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Abstract

One important aspect of physical activity research is the assessment of usual (i.e., long-
term average) daily energy expenditure. Daily measurements of energy expenditure taken
from a sample of individuals are prone to measurement errors and nuisance effects, which
can lead to biased estimates of usual daily energy expenditure parameters. Fortunately,
statistical models can be used to account and adjust for these errors in order to give more
accurate estimates. In this paper we develop a method for estimating usual daily energy
expenditure parameters from data collected using a self-report instrument and an objective
monitoring device. Our method is an extension of existing methods that utilize measurement
error models. We illustrate our method with preliminary data from the Physical Activity
Measurement Survey (PAMS) collected using a SenseWear Pro armband monitor and a
24-hour physical activity recall.
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1. Introduction

Assessment of usual or habitual physical activity is important for studying relation-
ships between physical activity and health and for determining appropriate physical
activity guidelines to maintain good health (Shephard 2003). One component of this
assessment involves estimation of usual daily energy expenditure (EE) parameters.
EE is a measure of the energy cost associated with physical activity (Schutz et al.
2001). An individual’s usual daily EE is his or her average daily EE over a long
period of time, such as one year. From a statistical perspective, usual daily EE of
individual i is

Ti = E{Tij |i},

where Tij is the actual daily EE of individual i on day j.
The instruments most commonly used to measure daily EE from individuals in

the population are self-report instruments (Ainsworth 2009; Matthews 2002) and
monitoring devices (Welk 2002; Moy et al. Submitted), both of which provide
imperfect measurements of usual daily EE. An observed measurement of daily EE
for individual i on day j, defined as Yij , will differ from the usual daily EE for
individual i, Ti, because of nuisance effects (Matthews et al. 2001; Matthews et al.
2002) and measurements errors (Ainsworth 2009; Welk 2002). Nuisance effects, such
as seasonality and day-of-week effect, exist because individuals vary their physical
activity habits on a daily basis. Measurement errors from monitoring devices are due
to the inability of monitors to accurately capture the full range of activities (Welk
et al. 2004) and the imperfect conversion process of monitor data into EE estimates
(Welk 2002). Measurement errors from self-report instruments are due to such
factors as social desirability effects (Adams et al. 2005), difficulty in understanding
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concepts of survey questions (Sallis and Saelens 2000), and cognitive limitations for
recalling activity from the past (Matthews 2002). The difference between actual
daily EE and usual daily EE may be defined as

Dij = Tij − Ti

for individual i on day j, and can be attributed to nuisance factors. For example, if
individual i was more active than he or she usually is on day j, then Dij > 0. The
difference between measured and actual daily EE may be defined as

Eij = Yij − Tij ,

and can be attributed to measurement errors. For example, if individual i reports
more activity than he or she actually did on day j using a self-report instrument,
then Eij > 0. The total difference between observed EE (Yij) and usual daily EE
(Ti) is then

Yij − Ti = Tij − Ti + Yij − Tij

= Dij + Eij ,

for individual i on day j, which is the sum of the nuisance effect (Dij) and the
measurement error effect (Eij). Failure to account for the measurement error and
nuisance effects in daily EE measurements may lead to biased estimates of usual
daily EE parameters. See, for example, Troiano et al. (2008) and Ferrari et al.
(2007).

In this paper, we develop a method for estimating usual daily EE parameters
that accounts for the measurement error and nuisance effects in observed EE data.
In our method, parameters of usual daily EE are estimated from a sample of indi-
viduals in the population, where each individual provides replicate concurrent mea-
surements of daily EE using a reference instrument, such as a multi-sensor monitor,
and a self-report instrument, such as a 24-hour recall. Like other methods in the
literature for estimating usual physical activity and dietary intake variables (Ferrari
et al. 2007; Nusser et al. 1996; Kipnis et al. 2003), our method adjusts for the
measurement error and nuisance effects associated with observed values of EE using
measurement error models. Our method also includes a procedure for estimating
usual daily EE parameters simultaneously for distinct groups in the population,
which may be defined by gender, age, and race/ethnicity. This extension allows
researchers to compare EE across groups that are of interest in physical activity
assessment.

Our method consists of two general steps, which we briefly outline in this section.
See Beyler (2010) for a more detailed description of these steps. The steps are used
to estimate and remove measurement error and bias in the EE data before estimating
usual daily EE parameters.

In the first step of our method, we transform the EE data to approximate nor-
mality and test for the presence of a variety of nuisance factors. In our analyses
(Section 3), a log transformation gives approximately normal data, but in other
cases, a power transformation or a more complex semiparametric transformation
may be necessary to approximate normality. The transformation is important be-
cause the normality assumption is required to model the distribution of usual daily
EE. We test for nuisance effects in the transformed data by fitting separate linear
regression models to the EE measurements from the reference instrument and self-
report instrument, which include nuisance effects parameters. Common nuisance
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effects to consider are day-of-week effect (e.g., weekday vs. weekend), time-in-
sample effect (e.g., first vs. second replicate), and seasonality (e.g., summer vs.
winter). If a nuisance effect is significant in the fitted linear regression models, the
estimated effect is removed from the EE data and the remainder of the analyses are
conducted with the adjusted EE data. If a nuisance effect is non-significant in the
fitted models, the EE data are not adjusted for that effect. In out analyses (Section
3), no adjustments were made for nuisance effects because nuisance effect variables
were non-significant in fitted regression models.

In the next step of our method, models are fit to the (possibly adjusted) normal-
scale EE data to estimate sources of variation and bias in the data and to estimate
parameters of usual daily EE. Assessment of usual daily EE in subpopulations
(hereafter referred to as groups) is often of interest to public health researchers. In
our method, groups can be defined by gender, age, race/ethnicity, or other factors
with the goal of comparing model parameters for EE behaviors across these groups.
After the groups are identified, a group-level measurement error model is fit to each
group using method of moments. The same measurement error model is fit to each
group so that parameter estimates can be compared across groups. A population-
level model is then developed based on the group-level estimates so that the total
number of model parameters may be reduced. If there is evidence that a group-level
model parameter is similar across groups, the parameter may be pooled across the
groups. If there is evidence of a systematic trend in a group-level parameter across
groups, the trend can be accounted for with fewer parameters in the population-level
model. Once the population-level model is specified, the model is fit to group-level
moment estimators using estimated generalized least squares and estimated daily
EE parameters are obtained.

The group-level and population-level models are developed in Section 2. We
illustrate our method by estimating usual daily EE parameters from a preliminary
sample of females in the Physical Activity Measurement Survey (PAMS) in Section
3. We give a discussion of the results in Section 4.

2. Models

The primary step in our method is parameter estimation for a group-level mea-
surement error model and a population-level model. The group-level model is used
to estimate daily EE parameters for each group. Groups may be defined by gen-
der, age, race/ethnicity or any other factors of interest to the researcher. The
population-level model is used to estimate daily EE parameters for the population
by reducing the total number of model parameters. In this section, we present
the group-level measurement error model and the population-level model. In what
follows, assume that the EE data are in the normal scale (i.e., a transformation is
applied to approximate normality).

2.1 Group-Level Model

Assume that G groups are considered for the analyses, and let g denote the gth
group. Further assume that the EE measurements from group g and group g′ are
uncorrelated for g 6= g′. Let µg be the mean of daily EE in the normal scale for
group g and let µg + tgi be the mean daily EE for individual i in the normal scale,
where tgi ∼ N(0, σ2

tg). The distribution of mean daily EE in the normal scale is
then given by N(µg, σ

2
tg) for group g. On any given day j, individual i in group g
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will have an actual daily EE value of tgij in the normal scale. We assume that the
daily deviations from the individual’s mean daily EE are additive. Thus, our model
for tgij is

tgij = µg + tgi + dgij ,

where dgij ∼ N(0, σ2
dg) is individual i’s deviation from his or her mean daily EE on

day j in the normal scale. On days where individual i is more active than usual,
dgij will be positive, and on days where individual i is less active than usual, dgij
will be negative. We assume that tgi and dgij are uncorrelated for all g, i, and j.
That is, we assume that an individual’s mean activity is unrelated to his or her
within-individual variation in activity on a day-to-day basis.

Let xgij be a measure of daily EE in the normal scale for individual i on day j in
group g from an unbiased reference instrument, such as a multi-sensor monitoring
device. We assume that the reference instrument gives an unbiased measurement
of daily EE in the normal scale,

xgij = µg + tgi + dgij + ugij , (1)

where ugij ∼ N(0, σ2
ug) is random measurement error for individual i on day j in

group g. We assume that ugij is uncorrelated with tgi and dgij for all g, i, and j,
and hence, the variance of xgij is the sum of three variance components,

V {xgij} = V {µg + tgi + dgij + ugij}

= σ2
tg + σ2

dg + σ2
ug.

Let ygij be a measurement of daily EE in the normal scale for individual i on
day j in group g from a self-report instrument such as a 24-hour recall. We assume
that the self-report measure ygij is potentially biased for actual daily EE in the
normal scale and represent ygij as

ygij = µyg + β1g(tgi + dgij) + rgi + egij , (2)

where µyg is the group mean of daily EE in the normal scale from the self-report
instrument, β1g is the slope that accounts for the systematic error in the relationship
between self-report and actual daily EE in group g, rgi ∼ N(0, σ2

rg) is a term that
represents individual i’s deviation from the group-level mean, and egij ∼ N(0, σ2

eg)
is the remaining measurement error in the self-report for individual i on day j in
group g. We assume that the model terms rgi and egij are uncorrelated with each
other, with tgi and dgij , and with ugij from model (1) for all g, i, and j. Like model
(1), model (2) assumes an additive linear relationship between measured EE and
mean daily EE in the normal scale. Unlike model (1), model (2) includes a different
overall mean, µyg, and a slope term, β1g, to account for systematic error that may
arise from self-reporting EE.

We use method of moments to derive estimators of the parameters for the group-
level measurement error model given by (1) and (2). The estimators are given as
weighted estimators, where wgi is the weight for individual i in group g reflecting
individual i’s probability of selection into the sample. When weights are unavailable,
wgi is set to 1 for all g and i. Let the 8-dimensional parameter vector for group g
be defined by

θg = (µg, µyg, β1g, σ
2
tg, σ

2
dg, σ

2
ug, σ

2
eg, σ

2
rg)

′. (3)
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To compute estimators for θg, we consider summary statistics based on

Zgi =









x̄gi.
ȳgi.

xgi1 − xgi2
ygi1 − ygi2









, (4)

where

x̄gi. =
xgi1 + xgi2

2

and

ȳgi. =
ygi1 + ygi2

2
.

We define Zgi in this manner because Zgi provides an algebraically simpler covari-
ance matrix than the observed data vector (xgi1, xgi2, ygi1, ygi2)

′. Given the model
assumptions, the expected value of Zgi is

E{Zgi} =









µg

µyg

0
0









(5)

and the variance of Zgi is





σ2

gt +
1

2
σ2

gd
+ 1

2
σ2
gu β1gσ

2

tg + 1

2
β1gσ

2

dg
0 0

β2

1g(σ
2

tg + 1

2
σ2

dg
) + σ2

rg + 1

2
σ2
eg 0 0

2(σ2

dg
+ σ2

ug) 2β1gσ
2

dg

symmetric 2(β2

1gσ
2

dg
+ σ2

eg)



 . (6)

The sample mean of Zgi is

m1g =









m1g

m2g

0
0









, (7)

where

m1g =

∑ng

i=1wgixgi.
∑ng

i=1wgi

,

m2g =

∑ng

i=1wgiygi.
∑ng

i=1wgi

,

and ng is the number of individuals in group g. The sample variance of Zgi is

m2g =

∑ng

i=1wgi(Zgi − Z̄g)(Zgi − Z̄g)
′

∑ng

i=1wgi

,

where

Z̄g =

∑ng

i=1wgiZgi
∑n

i=1wgi
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is the group sample mean of theZgi. For deriving the method of moments estimating
equations, we write

m2g =









m11g m12g 0 0
m22g 0 0

m33g m34g

sym. m44g









, (8)

where the sample moments m13g, m14g, m23g, and m24g are set to zero since their
corresponding population moments in (6) are all zero.

The estimating equations are

m1g = E{Zgi}

and

m2g = V {Zgi},

wherem1g andm2g are defined by (7) and (8), respectively, and E{Zgi} and V {Zgi}
are defined by (5) and (6), respectively. There are eight model parameters and eight
unique first and second moments in these equations, which allows for identification
of each model parameter as a function of the sample moments. The method of
moments estimators are given in Table 1. In what follows, we let

θ̂g = (µ̂g, µ̂yg, β̂1g, σ̂
2
tg, σ̂

2
dg, σ̂

2
ug, σ̂

2
eg, σ̂

2
rg)

′ (9)

denote the method of moments estimator for the parameter vector θg in (3).

Table 1: Method of moments estimators for group g
Parameter Estimator

µg µ̂g = m1g

µyg µ̂yg = m2g

β1g β̂1g = (m12g − 0.25m34g)/(m11g − 0.25m33g)
σ2
tg σ̂2

tg = m11g − 0.25m33g

σ2
dg σ̂2

dg = [m34g(m11g − 0.25m33g)]/[2(m12g − 0.25m34g)]

σ2
ug σ̂2

ug = 0.5m33g − [m34g(m11g − 0.25m33g)]/[2(m12g − 0.25m34g)]

σ2
eg σ̂2

eg = 0.5m44g − [m34g(m12g − 0.25m34g)]/[2(m11g − 0.25m33g)]

σ2
rg σ̂2

rg = m22g − 0.25m44g − [(m12g − 0.25m34g)
2]/[m11g − 0.25m33g]

A Taylor series approximation is used to derive an estimated variance matrix
for θ̂g. The approximation is given by

V̂ {θ̂g} = D̂gV̂ {mg}D̂
′

g, (10)

where D̂g is a matrix of derivatives for the method of moments estimators evaluated
at the method of moments estimates and V̂ {mg} is an estimated variance of the
sample moments

mg = (m1g,m2g,m11g,m12g,m22g,m33g,m34g,m44g)
′. (11)

To derive the matrix of derivatives, let mgk denote the kth element in mg for
k = 1, . . . , 8 and let bl(mg) be a function of mg that represents the lth method
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of moments estimator in Table 1 for l = 1, . . . , 8. Then, define D̂g to be an 8 x 8

matrix of derivatives for the sample moments, where element lk in D̂g is

Dglk =
∂bl(mg)

∂mgk

for l = 1, . . . , 8 and k = 1, . . . , 8. The variance of mg can be estimated using
a Horvitz-Thompson variance to account for the sample design. The Horvitz-
Thompson variance estimator is

V̂ {mg} =

ng
∑

i=1

ng
∑

k=1

π−1
ik (πik − πiπk)wgisgiwgks

′

gk,

where πi is the first order inclusion probability of individual i into the sample, πik
is the second order inclusion probability of individuals i and k into the sample, wgi

is the survey weight for individual i in group g, and

sgi =

























x̄gi.
ȳgi.

(x̄gi. −m1g)
2

(x̄gi. −m1g)(ȳgi. −m2g)
(ȳgi. −m2g)

2

(xgi1 − xgi2)
2

(xgi1 − xgi2)(ygi1 − ygi2)
(ygi1 − ygi2)

2

























(12)

is the vector of summary statistics for individual i.

2.2 Population-Level Model

In the previous section we developed estimators which can be used to estimate the
group-level model parameters, including the group mean (µg) and variance (σ2

tg)
of daily EE in the normal scale. Although it is of interest to estimate separate
parameters for each of the G groups, it is possible that the group-level parameters
can be modeled across the groups to form a population-level model with a reduced
number of parameters. In this section, we outline a procedure for developing a
population-level model from the group-level model parameters. In this section we
give the general form of the model and an estimator for the model parameter vector.
In Section 3 we illustrate how the model can be formulated.

The population-level model is defined by a set of functions that model the group-
level parameters in θg given by (3) as functions of a new set of parameters defined
for the population. The set of functions and population-level model parameters
are formulated based on an analysis of the group-level parameter estimates. The
general form of the population-level model is

y = Zλ+ e. (13)

In the model,

y = (θ̂′

1, . . . , θ̂
′

G)
′

is the 8G-dimensional vector of the estimated group-level model parameters, where
θ̂g is given by (9) for group g, g = 1, . . . , G. λ is the q-dimensional vector of
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parameters for model (13), where q < 8G so that the total number of parameters
from the group-level models is smaller for the population-level model. Z is a (8G
x q) design matrix for the model representing coefficients that define the set of
functions that relate the 8G group-level estimated parameters to linear functions
of the q population-level parameters. The variance of the vector of error terms,
e ∼ (0,V ), is estimated by

V̂ = blockdiag(V̂ {θ̂1}, . . . , V̂ {θ̂G}), (14)

where V̂ {θ̂g} is given by (10) for g = 1, . . . , G. The estimated variance (14) is ap-
propriate under the assumption that the EE measurements are uncorrelated across
groups. With an estimated variance V̂ , the population-level model can be estimated
using estimated generalized least squares (EGLS). The EGLS estimator of λ is

λ̂ = (Z ′V̂ −1Z)−1Z ′V̂ −1y, (15)

and an estimated variance of the estimator is

V̂ {λ̂} = (Z ′V̂ −1Z)−1. (16)

Using the population-level model, we can estimate model parameters for each
group. Let µ̂g and σ̂2

tg denote the estimated mean daily EE and estimated variance
of daily EE in the normal scale for group g, g = 1, . . . , G, from the population-level
model. The estimated distribution of mean daily EE in the normal scale for group g
is then N(µ̂g, σ̂

2
tg). Estimates of other model parameters can also be obtained using

the population-level model, including estimates of the slope parameters relating
actual daily EE to self-reported EE (β̂1g), estimates of the group means of self-
reported EE (µ̂yg), and estimates of the variance components that account for day-
to-day variation in daily EE (σ̂2

dg), measurement error variation in the reference

instrument (σ̂2
ug) and self-report instrument (σ̂2

eg), and random variation due to
self-reporting (σ̂2

rg).

3. Application to PAMS Data

In this section, we use the method described in Sections 1 and 2 to estimate usual
daily EE parameters using preliminary EE data from the Physical Activity Mea-
surement Survey (PAMS). The preliminary data come from a sample of 171 females
selected into the PAMS sample who provided concurrent replicate measurements of
daily EE using the SenseWear armband monitor and a 24-hour physical activity re-
call. See Beyler (2010) for a description of the PAMS survey design and descriptive
statistics of the preliminary EE data.

To implement our method, we first transform the daily EE data to approximate
normality. Because log transformations are often used for analyses in physical activ-
ity research (Ferrari et al. 2007), we consider the log transformation to approximate
normality for the PAMS EE data. Let xij = log(Xij) be daily EE from the monitor
and let yij = log(Yij) be daily EE from the 24PAR in the log scale for individual i
on day j. Shapiro-Wilk test statistics are computed for the set of xij values and set
of yij values from the sample using SAS statistical software (SAS Institute 2009).
The p-values for the test statistics are 0.25 and 0.21 for the set of xij and yij values,
respectively. Therefore, the log transformed values are used for model fitting.

Next, we check for nuisance effects in the log-transformed daily EE data by
fitting linear regression models containing covariates for day-of-week effect, time-
in-sample effect, and demographic variables. We include variables for day-of-week
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effect and time-in-sample effect in the models because we suspect that an individual
may have different EE values depending on the day of the week (e.g., weekday vs.
weekend) and depending on whether the value is the first or second observation for
a respondent (e.g., replicate 1 vs. 2). We include demographic variables for age,
race/ethnicity, education, and smoking status in the models because we suspect
that EE levels may vary by these factors. The nuisance effects variables were non-
significant in the fitted models, and as a result, no additional adjustments were
made to the log-transformed daily EE data.

In preliminary analyses, daily EE measurements from the monitor were shown
to vary according to age (results not shown). Based on these results, we define age
groups for the group-level measurement error models. To form groups, we divide
the sample into four age groups of approximately equal size (Table 2). For the
remainder of the presentation, we will denote the age groups as groups 1 - 4, where
1 is the youngest age group and 4 is the oldest age group.

Table 2: Age groups
Age Group g Age Range Average Age Sample Size

1 23 - 42 34.3 44
2 43 - 52 48.6 40
3 53 - 59 55.6 43
4 60 - 70 64.6 44

Once the groups have been determined, the next step in our method is to es-
timate the group-level model parameters. The measurement error model given by
equations (1) and (2) is fit to each of the four age groups using method of moments
as described in Section 2. The method of moments estimators are given in Table
1 in Section 2. Standard errors for the parameter estimates are computed using
the Taylor series variance estimator given by (10), V̂ {θ̂g} = DgV̂ {mg}D

′

g. Due to
the small number of individuals in each of the 4 age groups, we ignore the survey
design in computing the estimated variance of the sample moments, V̂ {mg}, and
instead use the estimated variance for a simple random sample (ignoring the finite
population correction) defined by

V̂ {mg} = n−1
g (ng − 1)−1

ng
∑

i=1

(sgi − s̄g.)(sgi − s̄g.)
′,

where sgi is given by (12) and s̄g. is the mean of the sgi in group g. The parameter
estimates and standard errors from the measurement error models for each group
are given in Tables 3 and 4.

Table 3 contains the estimated group-level measurement error model parameters
for the mean of daily EE (µg), the mean of reported daily EE (µyg) and the slope
relating mean daily EE to reported daily EE (β1g). The estimated means of daily
EE decrease by age group, suggesting that older females tend to have lower levels
of mean daily EE compared to younger females. The estimated slope parameters
also decrease by age group, suggesting that the relationship between average levels
of mean daily EE and reported daily EE may be a function of age. The estimated
means of reported daily EE are larger than the estimated means of daily EE, sug-
gesting over-reporting in daily EE for all age groups. Unlike the daily EE means,
the reported daily EE means do not show much of a trend across age groups. Given
these results, we model the decreasing trends in the estimated daily EE means
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and the estimated slope parameters in the population-level model and estimate a
common mean for reported daily EE.

Table 3: Estimated measurement error model parameters (and standard errors)
for the mean of daily EE (µg), the mean of reported daily EE (µyg), and the slope
for population-level reporting bias (β1g)

Parameter Group 1 Group 2 Group 3 Group 4

µg 7.8421 (.0240) 7.8104 (.0230) 7.7595 (.0283) 7.7182 (.0241)

µyg 8.0616 (.0435) 8.0300 (.0326) 8.0656 (.0398) 8.0318 (.0315)

β1g 1.2970 (.2103) 0.9226 (.1984) 0.8433 (.2081) 0.6982 (.1145)

Table 4 contains the estimated group-level measurement error model parameters
for the variance components from models (1) and (2). No systematic trends in the
components are discernible. In preliminary analysis of possible models for the vari-
ance components, the largest differences between age groups were non-significant
(results not shown). As more data become available, evidence of relationships or
differences in the variance components across age groups may surface. For this anal-
yses, we assume constant variance components across age groups in the population-
level model.

Table 4: Estimated variance components (and standard errors) from the measure-
ment error model for mean daily EE (σ2

tg), within-individual EE variation in daily
EE (σ2

dg), measurement error variation from the monitor (σ2
ug) and the 24PAR (σ2

eg),

and reporting-bias variation from the recall (σ2
rg)

Parameter Group 1 Group 2 Group 3 Group 4

σ2
tg 0.0211 (.0059) 0.0170 (.0048) 0.0296 (.0077) 0.0235 (.0062)

σ2
dg 0.0089 (.0027) 0.0044 (.0022) 0.0025 (.0015) 0.0065 (.0028)

σ2
ug 0.0056 (.0028) 0.0047 (.0027) 0.0067 (.0028) 0.0044 (.0034)

σ2
eg 0.0042 (.0041) 0.0066 (.0022) 0.0064 (.0024) 0.0079 (.0028)

σ2
rg 0.0363 (.0088) 0.0221 (.0049) 0.0416 (.0095) 0.0259 (.0085)

Given the results from the fitted group-level models (Table 3 and 4), we develop
a population-level model for daily EE. We model the daily EE mean for age group
g as

µg = µ0 + θAg, (17)

where µ0 is a baseline parameter for the daily EE mean in the population, Ag is
the mean age of age group g minus the overall mean age for the sample, and θ is a
parameter to estimate the linear trend in the daily EE mean. We model the bias
slope parameters as a function of mean age,

β1g = β1 + β3Ag, (18)

where β1 is the baseline slope for the population and β3 accounts for the linear trend
in the slopes across age groups. We model the group means of reported EE as

µyg = µy + β1g(µg − µ0),

where µy is the overall mean of reported EE and β1g(µg − µ0) accounts for the
deviation in the group-level reported EE mean from the overall mean. Given models
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(17) and (18), the model for the mean of reported EE can be written as

µyg = µy + (β1 + β3Ag)θAg. (19)

The group-level variance components are related to population-level variance com-
ponents through the system of equations

σ2
tg = σ2

t

σ2
dg = σ2

d

σ2
ug = σ2

u

σ2
eg = σ2

e

σ2
rg = σ2

r , (20)

for g = 1, . . . , 4.
The population-level model is given by (13) in Section 2. The 32-dimensional

vector y is

y = (θ̂′

1, θ̂
′

2, θ̂
′

3, θ̂
′

4)
′,

where

θ̂g = (µ̂g, µ̂yg, β̂1g, σ̂
2
tg, σ̂

2
dg, σ̂

2
ug, σ̂

2
eg, σ̂

2
rg)

′

is the estimated 8-dimensional vector of group-level model parameters for age group
g, g = 1, . . . , 4. The 10-dimensional vector of population-level model parameters is

λ = (µ0, µy, θ, β1, β3, σ
2
t , σ

2
d, σ

2
u, σ

2
e , σ

2
r )

′,

where the parameters are defined in equations (17), (18), (19), and (20). The 32 x
10 design matrix Z is given by

Z =









Z1

Z2

Z3

Z4









where

Zg =

























1 0 Ag 0 0 0 0 0 0 0

0 1 β̂1gAg 0 0 0 0 0 0 0
0 0 0 1 Ag 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

























for age group g. Note that the design matrix uses the linear approximation

µ̂yg = µy + β̂1gθAg

for the nonlinear model

µ̂yg = µy + (β1 + β3Ag)θAg.
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The population-level model is fit using the EGLS estimator (15), and the vari-
ance is estimated by (16). The parameter estimates and standard errors (computed
from the EGLS variance) are given in Table 5. Each of the model parameters is
significant at the 0.05 level. There is evidence of a linear trend across age groups
in the daily EE mean (represented by θ), and evidence of a linear trend across age
groups in the slope parameter (represented by β3). The estimated mean of daily
EE (µ0) appears to be smaller than the estimated mean of reported daily EE (µy),
indicating over-reporting bias in daily EE from the 24PAR. The estimated variance
for individual reporting effects (σ2

r ) is large relative to the other estimated vari-
ances components. The estimated inter-individual variance in usual daily EE (σ2

t )
is about 4 times larger than the estimated within-individual variance in daily EE
(σ2

d).

Table 5: Parameter estimates (standard errors) for the population-level model
Parameter Est (SE)

µ0 7.7940 (.0099)
µy 8.0564 (.0145)

100θ -0.2409 (.0838)

β1 0.9950 (.0689)
100β3 -1.7035 (.4517)

100σ2
t 1.9868 (.2442)

100σ2
d 0.4949 (.0892)

100σ2
u 0.5186 (.1125)

100σ2
e 0.6175 (.1172)

100σ2
r 2.0934 (.2999)

The parameter estimates from the population-model can be used to estimate
normal-scale mean daily EE values in each of the 4 age groups. The estimated
means are computed from equation (17) as µ̂g = µ̂0+ θ̂Ag, where µ̂0 and θ̂ are given
in Table 5. Standard errors for the estimated means are given by

se(µ̂g) =
√

c′gV̂ {λ̂}cg,

where

c′g = (1, 0, Ag, 0, 0, 0, 0, 0, 0, 0)

and V̂ {λ̂} is the estimated variance matrix for the population-level model. The
estimates and standard errors are given in Table 6. The parameter estimates from
the population-level model can also be used to estimate the slope parameters for
each of the age groups based on equation (18). The estimates (and standard errors)
for the slope parameters are given in Table 6. Note that the estimated means and
slope parameters in Table 6 are similar to the estimated means and slope parameters
in Table 2 for the fitted group-level models.

Figure 1 illustrates the relationships between mean daily EE and reported daily
EE in the youngest and oldest age groups. In the youngest age group (group 1),
females with higher levels of usual daily EE tend to have a greater discrepancy
between their reported and mean daily EE, while in the oldest age group (group
4), females with higher levels of mean daily EE tend to have a smaller discrepancy
between their reported and mean daily EE.
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Table 6: Parameter estimates (standard errors) for the daily EE group means (µg)
and slope parameters (β1g) based on the fitted population-level model

Parameter Est (SE)

µ1 7.8337 (.0153)
µ2 7.7992 (.0097)
µ3 7.7824 (.0114)
µ4 7.7607 (.0167)

β11 1.2760 (.1169)
β12 1.0323 (.0728)
β13 0.9134 (.0652)
β14 0.7599 (.0764)
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Figure 1: Estimated lines relating mean daily EE and reported daily EE for age
groups 1 and 4 (points are the individual means of measured EE in the log scale;
dashed lines are the estimated lines and dotted lines are the identity lines)

4. Discussion

In this paper, we have presented a method for estimating usual daily EE parameters,
where daily EE measurements are adjusted for measurement error and nuisance ef-
fects using measurement error models. Our method is an extension of existing
methods proposed in the literature for estimating usual physical activity parame-
ters (Ferrari et al. 2007) and usual intake parameters (Nusser et al. 1996; Kipnis et
al. 2003). A useful feature of our analysis is estimation of daily EE parameters for
groups of the population. To implement our method, multiple concurrent measure-
ments of daily EE must be available from an unbiased reference instrument, such
as a multi-sensor monitoring device, and a self-report instrument, such as a 24-hour
recall. The reference instrument is assumed to give unbiased measurements of usual
daily EE for model identification purposes.

A number of interesting points were identified by the analysis of the PAMS data
in Section 3. We estimated that a significant amount of the variation in daily EE
measured from the 24PAR is due to individual-level reporting biases. Individuals
tend to misreport on their daily EE from the previous day, which could be due to
social desirability effects (Adams et al. 2005) or cognitive limitations associated
with recalling activity from the past (Matthews 2002). Researchers should use
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caution when making inferences on self-reported EE data because of the potential
for bias and excess variation in the data.

The results from the female PAMS sample also suggest that the within-individual
variation in daily EE is small relative to the inter-individual variation in usual daily
EE. In Table 5, the estimated usual daily EE variance in the normal scale (σ2

t ) is
about 4 times larger than the estimated within-individual variance of daily EE (σ2

d).
This result is contrary to results from the dietary intake literature, which indicate
that there is much more within-individual variation in dietary intake than there is
inter-individual variation (Nusser et al. 1996; Carriquiry 2003).

In our analyses, there was evidence of a decrease in mean usual daily EE as age
increases. The youngest age group (age 21 - 42) had the largest estimated mean of
usual daily EE, while the oldest age group (age 60 - 70) had the smallest estimated
mean of usual daily EE. Similar results are given in Ferrari et al. (2007), which show
lower levels of estimated EE in older age groups relative to younger age groups. The
estimated slope parameters, which compare usual daily EE to reported daily EE in
the groups, also decreased with age. The more active females in the youngest age
group tend to have larger discrepancies between their usual daily EE and reported
daily EE, while the more active females in the oldest age group tend to have smaller
discrepancies between their usual daily EE and reported daily EE (Figure 1).

A long-term goal of our research is to use estimated usual daily EE distributions
to estimate usual daily EE parameters in the original scale and to infer about EE
behaviors of individuals in the population. Some of this work has been explored
in this paper and in Beyler (2010). Future work should involve a more thorough
development of the methodology we have considered in this paper using EE data
from a larger sample of the population.
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