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Abstract 
Recent methodological research has addressed the important issue of sample size at each 
level when estimating multilevel models. Although several design factors have been 
investigated in these studies, differences between continuous and binary predictor 
variables have not been scrutinized (previous findings are based on models with 
continuous predictor variables). To help address this gap in the literature, this Monte 
Carlo study focused on the consequences of level-2 sparseness on the estimation of fixed 
and random effects coefficients in terms of model convergence and both point and 
interval parameter estimates. The 5,760 conditions simulated in the Monte Carlo study 
varied in terms of level-1 sample size, number of level-2 units, proportion of singletons 
(level-2 units with one observation), type of predictor, collinearity, intraclass correlation, 
and model complexity.  
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1. Sample Size and Multilevel Modeling  

 
Multilevel models are being increasingly used across the social sciences to analyze nested 
or hierarchically structured data. There are many types of multilevel models, which differ 
in terms of the number of levels (e.g., 2, 3), type of design (e.g., cross-sectional, 
longitudinal with repeated measures, cross-classified), scale of the outcome variable (e.g., 
continuous, categorical), and number of outcomes (e.g., univariate, multivariate).  These 
models have been used to address a variety of research questions involving model 
parameters that include fixed effects (e.g., average student socioeconomic status-
mathematics achievement slope across schools), random level-1 coefficients (e.g., student 
socioeconomic status-mathematics achievement slope at a particular school), and 
variance-covariance components (e.g., amount of variation in the student socioeconomic 
status-mathematics achievement slope across schools).   
 
As the use of multilevel models (also known as hierarchical linear models and mixed 
models) has expanded into new areas, questions have emerged concerning how well these 
models work under various design conditions. One of these design conditions is the 
sample size at each level of the analysis. This issue is central in most quantitative studies 
but is more complex in multilevel models because of the multiple levels of analysis. 
Currently there are few sample size guidelines referenced in the literature.  One rule of 
thumb proposed for designs in which individuals are nested within groups calls for a 
minimum of 30 units at each level of the analysis.   This rule of thumb is commonly cited 
(see, for example, Hox, 1998; Maas & Hox, 2002; Maas & Hox, 2004) and was further 
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developed by Hox (1998) who recommended a minimum of 20 observations (level-1) for 
50 groups (level-2) when examining interactions across levels.   
 
Although many researchers attempt to adhere to these sample size guidelines, the nature 
of social determinants research often make these sample size recommendations difficult 
to achieve. More specifically, because many large-scale social science surveys utilize 
complex sampling procedures (i.e., stratified and clustered sampling designs), individuals 
are often dispersed among a large number of level-2 units with few individuals per group 
(e.g., thousands of census tract defined neighborhoods with few individuals in each 
census tract). For example, although the sampling frame for the National Longitudinal 
Study of Adolescent Health (Add Health) was at the school-level, neighborhood-level 
Add Health data are often used to answer a variety of research questions (e.g., Bruce, 
2004; Cubbin, Santelli, Brindis, & Braveman, 2005; Gordon-Larsen, Nelson, Page, & 
Popkin, 2006; Knoester & Haynie, 2005; Regnerus, 2003; Wickrama & Bryant, 2003; 
Wickrama, Noh, & Bryant, 2005). However, the dispersion of adolescents across 
neighborhoods is less than ideal. The Wave 1 Add Health restricted use data provide 
observations on approximately 15,000 adolescents nested in approximately 2,600 
neighborhoods, with almost 50% singleton neighborhoods (i.e., a neighborhood unit 
containing only one adolescent).  

 
Given the potential problems of small sample sizes, several simulation studies have been 
designed to examine the effect of small sample sizes, at different levels of analysis, on 
various multilevel results (e.g., variance estimates, fixed effects estimates, standard 
errors, and convergence). In a simulation study examining the effects of data sparseness 
on variance estimates, Mok (1995) found that variance estimates were notably biased in 
balanced designs with as few as five level-2 units. Clarke and Wheaton (2007), in their 
Monte Carlo study focusing on a 2-level model, examined conditions in which the 
number of level-2 units ranged from 50 to 200 and the number of level-1 units per level-2 
unit ranged from 2 to 20.  They found positive bias in the intercept and slope variance 
estimates. They noted that “at least 10 observations per group for at least 100 groups” (p. 
330) were needed for the estimated intercept variance to approach the true values; for the 
slope variance at least 20 observations per group for at least 200 groups were needed for 
the estimated slope variance to approach the true values. In this same study, Clarke and 
Wheaton (2007) also examined bias in the intercept and slope variance estimates as a 
function of group size and the proportion of singleton groups in the two level models. 
When singleton groups are included in the multilevel models, bias in the variance 
estimates was more evident than with the data without any singleton groups.   
 
Maas and Hox (2004, 2005), who examined conditions in which the number of level-2 
units ranged from 30 to 100 and the number of level-1 units per level-2 unit ranged from 
5 to 50, found less bias in the variance estimates but still reported substantial difficulty in 
making inferences about the variance components when the number of level-2 units was 
only 30. Although there appear to be substantial problems in making variance inferences 
from small samples, results of the simulation studies regarding the fixed effects were 
more encouraging.  Studies consistently showed little to no bias in the estimates of the 
fixed effects (Clarke & Wheaton, 2007; Maas & Hox, 2004, 2005; Mok, 1995; Newsom 
& Nishishiba, 2002). However, although the findings related to fixed effects and small 
sample sizes are generally more encouraging, the majority of studies have only examined 
relatively simple models. For example, both Clarke and Wheaton’s (2007) and Mass and 
Hox’s (2004) findings are based on simple two-level hierarchical models with one 
continuous criterion variable, one predictor variable at each level, one cross-level 
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interaction between the predictors at each level, and two random effects (intercept and 
level-1 predictor). One exception is a previous study conducted by Bell, Ferron, and 
Kromrey (2008). Findings from that study, which investigated the impact of model 
complexity and the proportion of singletons in a model, revealed similar patterns as those 
conducted by others with simple models. However, in this previous study, we, like others, 
only included continuous predictors at each level. Thus, the impact of level-2 sparseness 
with more complex, realistic models with both continuous and binary predictors is 
currently not known. 
 

2. Purpose 
 
This study focuses on the consequences of level-2 sparseness on the estimation of fixed 
and random effects coefficients in terms of model convergence and both point estimates 
(statistical bias) and interval estimates (confidence interval accuracy and precision, and 
Type I error control of tests associated with the fixed and random effects) as a function of 
the level-1 sample size, number of level-2 units, proportion of singletons, type of 
predictor, collinearity, intraclass correlation, and model complexity. By examining more 
complex multilevel models (i.e., two level models with various numbers of predictors, 
various levels of collinearity, and both binary and continuous predictors), this study adds 
information about the accuracy and precision of estimates and contributes to our 
understanding of the behavior of multilevel models under less than ideal conditions.  

 
3. Method 

 
For this Monte Carlo study the following design factors and conditions were examined: 
(a) level-1 sample sizes with conditions of small (average = 10, range 5-15) and large 
(average = 50, range 25-75), (b) level-2 sample sizes with conditions of 50, 100, 200, and 
500, (c) proportion of singletons with conditions of 0, .10, .30, .50, and .70, (d) levels of 
collinearity (0 and .3), (e) level-2 error variance (.05, .10, .15, and .30), and (f) model 
complexity with conditions of 2, 3, and 5 level-1 predictors crossed with 1, 2, and 4 level-
2 predictors for both main effect and interaction models. These factors in the Monte 
Carlo study were completely crossed, yielding 40 sample size conditions and 144 design 
factor conditions.  
 
Data were generated based on a two-level model in which observations were nested 
within groups.  At the first level, a continuous outcome was generated as a linear function 
of k predictors, where k = 2, 3, or 5.  
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The intercepts and slopes of the first level were simulated as a function of m predictors at 
the second level, where m = 1, 2, or 4. In each model, one level-1 predictor (x1) and one 
level-2 predictor (w1) were binary and all others were continuous. For the interaction 
models, models with two level-1 predictors included one cross-level interaction term, 
models with three level-1 predictors included two cross-level interaction terms, and 
models with five level-1 predictors included three cross-level interaction terms. One 
cross-level interaction term included both binary variables (x1*w1). In each model, the 
intercept and one level-1 variable were generated to vary randomly. The level-1 errors 
were generated from a normal distribution with a variance of 1.0 using the RANNOR 
random number generator in SAS version 9.1 (SAS, 2004).  The level-2 errors were also 
generated from a normal distribution, but with variance of .05, .10, .15, or .30 to produce 
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different values of intraclass correlation. The data were simulated such that some 
predictors had no effect (for estimation of Type I error rate) and some predictors had non-
null effects.  
 
For each of the 5760 conditions (40 sample size combinations X 144 combinations of 
design factors), 1,000 data sets were simulated using SAS IML (SAS, 2004). The data 
simulation program was checked by examining the matrices produced at each stage of 
data generation. After each data set was generated, the simulated sample was analyzed 
using a 2-level multilevel model with maximum likelihood estimation via the MIXED 
procedure in SAS (SAS, 2004). In all analyses the covariance matrix of the level-2 
errors,Τ , was modeled to be unstructured, and the covariance matrix of the level-1 errors 
was modeled as I2σ=Σ . Four primary outcomes were examined in this Monte Carlo 
study: rate of model convergence, bias in the estimates of the fixed and random effects, 
confidence interval coverage for each effect, and average confidence interval width for 
each effect. In addition, Type I error rates were reported. 
 

4. Results  
 
Model convergence was not a substantial problem with any of the conditions examined in 
this study. No convergence problems were evident in 98% of the conditions and the 
highest rate of nonconvergence in the remaining 2% of conditions was less than 2% of 
the simulated samples. Similarly, very low levels of statistical bias were evident for all 
parameter estimates. For fixed effects, min = -0.02 and max = 0.02; for random effects, 
min = -0.01 and max = 0.01.   
 
Overall, binary predictors at level-1 and level-2 behaved similarly to continuous 
predictors, despite slightly larger CI widths. More specifically, regardless of type of 
predictor variable, estimated confidence interval coverage for the fixed effects (Figure 1) 
was relatively constant. Level-2 predictors had slightly more variability and slightly 
lower coverage than level-1 predictors, but, overall, predictors at both levels exhibited 
relatively consistent confidence interval coverage at or near the nominal .95. As shown in 
Figure 2, in terms of CI width, the binary level-2 predictor (w1) had the widest 
confidence interval of all predictors and interactions that included the binary level-2 
predictor (w1) had wider confidence intervals than the main effect predictors.  
 
Next, the proportion of singletons had no notable effect on the estimation of fixed effects 
for the level-1 predictors, but evidenced a clear impact on the interval estimation of the 
parameters for the level-2 predictors, especially when level-2 sample size was small. As 
shown in Figure 3, when there were only 50 level-2 units, the average confidence interval 
coverage quickly deteriorates as the proportion of singletons increases. However, when 
level-2 sample size was 500, confidence interval coverage of level-2 predictors remained 
relatively unaffected by changes in the proportion of singletons.  
 
When confidence interval coverage was evaluated by computing the proportion of 
conditions with estimated interval coverage that fell with Bradley’s (1978) “liberal” 
criterion for robustness (e.g., with a 95% confidence interval, the estimated coverage is 
greater than 92.5% and less than 97.5%), the same pattern was evident.  Figure 4 presents 
the proportion of conditions that satisfied Bradley’s criterion for small and large numbers 
of level-2 units. With 500 level-2 units, the proportion of singletons had no impact on the 
confidence interval coverage and nearly all conditions met Bradley’s criterion. In 
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contrast, with only 50 level-2 units, the proportion of conditions meeting Bradley’s 
criterion declined as the proportion of singletons increased.  With 70% singletons, the 
proportion of conditions with adequate confidence interval coverage was typically less 
than .10.  
 

Figure 1: Estimated 95% confidence interval coverage for fixed effects 

Figure 2: Estimated 95% confidence interval widths for fixed effects 
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Figure 3: Average coverage of level-2 predictors by level-2 sample size and proportion 
of singletons 
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Figure 4: Bradley’s coverage of level-2 predictors by level-2 sample size and proportion 
of singletons 
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Figures 5, 6, and 7 present the estimated Type I error rates for the tests of fixed effects for 
the binary level-2 predictor, as a function of level-2 sample size, proportion of singletons, 
and level-2 sample size and proportion of singletons, respectively. With smaller level-2 
sample sizes, the estimated Type I error rate for the binary level-2 predictor was slightly 
liberal (Figure 5). Likewise, as the proportion of singletons increased, the estimated Type 
I error rate for the binary level-2 predictor was also liberal (Figure 6). Figure 7 displays 
the estimated Type I error rate of the binary level-2 predictor as a function of both level-2 
sample size and proportion of singletons. When there were only 50 level-2 units, the 
estimated Type I error rate was slightly above the nominal .05, even when there were no 
singletons in the model and continued to become more liberal as the proportion of 
singletons increased.  
 
An opposite pattern was observed for the estimated Type I error rates for the tests of 
random effects (Figure 8). With large numbers of level-2 units (N2 = 500), the proportion 
of singletons had relatively no effect on Type I error control. With few level-2 units (N2 = 
50), the test became slightly conservative as the proportion of singletons increased. 
However, across all conditions the estimated Type I error rates were close to the nominal 
alpha level (.043). 
 

5. Conclusions 
 

The results of this study are encouraging for researchers who analyze multilevel data with 
sparse structures. As with previous investigations of small cluster sizes, regardless of 
model complexity, the proportion of singletons in the simulated samples had little impact 
on either the point or interval estimates of model parameters when large numbers of 
level-2 units were included. With smaller numbers of level-2 units, increasing the 
proportion of singletons led to a reduction in the accuracy of the confidence intervals for 
level-2 predictors and bias in the Type I error control of the binary level-2 predictor, but 
did not impact the accuracy of the estimates for level-1 predictors. With that said, it is 
imperative for researchers to remember that as with all simulation research, these 
findings are only generalizable to data and model conditions included in our study. 
Additional research is required to examine a broader array of data structures and to 
evaluate the impact of sparse structures for analyzing non-normal outcomes (e.g., 
dichotomous or count variables) using generalized multilevel models. 
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Figure 5: Distributions of Type I error rates of binary level-2 predictor (W1) by 

level-2 sample size 

Figure 6: Distributions of Type I error rates of binary level-2 predictor (W1) by 
proportion of singletons 
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Figure 7: Average Type I error rate of binary level-2 predictor (W1) by level-2 

sample size and proportion of singletons 
 

 
Figure 8: Distributions of Type I error rates for random effects by level-2 sample 

size and proportion of singletons 
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