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Abstract
We propose a dynamic approach to determining the sample size in successive survey rounds,
rather than a static approach with fixed sample size. Observed data in past rounds are used
to update the sample size in the next round. Suppose that in each of k successive surveys,
estimates have been made of a population parameter and estimates have also been made of
the standard error of the parameter estimates. We consider two scenarios: (i) the estimates
and sample sizes are approximately constant up to time k − 1, the sample size at time k
is the same as in the past, but the parameter estimate and/or its estimated standard error
changes at time k; and (ii) the estimates behave in a regular manner up to time k − 1, the
sample size is approximately constant up to time k, and an autoregressive model with white
noise matches the sample estimates up to time k − 1 but fails at time k.
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1. Introduction

Consider a situation in which repeated samples are taken to estimate a parameter
that may be evolving in time. We use xt to estimate µt at times t = 0, 1, 2, . . . , k−1.
For simplicity suppose that we work with simple random samples at each time and
that the sample sizes are approximately fixed: n0 ≈ n1 ≈ n2 ≈ . . . ≈ nk ≈ n. Now
either the expected happens at time k or the unexpected happens at this time. For
example, if our estimates for µ0, µ1, . . . , µk−1 have all been roughly equal, then we
expect µk to be close and we do not expect it to be very different. Or in case our
estimates for µ0, µ1, . . . , µk−1 have fit a model of some sort, then we expect µk to
fit the model also and we do not expect it to deviate significantly from the model.

We propose a naive response to this state of affairs. If the parameter being
estimated has remained more or less constant over time or continues to fit the model,
consider reducing the sample size. If the parameter has undergone a significant
unexpected fluctuation or has ceased to fit the model, consider increasing the sample
size.

If we reduce the sample size, there is usually a lower limit below which we are
unwilling to go. But the idea is to make an adjustment in that direction, and free
up resources for other tasks. An increase in sample size, on the other hand,can only
be made if resources are available to support it. So funding must be adequate. One
possible source is borrowing from other surveys where reduction is contemplated.

What is proposed is a dynamic or adaptive approach to longitudinal surveys,
rather than a static approach. A dynamic approach requires the operational flex-
ibility to adjust the sample size on short notice, but offers an overall increase in
efficiency in some contexts.
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2. Constant Populations

How many hours per day do you spend eating and drinking? The Bureau of Labor
Statistics in the American Time Use Survey arrived at data shown in the following
table.

Year Hours per Day
2003 1.21
2004 1.24
2005 1.24
2006 1.23
2007 1.24
2008 1.23
2009 1.22

Year versus Average Reported Hours per Day Spent Eating and Drinking

For these data there are certain obvious questions. Are the differences impor-
tant? What are the results going to be used for? Depending on the sampling
methodology should the sample size be reduced or should sampling skip a year or
more? Of course there is a context. This kind of survey is likely to be based on
diaries kept by respondents in which all time use is reported, and elimination of one
use would only complicate instructions to respondents.

At each epoch t we typically can extract from our sample two numbers xt and st,
the sample mean and the sample standard deviation, which can be used to estimate
the population mean at time t and the population standard deviation at time t.
What do these numbers have to look like in order for us to regard the population
mean and/or the population spread as essentially fixed? Alternatively, when would
we say that the data at time k contradict the assertion of fixedness?

A possible rule of thumb is the following.
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Inequality (1) is proposed as a basis for asserting that the population mean
has changed at the kth measurement, and inequality (2) is proposed as a basis for
asserting that the population standard deviation (or variance) has changed. The
multiplier 1.28 will be recognized as marking the boundaries of the 80th percent con-
fidence interval for a normal distribution. The logic of these expressions comes from
work of Mahalanobis and of Deming on independent random groups (see Särndal et
al. [pp. 423–5]), and is thought to be applicable when the number k of successive
samples is at least four, but the larger the better.

With (1) and (2) as criteria of change, we can set up a table of hypotheses about
what may have happened.
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Fact Hypothesis
x has changed but s has not µnew = µold + c

x and s have changed in the same proportion µnew = λµold

x and s have both changed but in different proportions µnew = αµold + β

x has not changed but s has changed xnew − µ = λ(xold − µ)

In general when something seems to have changed significantly, it is natural to
investigate more closely. One way to do this is to adjust the sample size (usually
upward). (Other ways to investigate will be mentioned at the end of this note.)
What is seen at time k after k previous epochs might suggest a recipe such as the
following.

sk larger =⇒ try to restore the standard error with nk+1 ≈ n( sk
s )2

sk same or smaller, xk same =⇒ reduce sample size
sk same or smaller, xk smaller =⇒ do nothing or increase sample size a bit
sk same or smaller, xk larger =⇒ set nk+1 ≈ n(λxk

x + (1− λ) sk
s )2

In the last row we take the population standard deviation σ to be approximately
equal to λsxk

x + (1− λ)sk where λ is a plausible number between 0 and 1.

3. Populations obeying models

Let us consider a slightly more sophisticated case where the population mean µt is
modeled as a time-independent normal random variable with mean c and standard
deviation τ .

At each time t random samples of size n are taken from the population and the
sample mean at time t is assumed to be a normal random variable with mean µt and
standard deviation σ√

n
. Thus the population is assumed to have variable mean µt

but constant standard deviation σ. Such a population is said to obey the constant
mean model. The quantity τ can be thought of as process error, and the quantity
σ√
n

is the sampling error.
A problem of interest is to estimate the three parameter in this situation - the

mean c of the population means, the process error τ , and the population standard
deviation σ.

If we apply maximum likelihood methods, we obtain the following estimates for
these three parameters.
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An oddity may occur with such a model. It may happen that
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if the means at each time are closely grouped around the grand mean ce, while
the average sampling variance is large. Then the system of equations for our three
estimators has no solution. Mathematically this is not a problem since maximum
likelihood will give a solution on the boundary of the feasible set of parameters.
Nonetheless the absence of a solution to these equations is an indication that the
model is invalid. The process variance and the sampling variance should be additive,
and when that fails to occur, the model is implausible.

In general, though, if the equations are solvable up through time k − 1, they
will also be solvable at time k even if xk and sk differ substantially from their
predecessors, and the parameter estimates will not change too much from time k−1
to time k. A substantial change in xk or sk may just indicate an unrepresentative
sample. At the next epoch, the sample may return to the usual form. If it does not,
then we begin to suspect that the original model is no longer applicable. A larger
sample size can contribute to our confidence in whatever conclusion we draw.

Similar considerations apply to other autoregressive models that may have been
established on the basis of past data. We may have a model in which µt+1 is
normally distributed about µt or λµt or even αµt + β with, say, fixed variance τ .
The sampling variance for fixed sample size may be assumed to be constant or to
depend on the parameter λ or α.

The constant mean model is representative of these other models and the pa-
rameter estimation in these other cases is similar although more complex.

A striking example of data fitting a model of this general type, although not
necessarily derived from straightforward simple random sampling, is the following
data set for World-wide infant mortality compiled by the United Nations and re-
ported in Wikipedia. Infant mortality is the number of deaths within the first year
of life per 1, 000 live births.

1950-55 1955-60 1960-65 1965-70 1970-75
152 136 116 100 91

1975-80 1980-85 1985-90 1990-95 1995-2000 2000-05
83 74 65 61 57 52

These data follow a decaying exponential curve of the form Ae−kt reasonably well.
However, they can also be fitted nicely to the equation Rt+1 = e−kRt + εt where εt

is white noise (zero mean and constant variance) and time is measured in five-year
increments.

4. Conclusions

Modeling is high art. The ARMA, ARIMA (Box-Jenkins), Structural Time Series,
and Kalman filter approaches described in some of the References below give very
sophisticated accounts of longitudinal data and include tests of specification and

Section on Survey Research Methods – JSM 2010

3969



misspecification that we have not discussed. For a somewhat different approach to
modeling, see recent work of Kim et al. describing the Hodrick-Prescott filter and
L1 filter in which curves are selected to minimize certain functionals.

When a model, whether of constancy or of regular variation, starts to fail, when
the data are too far away from the model predictions, what should investigators do?
They should watch the data closely in subsequent epochs, increasing the sample
size for higher precision if resources permit. There are other options as well. If
samples from time k − 1 and time k overlap, they can analyze individual sample
points to determine if a systematic change has taken place. Another possibility is
to augment the data from time k by a supplementary sample. Yet another is to
discard older data and determine if the most recent data can be fitted with data
from the intermediate past to a new model.

If an established model continues to work well at time k, then investigators or
agencies with budgetary restrictions may well consider reduction of sample size or
even omission of some epochs. In multipurpose surveys questions can be omitted
where the answers have continued to follow a regular pattern, reducing response
burden or permitting introduction of new questions on other issues.
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