the sampling error of the GREG is a function of the assisting model. In fact, assisting
models that fit the data well generally result in estimators that have lower sampling variance
than GREGs based on poorly fit assisting models.

In classical statistics, it is common to use logistic regression to model data with di-
chotomous outcomes. Such models are dominant because they assure that the predicted
probability of an event is bounded between 0 and 1. Moreover, logistic models tend fit
binary data better than models based on linear regression.

Thus, it seems natural to use a logistic assisting model instead of a linear assisting
model when the variable of interest is categorical. Model-assisted estimators motivated by
a logistic model have rarely been explored or used, despite their potential advantages over
the GREG. In this paper, we aim to expand previous research by providing a new vari-
ance estimator for the Logistic GREG (LGREG) in single stage with-replacement samples.
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Moreover, we also aim to explore point and variance estimators of the LGREG in clustered
samples.

2. Previous Literature

Logistic regression is often used in the analysis of categorical data and has been well stud-
ied for decades from the model-based framework; however, very little has been written
about how to use logistic regression models to estimate finite population quantities un-
der complex sample designs. In this section, we highlight some of the main points of the
model-based literature and discuss the small body of literature that uses logistic regression
to assist finite population estimation. After motivating and defining logistic regression, we
describe some of the technical details regarding how logistic regression models are built
and how parameters are estimated from the model-based framework. Lastly, we briefly
review how previous authors have suggested using logistic regression to assist estimating
finite population quantities.

2.1 Introduction to Logistic Regression

Logistic regression is a popular method used to analyze binary, binomial, percent, and
multinomial response data. It is widely used in medical and epidemiological studies, eco-
nomics, survey methodology, and a host of other fields. Unlike linear regression, logistic
regression is well suited to the analysis of binary and binomial data because predicted val-
ues are bounded, the interpretation of coefficients is closely linked to the odds ratio, and
the variance of the observations does not need to be independent of the mean.

Numerous textbooks and papers devote attention to the model fitting, parameter esti-
mation, and interpretation of logistic regression (see Agresti (2002), Bishop et al. (2007),
McCullagh and Nelder (1999), Hosmer and Lemeshow (2000), Hilbe (2009), and Shao
(2003)). All of these introductory texts focus on estimating superpopulation parameters,
such as β. However, none of them discuss how logistic regression can be used to make
inference to descriptive statistics such as finite population totals, quartiles, and means.

Hilbe (2009)[p. 270] argues that the term Logistic Regression is used to describe sev-
eral different kinds of models that can be characterized by the distribution of the response
variable. In this paper, we provide results for binary logistic regression, binomial logistic
regression, and multinomial logistic regression. Logistic regression is also often used to
describe ordered categorical data, such as responses from Likert scales. The motivation,
computation, and analysis of such data is different enough from the unordered cases that
we do not consider ordered logistic regression in this paper.

2.2 Binary Logistic Regression

In binary logistic regression, the response variable is a Bernoulli random variable. Binary
logistic regression is commonly used when the response can take one of two values. For
example, it can be used to model the presence or absence of a disease, whether an elemen-
tary school student is proficient at math or not, whether a person has been a victim of a
violent crime, whether a housing unit is vacant or not, whether a sample unit will respond
to a survey request or not, and whether someone was satisfied with a product or not. In
logistic regression, the response variable, yk, can take on one of two values, usually written
as 0 for failure or 1 for success.
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2.3 Binomial Logistic Regression

In binomial logistic regression, the response variable, yk, is a binomial random variable
that can be any natural number from 0 to zk. The binomial distribution is characterized
by the number of successful events that occurred in a fixed number of independent trials.
The total number of trials, zk, can be different from one sample unit to another, but must
be a known nonrandom quantity. For example, if school enrollment is fixed and known,
the total number of students receiving a free or reduced lunch can be modeled with the
binomial distribution. If the total number of mailable households in every Census tract is
known, then the total number of households that would not participate in a mail census
can be modeled by a binomial distribution. Binary logistic regression is a special case of
binomial logistic regression when the total number of trials for all units in the population is
fixed at 1.

2.4 Multinomial Logistic Regression

Multinomial logistic regression can be used to model a response vector where each element
in the random vector is an independent Poisson random variable. The multinomial distri-
bution is the joint distribution of all of the Poisson random variables conditional on the sum
of the Poisson variables (McCullagh and Nelder (1999)).

Thus, one way to conceptualize the multinomial distribution is to consider C indepen-
dent Poisson random variables. The response for the kth unit is a C-valued column vector
where each element of the random vector is a Poisson random variable, denoted ykc. The
multinomial distribution is the multivariate distribution of yk conditional on the sum of the
Poisson random variables,

∑C
c=1 ykc = zk.

An alternative way to conceptualize the multinomial distribution is to define C mu-
tually exclusive and exhaustive categories indexed by the letter c. Notice that c indexes
categories; while k indexes units. For the kth unit, we measure how many times zk items
fall into each of the c categories. The result of this measurement is a C-valued column
vector for the kth unit, called yk.

Questions with multinomial outcomes are quite common in surveys. Questions where
respondents must select one in a series of options can be modeled by a multinomial distri-
bution. For example, the American Community Survey asks “Which FUEL is used MOST
for heating this house, apartment, or mobile home?” followed by nine response options. In
this case, C = 9 and zk = 1. Often zk is fixed to be 1 so that yk is a vector with C − 1
elements equal to 0 and exactly one element equal to 1.

In studying time usage, we could divide the day into minutes and categorize each
minute into one of three categories: eating, sleeping, and other. In this case, the total
number of minutes in the day is known and fixed at 1,440. If all respondents place the total
number of minutes they spend in each category, then the vector of length three containing
the hours spent in each category is an example of a multinomial random variable. One
example of yk is

yk =




yeating,k

ysleeping,k

yother,k


 =




90
480
870




Since zk =
∑C

c=1 ykc, one of the responses is usually removed from yk to make it
independent of zk. Thus, yk is often recoded to be a C− 1 dimensional vector.
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2.5 Logistic Model

The most important difference between linear regression and logistic regression is that in
logistic regression a nonlinear transformation of the expected value of the response vari-
able is related to explanatory variables while in linear regression the expected value of the
observed response variable is linearly related to explanatory variables. The simple linear
regression model for the kth unit can be written as

E (yk) = µk = x>k β (1)

where xk and β are p-dimensional vectors. For binary logistic regression, the correspond-
ing regression model is

E (yk) = µk =
ex>k β

1 + ex>k β
(2)

For binomial logistic regression, the corresponding regression model is

E (yk) = µk =
zke

x>k β

1 + ex>k β
(3)

For multinomial logistic regression, the corresponding regression model is

E (yk) = µk =
zke

x>k β

1 +
∑C−1

c=1 ex>k β
(4)

In the multinomial case, β is a p by C matrix and µk is a row vector of length C. Ele-
mentwise division is performed in (4). For example, suppose we wish to model the three
time-usage categories with a model that includes an intercept and the person’s age. In this
case,

β̂ =

[
β̂intercept,eat β̂intercept,sleeping β̂intercept,other

β̂age,eat β̂age,sleeping β̂age,other

]

In the design-based framework, inference is often made to finite population quantities
instead of superpopulation parameters. Thus, the finite population models are identical to
the models above, with the exception that β is replaced by B, where B is the estimate of β
that would be obtained if the entire finite population was in the sample.

2.6 Point Estimators of a Total

Surveys are often used to estimate totals of a finite population characteristic. One of the
earliest and most studied estimators of a finite population total is the Horvitz-Thompson
estimator,

t̂πy =
∑

s

wkyk

where s denotes the sample, πk is the probability of selecting unit k, wk = 1
πk

denotes
the sampling weights, yk is the characteristic of interest, and k indexes units in the sample.
Although the Horvitz-Thompson estimator is design-unbiased, it can be quite inefficient.
Thus, estimates from a single sample may be far from the true value, especially if the
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probabilities of selection are negatively correlated with the characteristic of interest (see
Basu (1971) and Little (2004)).

From the model-based framework, sometimes the projective estimator is used. The
projective estimator is the sum of predicted values for the complete population. That is,

t̂pro
y =

∑

U

µ̂k

where µ̂k is the fitted value from a model and U is the set of all population units. In
general t̂pro

y is a model-based estimator and not design-consistent. However, under cer-
tain conditions and estimation procedures, Firth and Bennett (1998) show that t̂pro

y can be
design-consistent. Valliant (1985) studied a closely related model-based estimator called
the prediction estimator for binary regression.

The GREG is an alternative estimator that uses a model to assist design-based estima-
tion. Särndal et al. (1992) discuss GREG estimators of the general form,

t̂gy = t̂pro
y +

∑
s

wkeks

where eks = yk − µ̂k. When the GREG is written in this form, we can easily see that
the GREG is the projective estimator of the finite population total with a weighted adjust-
ment based on residuals. Robinson and Särndal (1983) show that the GREG is design-
consistent and asymptotically design-unbiased in single stage samples. Moreover, Särndal
et al. (1992, p. 226) argue that the single-stage GREG often has lower variance than estima-
tors that are not assisted by a model. In official statistics, the GREG is often used because
it has the calibration property. That is, the weighted sum of the explanatory variables are
forced to equal known population totals. Särndal (2007) reviews many of the advantages to
using the GREG over design-based methods that are not assisted by a model.

If the response variable is a Bernoulli, binomial, or multinomial random variable, it
is more natural to use a logistic assisting model than a linear assisting model. Lehtonen
and Veijanen (1998) provide one design-consistent method that uses an assisting logistic
model. Their estimator, called the LGREG, has not been developed in complex samples
with clustering. In one stage of sampling, the LGREG for a binary response is written as

t̂LG
y =

N∑

k=1

µ̂k +
n∑

k=1

wkek (5)

where ek = yk−µ̂k. If B̂ is calculated using weighted pseudo maximum likelihood estimat-
ing equations, then t̂LG

y will be a design-consistent estimator of the population total under
a variety of sample designs, including multiple stage samples. Since the first summation is
over the entire universe, xk must be known for all units in the population. For this reason,
using the LGREG requires a sampling frame complete with all explanatory variables used
in the assisting model for all units in the population. Many address-based sampling frames,
business registers, and trade association lists contain a wealth of covariates.

2.7 Variance Estimator of LGREG in Unclustered Samples

Lehtonen and Veijanen (1998) recommend estimating the variance of t̂LG
y with

υLV =
∑∑

s

∆kl

πkl

(
ek

πk

)(
el

πl

)
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where ∆kl = πkl−πkπl. However, this simple variance estimator will generally underesti-
mate the sampling error in clustered samples because it does not account for the correlation
between clusters. Moreover, in small samples, it may poorly estimate the variability of t̂LG

y

because it estimates the asymptotic variance of t̂LG
y rather than the exact variance of t̂LG

y .
The variance estimator proposed by Lehtonen and Veijanen (1998) also requires knowl-
edge of joint inclusion probabilities, which often are impossible to compute or unavailable
to data analysts.

3. New Estimators

3.1 Alternative Variance Estimators of LGREG in Unclustered Samples

Commonly, with-replacement variance estimators are used even when the first stage sam-
ple is selected without-replacement. As long as the sampling fraction is relatively small,
the bias of using a with-replacement variance estimator is relatively small. Furthermore,
any bias in the with-replacement variance estimator tends to be positive, thus making the
with-replacement variance estimator conservative. Särndal et al. (1992, sec 4.6) discuss the
classic with-replacement variance estimator of a total and provide some limitations for us-
ing the with-replacement variance estimator for samples selected without-replacement. For
estimating the variance of the Horvitz-Thompson estimator, the with-replacement variance
estimator is

υwr,π =
1

n (n− 1)

n∑

k=1

(
yk

pk
− t̂πy

)2

(6)

where pk = πk
n is the probability of drawing the kth unit in single draw and n is the

total number of sample units. We can modify (6) for the LGREG by replacing yk
pk

with
t̂LG
yk =

∑
U µ̂k + ek

pk
and t̂πy by t̂LG

y = 1
n

∑n
k=1 t̂πyk which equals the LGREG in (5). For

the LGREG, the with-replacement variance estimator is

υwr =
1

n (n− 1)

n∑

k=1

[
N∑

k=1

µ̂k +
ek

pk
−

(
N∑

k=1

µ̂k +
n∑

k=1

wkek

)]2

=
1

n (n− 1)

n∑

k=1

(
ek

pk
− t̂πe

)2

=
n

(n− 1)

n∑

k=1

(
ek

πk
− ̂̄e

)2

where

t̂πe =
n∑

k=1

wkek

̂̄e =
t̂πe
n

A second alternative variance estimator uses implicit differentiation. First described by
Binder (1983), implicit differentiation uses linearization and estimating equations to pro-
duce design-consistent estimators of finite population parameters. Implicit differentiation
is especially useful when the parameter of interest cannot be solved explicitly in closed
form. Both Binder (1983) and Särndal et al. (1992)[section 13.4] give several examples
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of how implicit differentiation can be used to construct design-consistent estimators of B
from a logistic regression model. An advantage of implicit differentiation is that variance
estimators can easily be computed from the estimating equations,

Ŵ (θ) = 0 (7)

where

θ
(q+1)×1

=
[

tLG
y

B

]
(8)

and

Ŵk (θ)
(q+1)×1

=




wk (yk − µk)−
(
tLG
y −∑N

k=1 µk

)

wk (yk − µk) x1k
...
wk (yk − µk) xqk




(9)

Ŵ (θ)
(q+1)×1

=
n∑

k=1

Ŵk (θ) (10)

The value of θ that solves the estimating equations, Ŵ (θ), is denoted θ̂.
Simultaneously solving for B and tLG

y has the advantage that it simplifies variance es-
timation. Moreover, it results in the complete covariance matrix containing the estimated
covariances between t̂LG

y and B̂. The variance estimator obtained from implicit differenti-
ation has the form,

υ
(
θ̂
)

=
[
Ĵ−1

(
θ̂
)] [

Σ̂
(
θ̂
)] [

Ĵ−1
(
θ̂
)]>

where

Ĵ
(
θ̂
)

=
∂

∂θ̂
Ŵ

(
θ̂
)

and Σ̂
(
θ̂
)

is an estimate of the design-based variance of Ŵ. Assuming with-replacement
sampling,

Σ̂ =
n

n− 1

n∑

k=1

[
Ŵk − Ŵ

] [
Ŵk − Ŵ

]>

The variance estimator for t̂LG
y is the element in the upper left-hand corner of υ

(
θ̂
)

.
For example, suppose we wish to estimate the total number of students in the country

who are receiving a free or reduced lunch. We formulate an assisting binomial logistic
model with the poverty rate of the neighborhood around the school as a covariate. Our
theoretical model for school k is,

µ̂k =
zke

α̂+xkB̂

1 + eα̂+xkB̂
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where zk is the school enrollment and xk is the poverty rate around the school. We have
three parameters to estimate,

θ =




tLG
y

α
B




and the estimating equations are

Ŵ
(
θ̂
)

=




∑n
k=1

{
wk

(
yk − zkeα̂+B̂xk

1+eα̂+B̂xk

)
−

(
t̂LG
y −∑N

k=1
zkeα̂+B̂xk

1+eα̂+B̂xk

)}

∑n
k=1 wk

(
yk − zkeα̂+B̂xk

1+eα̂+B̂xk

)

∑n
k=1 wk

(
yk − zkeα̂+B̂xk

1+eα̂+B̂xk

)
xk




The Jacobian of the estimating equations is

Ĵ
(
θ̂
)

=
n∑

k=1




−1 −wk
zkeα̂+B̂xk(

1+eα̂+B̂xk
)2 +

∑N
k=1

zkeα̂+B̂xk(
1+eα̂+B̂xk

)2 −wk
zkeα̂+B̂xk(

1+eα̂+B̂xk
)2 xk +

∑N
k=1

zkeα̂+B̂xk(
1+eα̂+B̂xk

)2 xk

0 −wk
zkeα̂+B̂xk(

1+eα̂+B̂xk
)2 −wk

zkeα̂+B̂xk(
1+eα̂+B̂xk

)2 xk

0 −wk
zkeα̂+B̂xk(

1+eα̂+B̂xk
)2 xk −wk

zkeα̂+B̂xk(
1+eα̂+B̂xk

)2 x2
k




3.2 LGREG in Clustered Samples

In clustered samples, the LGREG is

t̂LG
y,II =

M∑

i=1

Ni∑

k=1

µ̂ik +
m∑

i=1

ni∑

k=1

wik (yik − µ̂ik)

=
N∑

k=1

µ̂k +
n∑

k=1

wk (yk − µ̂k)

where M is the total number of clusters in the population, m is the total number of clusters
in the sample, Ni is the number of elements in cluster i, ni is the number of sample elements
in cluster i, n =

∑m
i=1 ni, and N =

∑M
i=1 Ni.

3.3 Variance Estimators of LGREG in Clustered Samples

The with-replacement variance estimator for a cluster sample is similar to the with-replacement
variance estimator for unclustered samples. The one exception is that weighted cluster to-
tals are used instead of unit responses. For the LGREG, the with-replacement variance
estimator is

υwr,II =
m

(m− 1)

m∑

i=1

(
êi − ̂̄e)2

where

ek = yk − µ̂k

êi =
ni∑

k=1

ek

πk

̂̄e =
1
m

m∑

i=1

êi
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The implicit variance estimator for clustered samples is similar to the implicit variance
estimator for unclustered samples. In fact Ĵ

(
θ̂
)

is the same for both estimators. The key

difference is that Σ̂ (θ) must be estimated with respect to the sample design. Assuming a
with-replacement sample of clusters gives

Σ̂ =
m

m− 1

m∑

i=1

[
Ŵi − Ŵ

] [
Ŵi − Ŵ

]>

where

Ŵi =
ni∑

k=1

Ŵk

That is, Ŵi is the sum of Ŵk over all sample units in cluster i. Recall that Ŵk was
previously defined in (9).

4. Methodology

4.1 Pseudo-Populations

We conducted two sets of simulations to test how the LGREG and the two new variance
estimators performed in clustered samples. In the first set of simulations, we evaluated how
the LGREG and the variance estimators performed in large samples under ideal conditions.
The second set of simulations were designed to evaluate the LGREG and the variance
estimators under more realistic conditions.

4.2 Ideal Population

For the first set of simulations, we generated a clustered population of binary, binomial,
and multinomial random variables.

First we generated M = 30,000 clusters of size Ni = 11+λi where λi is a random draw
from an exponential distribution with parameter 0.25. To assure that Ni was an integer, we
rounded λi to the nearest whole number. Overall, the pseudo population contained N =
450,265 units.

Next, we generated our auxiliary variable using a hierarchial process to simulate a
clustering effect. For each unit, we created an auxiliary variable using the model xk =
δi + εk where δi was a draw for the ith cluster from a standard normal distribution and εk

was a draw from a normal distribution with mean of 0 and a standard deviation of 0.1.
Using the explanatory variable, we generated random response variables. For the binary

response, we drew a random number from a Bernoulli distribution with a parameter of
πk = e.5+3xk

1+e.5+3xk
. For the binomial response variable, we drew a random number from a

binomial distribution with a probability of success πk in zk = 10 + λk trials where λk was
a draw from an exponential distribution with parameter of 0.01. To assure that zk was an
integer, we rounded λk to the nearest whole number. Lastly, for the multinomial response,
we generated a random vector of length 3 using the rmultinomial() function from the
mc2d package in R. The probabilities generating the multinomial random vector were set
to be: π1k = e.5+3xk

1+e.5+3xk+e−.5+2xk
, π2k = e−.5+2xk

1+e.5+3xk+e−.5+2xk
, and π3k = 1 − (π1k + π2k).

The sum of the three random elements was set to be zk.
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4.3 Realistic Population

The second pseudo-population was derived from Census 2000 data. We downloaded Cen-
sus 2000 housing unit and population data from Summary File 3 for California, Florida,
and New York from the US Census Bureau’s website. We then subset the data to block
groups with at least one occupied housing unit and one person. Furthermore, all ”orphan”
tracts, tracts containing only one valid block group, were removed. We read in the follow-
ing variables: Total Number of Occupied Housing Units in the block group (H007001),
Total Number of Housing Units being rented in the block (H007003), and the Percent of
persons living at or below the poverty line (P088002 + P088003 + P088004) / P088001.

We used the dataset to estimate the total number of rental housing units in California,
Florida, and New York. If one has a complete address list of housing units for these three
states, one can use the LGREG to improve estimation over the basic Horvitz-Thompson
estimator.

The motivating sample design is to select tracts in the first stage of sampling. Then,
within sample tracts, a set of block groups is selected. The block group is treated as the
ultimate sampling unit. A survey is then conducted within the sample block groups to
determine the total number of rental units in each sample block group.

Overall, this population has 13,135 primary sampling units (tracts) and 44,032 ultimate
sampling units (block groups).

We used a binomial logistic regression assisting model to estimate the total number
of rental units in California, Florida, and New York. The assisting model contained an
intercept and the percent of persons living at or below the poverty line in each block group.

4.4 Sample Design

We used the UPrandomsystematic() function in the sampling package of R to
select all the samples (Tillé and Matei 2009). This function selects a randomized systematic
sample by sorting the population into a random order and then selecting a sample with
probabilities proportional to a size measure.

We tested how the LGREG preformed under two realistic sample designs: simple ran-
dom sampling without replacement (srswor) and probabilities proportional to size sam-
pling (πps). For the srswor design, we first selected a simple random sample of clusters
without replacement. From the list of sample clusters, we selected a simple random sam-
ple of units. Because the clusters varied in size, the srswor design resulted in unequal
probabilities of selection at the unit level. For the πps design, we selected clusters with
probabilities proportional to the number of elements in each cluster. We selected the first
stage sample without replacement. Within each cluster, we selected a simple random sam-
ple without replacement of units. Such a sample design is common in area frame sampling
and results in a sample of units with equal probabilities of selection.

In the ideal population, we selected a sample of 1,500 clusters. From each cluster,
a sample of 2 units were selected. In the realistic population, we selected two different
samples; one design to investigate the LGREG in large samples, and the other to investigate
the LGREG in smaller samples. The first sample contained 1,500 clusters; while the second
sample contained 20 clusters. From the sample cluster, two units were randomly selected.
We selected 2,000 samples from each of the sample designs. Table 1 summarizes the
different designs used to select the samples.
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Table 1: Simulation Design for LGREG
Population First Stage Sample Size Second Stage Sample Size First Stage Sample Design Samples Selected
Ideal 1,500 2 srswor 2, 000
Ideal 1,500 2 πps 2, 000
Realistic 1,500 2 srswor 2, 000
Realistic 1,500 2 πps 2, 000
Realistic 20 2 srswor 2, 000
Realistic 20 2 πps 2, 000

4.5 Estimation

We estimated the total of each response variable using the Horvitz-Thompson estimator,
the GREG, and the LGREG. The one exeception is that we did not calculate the GREG for
the multinomial response variable, because there was no clear multivariate extension to the
GREG. Using the with-replacement estimator and implicit differentiation, we estimated the
variance of the LGREG. Altogether, we estimated the statistics in Table 2. We repeated this
process for all samples.

Table 2: Statistics of interest for Simulation
Statistic Description
t̂πy Horvitz-Thompson Estimator
t̂gy GREG
t̂LG
y LGREG

υwr

(
t̂LG
y

)
With Replacement Variance Estimator of t̂LG

υI

(
t̂LG
y

)
Implicit Differentiation Variance Estimator of t̂LG

We used the lm() function in R with a weights option to predict the fitted values which
we used in the GREG estimation.

To compute the LGREG, we first estimated β, the superpopulation parameter associ-
ated with the assisting model, using the glm() function in R. Then, we used the value
of β̂ as a starting point to minimize the logistic pseudo-log likelihood. Table 3 shows the
pseudo-maximum log-likelihood equations that were used to estimate B. These estimating
equations were solved numerically using the optim() function in R. One advantage of
using the optim() function was that the numerical hessian, a major component of the im-
plicit differentiation variance estimator, was automatically calculated. The solution to the
pseudo-maximum likelihood equations was noted. Table 3 shows both the sample pseudo
log-likelihood estimating equations as well as the derivative of them for the three different
cases of logistic regression.

Table 3: Logistic Regression Estimating Equations
Distribution of Response Sample Pseudo Log Likelihood L̂ (B) Gradient ̂̀(B)

Ber (pk)
∑

s wk

[
yk

(
x>k B

)− ln
(
1 + ex>k B

)] ∑
s wk

(
yk − ex

>
k B

1+e
x>

k
B

)
xk

Bin (pk; zk)
∑

s wk

[
yk

(
x>k B

)− zkln
(
1 + ex>k B

)] ∑
s wk

(
yk − zk

ex
>
k B

1+e
x>

k
B

)
xk

MN (pk; zk)
∑

s wk

[
y>k

(
X>

k B
)− zkln

(
1 + eX>k B

)] ∑
s wk

(
yk − zk

eX
>
k B

1+e
X>

k
B

)
Xk
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4.6 Measures

To compare the point estimators, we calculated the relative empirical bias, coefficient of
variation, and the relative root empirical mean squared error for the point estimators. The
relative root empirical mean squared error is,

˜RRMSE
(
t̂LG
y

)
= 100 ·

√
1

2,000

∑2,000
ν=1

(
t̂LG
yν − t

)2

t

where t is the true population total and ν indexes the 2,000 simulation runs. We assessed
how the design-based empirical mean squared error of the LGREG compared to the design-
based empirical mean squared error of the Horvitz-Thompson estimator and the GREG
using a linear assisting model containing the same explanatory variables as the logistic
assisting model.

We also compared the two variance estimators to the empirical variance. To summa-
rize the variance estimators, we provided descriptive statistics about the distribution of the
estimated variances over the 2,000 simulation runs.

5. Results

Table 4 shows the results from the simulations for the ideal population.

Table 4: Summary of LGREG, GREG, and HT Point Estimators of Totals for Ideal Popu-
lation

Response Variable Design Estimator Relative Bias CV Relative Root MSE
Binary srs LGREG 0.0 1.2 1.2
Binary srs GREG 0.0 1.3 1.3
Binary srs HT 0.0 2.2 2.2
Binary pps LGREG 0.0 1.1 1.1
Binary pps GREG 0.0 1.2 1.2
Binary pps HT 0.0 2.0 2.0
Binomial srs LGREG 0.0 0.1 0.1
Binomial srs GREG 0.0 2.2 2.2
Binomial srs HT 0.0 2.8 2.8
Binomial pps LGREG 0.0 0.1 0.1
Binomial pps GREG -0.1 2.1 2.1
Binomial pps HT -0.2 2.6 2.6
Multinomial category 1 srs LGREG 0.0 2.4 2.4
Multinomial category 1 srs HT 0.0 2.8 2.8
Multinomial category 2 srs LGREG 0.0 2.3 2.3
Multinomial category 2 srs HT 0.0 2.4 2.4
Multinomial category 1 pps LGREG 0.1 2.2 2.2
Multinomial category 1 pps HT 0.0 2.6 2.6
Multinomial category 2 pps LGREG 0.1 2.2 2.2
Multinomial category 2 pps HT 0.1 2.2 2.2
* Numbers are in percents

Scanning down the relative bias column reveals that all of the estimators appear to be
unbiased in large samples where the model holds nearly perfectly. In terms of variability,
we see that the coefficient of variation for the LGREG tends to be smaller than the coeffi-
cient of variation for the GREG as well as the Horvitz-Thompson estimator. Thus, we see
that the LGREG has potential to be much more efficient than the GREG and the Horvitz-
Thompson estimator. The LGREG clearly outperforms the Horvitz-Thompson estimator
and the GREG for the Binomial response variable. In the case of the Binary response
variable, the LGREG also outperforms the Horvitz-Thompson estimator; but is similar to
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the GREG. Lastly, in the case of the Multinomial response, the LGREG is similar to the
Horvitz-Thompson estimator. Table 4 shows that there are situations where the LGREG
can outperform the GREG and the Horvitz-Thompson estimator.

Table 5 also shows that the bias of the LGREG tends to be negligible in realistic sit-
uations. In fact, we found that the empirical bias of the LGREG is always less than one
percent of the true value. Although we did find a small relative bias of -0.6 percent for
the LGREG in small srs samples, we see that this bias tends to disappear as the number of
sample clusters increases. Under a very simple model, containing only one covariate and an
intercept, we see clear benefits to the LGREG over the GREG and the Horvitz-Thompson
estimator.

Table 5: Summary of LGREG, GREG, and HT Point Estimators for Census Population
Design Sample Clusters Estimator Relative Bias CV Relative Root MSE

srs 20 LGREG -0.6 12.9 12.9
srs 20 GREG 1.8 20.9 21.0
srs 20 HT 0.2 21.6 21.6
pps 20 LGREG -0.4 13.1 13.1
pps 20 GREG 1.3 20.6 20.6
pps 20 HT 0.2 20.9 20.9
srs 1,500 LGREG 0.0 1.5 1.5
srs 1,500 GREG 0.0 2.2 2.2
srs 1,500 HT 0.0 2.4 2.4
pps 1,500 LGREG 0.0 1.4 1.4
pps 1,500 GREG 0.1 2.2 2.2
pps 1,500 HT 0.1 2.3 2.3
* Numbers are in percents

Moreover, we also see major efficiency gains of the LGREG over the GREG and
Horvitz-Thompson estimator from Table 5. This is especially true for the small samples,
but there are also gains for larger samples as well. Although these efficiency gains are
not guaranteed, it is promising to note that the LGREG has the potential to outperform the
GREG by leaps and bounds. If careful attention is put into building the assisting model, the
benefits to using the LGREG can be great, as seen by the large reductions in mean squared
error.

In addition to calculating the LGREG, GREG, and Horvitz-Thompson estimators for
each simulation, we also computed the with-replacement and implicit differentiation vari-
ance estimators for the LGREG. Table 6 summarizes the estimators for the ideal population.

In general, the implicit differentiation and with-replacement variance estimators have
similar distributions. On average, both the implicit differentiation and with-replacement
variance estimators tend to be close to the empirical variance. Moreover, the confidence
interval coverage is close to the expected 95 percent for all cases. Thus, when the number
of clusters is large and the model fits reasonably well, both the implicit differentiation and
with-replacement variance estimators are about the same.

Table 7 summarizes the distribution of the LGREG variance estimators for the realistic
population. For the small samples, the mean and median of the variance estimators tend to
be within 31 percentage points of the empirical variance. For example, half of the implicit
differentiation estimators for the srs sample underestimated the empirical variance by 25
percentage points or more. The with-replacement estimator was even worse because half of
the samples underestimated the empirical variance by 29 percentage points or more. One
good aspect of the two variance estimators is that the interquartile range of the estimators
contain the empirical value, at least for the smaller sample. Estimating variance is challeng-
ing when the sample size is small. As we see, both variance estimators are highly variable
when the number of clusters is small. In looking at the minimum and maximum estimated
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Table 6: Summary Statistics for the Variance Estimator as a Percent of the Empirical Vari-
ance

(
variance estimator
empirical variance

)
for Ideal Population

Population Design Variance Estimator Minimum Quartile 1 Median Mean Quartile 3 Maximum Coverage
Binary srs Binder 0.80 0.93 0.97 0.97 1.00 1.21 94.35
Binary srs wr 0.79 0.93 0.97 0.97 1.00 1.16 94.25
Binary pps Binder 0.87 0.98 1.01 1.01 1.04 1.17 94.70
Binary pps wr 0.86 0.98 1.01 1.01 1.04 1.19 94.75
Binomial srs Binder 0.79 0.95 1.00 1.00 1.05 1.39 94.65
Binomial srs wr 0.77 0.95 0.99 1.00 1.04 1.38 94.55
Binomial pps Binder 0.81 0.97 1.01 1.02 1.05 1.26 94.75
Binomial pps wr 0.82 0.97 1.01 1.01 1.05 1.26 94.70
Multinomial category 1 srs Binder 0.69 0.91 0.96 0.97 1.03 2.73 94.15
Multinomial category 1 srs wr 0.71 0.91 0.96 0.97 1.02 3.02 94.20
Multinomial category 1 pps Binder 0.78 0.97 1.03 1.03 1.09 2.45 95.55
Multinomial category 1 pps wr 0.75 0.97 1.02 1.03 1.08 2.63 95.40
Multinomial category 2 srs Binder 0.74 0.92 0.97 0.98 1.03 1.89 95.00
Multinomial category 2 srs wr 0.74 0.92 0.97 0.98 1.03 4.07 95.10
Multinomial category 2 pps Binder 0.76 0.98 1.02 1.03 1.07 5.44 95.40
Multinomial category 2 pps wr 0.77 0.98 1.02 1.03 1.07 3.07 95.30

variances, we see that some samples can produce variance estimates that are less than 90
percent of what they should be; while, others are more than eight times what they should
be. Of course, such extreme estimates are rare. The large variability of estimates presents
many opportunities for further research.

Table 7: Summary Statistics for the Variance Estimator as a Percent of the Empirical Vari-
ance

(
variance estimator
empirical variance

)
for Simulations of the Census Population

Design Sample Clusters Variance Estimator Minimum Quartile 1 Median Mean Quartile 3 Maximum Coverage
srs 20 Binder 0.13 0.53 0.75 0.88 1.08 6.26 90.75
srs 20 wr 0.11 0.49 0.71 0.92 1.11 8.35 90.15
pps 20 Binder 0.09 0.52 0.73 0.84 1.04 4.28 90.60
pps 20 wr 0.09 0.46 0.69 0.87 1.04 6.53 90.30
srs 1,500 Binder 0.83 1.02 1.07 1.08 1.14 1.49 95.85
srs 1,500 wr 0.77 1.02 1.07 1.08 1.14 1.52 95.70
pps 1,500 Binder 0.86 1.05 1.11 1.11 1.16 1.44 95.85
pps 1,500 wr 0.82 1.05 1.11 1.11 1.17 1.53 95.80

The variability of the variance estimates appears to decrease as the sample size in-
creases. The minimum and maximum values of the variance estimates are much closer
to the empirical values than the samples with only 20 clusters. Furthermore, the confi-
dence interval coverage is much closer to 95 percent with the larger sample size. Although
the with-replacement and implicit differentiation variance estimators tend to overestimate
the empirical variance in large samples, some slight overestimation leads to conservative
inference.

6. Conclusion

In this paper, we constructed two new variance estimators for the LGREG in single stage
samples. We also formulated the LGREG in cluster samples and constructed two variance
estimators for it. Both variance estimators assume sampling with replacement and may not
be desirable for all samples.

We used a simulation to empirically test how the LGREG performed in cluster samples.
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We found that it can be more efficient than the GREG and the Horvitz Thompson estima-
tors. We also compared the two new variance estimators for the LGREG in cluster samples
to the empirical variance. On average, we found that the variance estimators tended to be
close to the empirical variance; however, estimates from individual samples may be much
larger or smaller than what they should be, especially if the number of clusters is small.

In summary, the LGREG has the potential to outperform the GREG and the Horvitz-
Thompsom estimators. The preliminary simulation showed that the LGREG is worth fur-
ther research. Estimating the variance of the LGREG is difficult and careful attention
should be given to this topic in the future.
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