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Abstract

The potential outcome framework for causal inference is fundamentally a missing data
problem with a special, the so-called file-matching, pattern of missing data. Given the large
body of literature on various methods for handling missing data and associated software,
it will be useful to use such methods to facilitate causal inference for routine applications.
This article uses the sequential regression or chained equation imputation methodology for
handling missing data to impute the potential outcomes based on the observed data. The
causal inference parameters are formulated based on the models for the completed data
and standard multiple imputation combining rules are applied to infer about the direct
and mediated effects. Since the special pattern of missing data makes certain parameters
of the joint distribution not estimable, the multiple imputation framework is modified to
incorporate constraints or prior information in terms of augmented complete-data. Given
the ability of the multiple imputation framework to to handle several types of variables,
missing values in covariates and the availability of software for performing multiple imputa-
tions, this approach makes easier to perform causal inference from both observational and
randomized studies. The methodology is illustrated through an application aimed to un-
derstand and quantify direct and mediated effect of diabetes on the cardiovascular disease
using the NHANES data.

keywords: Direct Effect, Indirect Effect, Mediation, Observational Studies, Potential
Outcomes, Randomized Studies

1. Introduction

Causal Inference forms a backbone of most scientific questions of interest. Though
there is a considerable debate in terms of philosophical underpinnings of the cause
and effect relationship, most, if not all, in statistical community (see, for example,
Dawid (2000) and its discussions) have adopted the notion that causal effect of
treatment or factor Z, which can take, say, two plausible values z1 and z2 for a
subject s, measured using a variable Y is the contrast of the two possible outcomes,
Ys(z1) and Ys(z2) for the subject s. The contrast could be measured through a
difference Ys(z1)−Ys(z2) or the ratio Ys(z1)/Ys(z2) or any other meaningful distance
measure, d(Ys(z1), Ys(z2)) between the two potential or possible outcomes. The
fundamental problem in constructing the causal effect for any particular subject is
that only one of the two potential outcomes can be measured as any subject can
only be measured either under z1 or z2. Thus, using the missing data framework,
if Ys(z1) is observed then Ys(z2) is missing and vice versa and, hence, the result is
a special pattern ( the so-called“file-matching” pattern of missing data (Little and
Rubin (2002))) of missing data. There is no information to estimate the correlation
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(partial correlation with additional pre-treatment covariates) between Y (z1) and
Y (z2).

However, from the statistical perspective, the population average or expected
causal effect can be measured which is defined as T = E(Y (z1) − Y (z2)) which
equals

∑
s Ys(z1)/N−

∑
s Ys(z2)/N for a finite population of size N (Neyman(1923),

Rubin(1974) and Holland(1986)). It has been showed (Neyman (1923)) that under
a completely random assignments of treatments with n subjects receiving z1 and m
subjects receiving z2, the difference in the sample means is the unbiased estimate
the population causal effect and the standard variance estimate of the difference in
the sample means, s21/n+s22/m where s1 and s2 are the sample standard deviations,
over estimates the actual sampling variance.

The averaging of the individual causal effects can be restricted to particular
subpopulation under certain conditions (Rubin(1974)). This framework has been
extended to longitudinal settings (Robins(1986), Robins, Greenland and Hu (1999))
and parametric, semiparametric and nonparametric models could be used for esti-
mating the causal effect. The conceptualization and development of these models to
estimate the causal effect may also be facilitated by setting up graphical represen-
tation of regression relationships (Cox and Wermuth (2004)) among the potential
outcomes.

Another important extension of this framework is to estimate the direct and in-
direct (or mediated) causal effects (Rubin (2004)). Suppose that the treatment can
directly impact the outcome or through its effect on an intermediate variable or out-
come. Suppose that the intermediate variable M is affected by the treatment, hence
has two potential outcomes for the subject s, Ms(z1) and Ms(z2). A direct causal
effect may be defined as Ys(z1) − Ys(z2) when Ms(z1) = Ms(z2). The population
average direct causal effect may be defined as

D(z1, z2) =

∑
s[Ys(z1)− Ys(z2)]δMs(z1)−Ms(z2)∑

s δMs(z1)−Ms(z2)

where δA = 1 if the event A is true and 0 otherwise and the summation is taken over
all subjects in the population. Alternatively, the direct effect can be represented as
the conditional expectation E(Y (z1) − Y (z2)|M(z1) = M(z2)] under a joint model
for {M(z1), Y (z1),M(z2), Y (z2)}. A broader definition of direct effect is through
the computation of E[Y (z1) − Y (z2)|M(z1) −M(z2)| ≤ ε] which may be useful to
assess the role of the treatment directly affecting the outcome.

In the missing data analysis context it may be more convenient to express the
causal parameters as regression coefficients. Defining ∆Y = Y (z1) − Y (z2) and
∆M = M(z1)−M(z2), and a regression model ∆Y = βo +β1∆M + ε, the intercept
term can be used to estimate the direct effect and β1 as the summary effect on Y
through the effect of Z on M .

Frankagis and Rubin (2003) developed principal stratification to isolate the to-
tal effect into direct and indirect effects where the principal strata are formed
by combination of values of the potential outcomes Ms(z1),Ms(z2). Given that
the conceptualization of the direct and indirect effects involve four potential out-
comes {M(z1),M(z2), Y (z1), Y (z2)} and the observed data consists of either the
pair [M(z1), Y (z1)] or [M(z2), Y (z2)], the estimation of the direct and indirect effect
poses considerable identification problem. In the simple case with no covariates,there
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is no information to estimate the covariances, cov(M(z1),M(z2)), cov(Y (z1), Y (z2)),
cov(M(z1), Y (z2), and cov(Y (z1),M(z2)), in the observed data. Some constraints
have to be imposed to construct inferences for the causal parameters discussed above.

A popular constraint is the monotonicity assumption which entails, an ordering
of the treatment z1 and z2 such that M(z1) ≤ M(z2) and Y (z1) ≤ Y (z2) for all
subjects in the population. The direction of the inequalities can be changed or it
can be different for M and Y depending upon the scientific context of the problem.
These constraints provide information about the missing potential outcomes and
may help identify the joint distribution of the four potential outcomes. See Jin and
Rubin (2008).

The foregoing discussion amply illustrate that the causal inference problem can
be be easily handled in practical routine application, if the missing potential out-
comes could be handled as a missing data problem and are multiply imputed using
an approach that identifies the joint distribution the potential outcomes conditional
on the observed data. The paper discusses two potential appraaches for handling
indentification problem. The monotonicity assumption allows some values to be im-
puted deterministically (or put some limits on the imputed values) and the rest can
be imputed using some standard imputation software. The second approach is to
incoporate prior information by augmenting the observed data by a small fraction
of ”complete-data” generated under a set of assumptions. This strategy also allows
one to perform sensitivity analysis. Hence, the goal of this paper is to illustrate
how the multiple imputation framework and software can be used construct causal
effect estimates, total or direct.For multiple imputation, we used the sequential re-
gression approach (Raghunathan et al (2001), Van Burren and Oudshoom (2000))
as implemented in IVEWARE (Raghunathan et al (1997)), a SAS callable routine.
A similar approach is available in R and STATA environment. The over arching
goal, however, is to facilitate the causal inference using easily available multiple
imputation software rather than focusing on any particular software.

The motivation for this paper is to understand the role of diabetes(Z) and
albuminuria(M) on cardiovascular disease(Y ). Diabetes is the main risk factors
for developing CVD. Albuminuria is considered to be the intermediate or mediating
variable. Albuminuria is common complications of diabetes and characterized by
presence of Albumin in the urine (Mogensen (1999). On the other hand Albimin-
uria is considered to be a significant risk factor for progression to cardiovascular
disease and a predictor of cardiovascular mortality in diabetic population (Sowers
at al (2001). There are a number of recent studies (Targher at al (2008), Soedamah-
Muthu (2008)) that aimed to understand effects of Diabetes and Albuminuria on
CVD. We used the National Health and Nutritional Examination Survey Data for
this investigation. Since, this is not a randomized study, we use a large set of covari-
ates and propensity score analysis to group subjects to achieve near randomization
or balance. Analysis is performed within each propensity score class then combined
across classes to yield an overall estimate.

The rest of the paper is organized into 4 sections. In Section 2, we provide the
details about setting up as missing data problem, imputation of missing values and
the analysis for both binary and continuous outcomes and mediating variables. In
Section 3, we apply these methods to the NHANES-III data and describe the results.
Section 4 conculdes with discussion of limitations and further research.
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2. Methods

2.1 Imputation of potential outcomes

Here we consider a simple scenario that involves three variables Z, M , and Y ,
where Z is a binary treatment indicator Z = {0, 1}, M is a mediator which could
be continuous or binary variable, and Y is an outcome variable which could also
be a continuous or binary variable . Our goals are (1) To estimate overall causal
effect of Z on Y at the population level by measuring the distance between Y (0)
and Y (1), d(Y (0), Y (1)); (2) To assess if the overall effect can be decomposed into
d(Y (0), Y (1)|M(0) = M(1)) as the “Direct effect” of Z on Y and d(Y (0), Y (1)|M(0) 6=
M(1)) as the “indirect effect” of Z on Y and mediated through M . In any applica-
tion there may be several covariates, X, to be adjusted. The key players are X, Z,
M(0), M(1), Y (0) and Y (1). The data thus laid out and illustrated in Table 1 in-
troduces identifiability problem because exactly values of all potential outcome and
mediator values M(0) and Y (0) are missing for subjects with Z = 1 and the values
of M(1) and Y (1) are missing when Z = 0. All four variables M(0),M(1), Y (0),
and Y (1) are missing when Z is missing which may occur in an observational study
setting. In addition some values in X may be missing for some subjects. There
are several potential ways to handle the identifiability issue: (1) Impose restrictions
on possible values of the potential mediator, or outcome, or both; or (2) Use in-
formative priors to make the problem identifiable. In this article, we demonstrate
both approaches. For the first scneario, we can use the monotonicity assumption,
for example, M(0) ≤M(1) and Y (0) ≤ Y (1) and is illustrated in Table 2 for binary
mediator and outcome variables where the observed values are in the bold font and
the values indexed with ’*’ are determined by the monotoncity assumption. In the
case of a continuous mediator and/ or outcome the monotonicity assumptions do
not allow deterministically define additional values, but imply restrictions on the
plausible values of potential outcomes and mediators which is sufficient to carry out
the imputations.

To proceed with the causal inference we need to make a number of assumptions.
We assume the stable unit-treatment value (SUTVA) (Rubin (1974)). This assump-
tion implies that values of the potential mediators and outcomes are not affected
by the treatment assignments of other subjects in the sample. We assume that the
treatment assignment are completely at random as in randomized study, and thus

Pr(Z = 1|M(0),M(1), Y (0), Y (1), X) = Pr(Z = 1) = p

If the treatment assignment is not randomized, then we assume that near random-
ization can be achieved by matching on the propensity score P (Z = 1|X) or in other
words,

P (Z = 1|M(0),M(1), Y (0), Y (1), X) = P (Z = 1|X)

In this case, following Rosenbaum and Rubin (1983) the estimated propensity
score, for example, based on a logistic regression of Z on X, can be used to stratify
the sample and the imputation can be carried out within each propensity score
stratum. On the other hand, if the distribution of X is overlapping for the two
groups Z = 0 and Z = 1, then all X could be directly used as a covariate in the
imputation process.
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There are many options for filling in the missing values in Table 2. We used the
sequential regression approach (Raghunathan et al (2001)) as implemented in SAS
callable IVEware(Raghunathan et al (1997)) to carry out the multiple imputations.
The sequential regression approach involves a Gibbs sampling style iterative sam-
pling from a sequence of conditional regression models, where the missing values
in any given variable are drawn from their posterior predictive distribution corre-
sponding to the regression model, and uses all other variables (including interaction
terms) as predictors. This conditional distribution is based on a regression relat-
ing the variables being imputed and all other variables as predictors. This choice
was mostly motivated by the particular application using the NHANES data set.
The covariates had some missing values and were varying types such as continuous,
categorical count etc, the mediator and outcome variables were also categorical or
continuous and involved complex sample survey design. This general approach is
also available in other software platforms MICE (R-package), and ICE (STATA).

2.2 Estimation of causal, direct and mediated effects

Once the missing values in Table 2 are multiply imputed, the estimation of causal
effect is straightforward with monotonicity restrictions. For binary mediator and
outcome variables, Define IM = 1 if M(0) 6= M(1) and 0 otherwise. Similarly,
define IY = 1 if Y (0) 6= Y (1) and 0 otherwise. The magnitude of the mediator M
on the causal effect of Z, can be represented as

DE = P (Y (1) 6= Y (0)|M(0) = M(1))

ME = P (Y (1) 6= Y (0)|M(0) 6= M(1))

OR =
P (Y (1) 6= Y (0)|M(0) 6= M(1))/P (Y (1) = Y (0)|M(0) 6= M(1))

P (Y (1) 6= Y (0)|M(0) = M(1))/P (Y (1) = Y (0)|M(0) = M(1))

This quantity can be estimated through a logistic regression model of IY on IM ,
logitPr(IY = 1|IM ) = βo + β1IM and ME = exp(β1). Expressing the mediation
effect in this format allows the use of the standard multiple imputation combining
formula. Similarly, the probability of the change in the outcome given then there is
no change in mediator due to treatment Pr(IY = |IM = 0) can be estimated as the
direct effect DE = (1 + exp(−βo))−1.

In the case of continuous mediator M and continuous outcome Y , the regression
model, ∆Y = β0 + β1∆M + ε discussed earlier could be used. The direct effect is
then the intercept βo and the magnitude of mediation (M) in a pathway between Z
and Y can be expressed as β1 per unit increase in ∆M . Note, that this simple model
assumes that the effect of mediation is additive and does not depend on M(0) or
Y (0). Both variables can be added to the list of predictors and potential interactions
can also be considered.

When the monotonicity restrictions are not imposed, there are multiple ways to
quantify direct and mediated effects. For example,

DE+ =
P (Y = (0, 1)|M(0) = M(1))

P (Y = (1, 0)|M(0) = M(1))
,

measures the direct effect of the treatment on a positive relative to a negative
outcome (or vice versa). Alternatively, the strength of the mediated relative to
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direct effects can be expressed in terms of the following two relative odds,

OR+ =
P (Y = (0, 1)|M = (0, 1))/P (Y = (1, 0)|M = (0, 1))

P (Y = (0, 1)|M(0) = M(1))/P (Y = (1, 0)|M(0) = M(1))
,

and

OR− =
P (Y = (0, 1)|M = (1, 0))/P (Y = (1, 0)|M = (1, 0))

P (Y = (0, 1)|M(0) = M(1))/P (Y = (1, 0)|M(0) = M(1))

3. Application to NHANES Data

As briefly discussed in the introduction, we applied the proposed methodology to the
estimation of the causal effect of diabetes on Cardiovascular disease (CVD), based on
NHANES III data. The Third National Health and Nutrition Examination Survey
(NHANES III), 1988-94, contains data for 33,994 persons ages 2 months and older
who participated in the survey. For our investigation we selected subjects 25 years
and older. Our goal is to estimate a direct effect of diabetes, assess if causal effect
of diabetes is mediated by albuminuria, and quantify this mediation. Diabetes was
defined based on self-reporting, medication use, and an elevated 8-hours fasting
glucose ≤ 126. A subject was classified to having CVD if the respondent had
previously experienced one of the following: heart attack, stroke, or congestive
heart failure. Albuminuria (ALB) is characterized by a presence of albumin in the
urine and is measured as a ratio of Albumin-to creatine. It’s a common in clinical
practice to classify individuals into three categories based on this ratio. These three
categories are: normal (≤ 3mg/g), micro albuminuria(> 3mg/g,≤ 30mg/g), and
macro-albuminuria(> 30mg/g).

Given that NHANES III is an observational study and exposure to diabetes is
known to be associated with a number of risk factors, we matched like subjects
based on the probability of having diabetes, conditional on the covariates. From the
NHANES III we selected a number of demographic variables and are listed in Table
3. For the purpose of the illustratione we limited the sample to the complete cases
(N=11505) though we also performed the analysis that simultaneously imputed the
missing covariates, an advantage of the multiple imputation framework. The results
were quite similar.

We utilized logistic models to estimate propensity scores. Based on the estimated
propensity of having diabetes, the subjects were stratified into quintiles. Due to a
very small number of observed CVD cases in the first two low propensity quintiles,
these two were combined resulting in four strata. We estimated the mediation effect
of albuminuria expressed as (1) a ratio (continuous), and (2) dichotomized at 3mg/g.
We log-transformed albumin-creatinine ratio to make normality assumptions more
plausible.

For both continuous and binary definitions of Albuminuria, we estimated direct
and mediated effects by applying (a) monotonicity restrictions Alb(0) ≤ Alb(1), and
CV D(0) ≤ CV D(1) or (b) using augmented data. To augment the data, we sample
1% from each stratum and filled out missing values for the mediator and outcome
based on hypothesized pattern. We explored a number of patterns and chose two
to present in this article. After being added to the original data, these ’completed’
data serve as priors and labeled as Prior1 and Prior2.
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Prior1 was defined based on the hypothesis that missing values of mediator, and
outcome are equal to the observed values (ALB(0) = ALB(1), CV D(0) = CV D(1)).
For the continuous mediator we used a less restricting form of this prior assuming
monotonicity for the mediator, and inequality for outcomes (ALB(0) ≤ ALB(1),
CV D(0) = CV D(1)).

Prior 2 was based on the hypothesis that potential values of Albumin and
CVD under diabetes are independent of the corresponding values Albumin and
CVD with no diabetes exposure, given observed covariates {(ALB(0), CV D(0)} ⊥
{(ALB(1), CV D(1))|X)}

Next, the missing values of potential outcome and mediator were multiply im-
puted (N=50) conditional on the observed data. The estimates and standard errors
of the causal parameters were pooled across the four propensity score strata for each
imputed data set and then combined using the multiple imputation combining rules.

The first two estimates characterize causal effects of diabetes on any change in the
CVD status relative to no change. DE is the probability of change in CVD status
when no change in Albuminuria occurs; OR is the odds ratio of change in CVD
associated with 1-unit change in Albuminuria. These two measurements allow us to
compare estimates under restricted and unrestricted scenarios. However, they do not
reflect a nature of causal effect for unrestricted scenario. To describe the direction of
causal effect that is the change for better, we defined two more parameters: DE+ is
odds of having CVD concordant with diabetes exposure vs being discordant, given
no change in mediator, andOR+ odds ratio of concordant to discordant change CVD
status due to concordant change in mediator. Table 4 shows summary of results for
the four sets of estimates. All scenarios suggest that probability of change in CVD
status caused by exposure to diabetes for subjects with no change in Albuminuria
is close to 0.3. For example, for dichotomized Albuminuria and under monotonicity
restrictions for 27% of population (95% CI 14-46%) change in diabetes status alone,
may lead to change in the CVD status. For the unrestricted scenario and Prior1
33% of the population (95% CI 18-55%) are estimated to experience change in CVD
status, when exposed to diabetes, but no change in Albumin values.

Estimated OR shows that subjects with a change in Albuminuria status are more
likely to experience change in CVD status when exposed to diabetes, but the effect
of change in Albumin is not significant. Assuming monotonicity doesn’t change
the results meaningfully. Odds of concordant CVD and Albuminuria pair vs the
discordant one, caused by exposure to diabetes (DE+) is estimated between 2.21 to
2.63, depending on the prior assumptions and statistically significant (at 5% level
of significance) for all scenarios. Estimates for OR+, though being positive for all
scenarios, did not suggest a significant increase in odds of accordant CVD due to
positive change in Albuminuria status. In sum, our analyses suggest that effect of
diabetes on CVD is largely direct. We found a slight increase in risk of CVD due
change in the Albuminuria levels caused by exposure to diabetes. However, this
increase in risk is not significant.

4. Discussion

The advancements in methodolgy for analyzing data with some missing values and
its implementation through user-friendly software provides a useful framweork for
causal inference. The causal inference problem formulated through potential out-
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come framework is essentially a missing data problem. However, some parameters
of the joint distribution of the potential outcomes are not estimable neccesitating
either restrictions or prior information. The most popular restriction, monotonicity
restriction, lead to some deterministic imputation and the rest of the missing data
can be imputed using any appropriate multiple imputation software. If the mono-
tonicity restriction is deemed to be inappropriate, then some prior distribution may
be needed to create imputations. The prior distribution can be introduced through
augmented complete data under differing assumptions. This strategy also allows
exploring sensitivity of inferences to prior distribution assumptions.

Many causal parameters of interest can be expressed as regression coefficients or
ratios of simple proportions and can be easily estimated from the completed-data
analysis. The standard multiple imputation combining rules can be applied. Once
the data sets are completed, many different strategies can be used to infer about
the direct and indirect causal effects of exposure to risk factors.

In this paper, we used the chained equations or sequential regression approach
for imputing the missing values. However, almost any other approach can be used
to impute the missing values. For example, semiparametric or nonparametric ap-
proaches (hotdeck, Bayesian Bootstrap etc) approaches can be used. The missing
values in covariates can also be simutaneously handled in the analysis.

We have conducted a limited simulation study to evaluate the repeated sampling
properties of the estimates. Though not shown, the estimates of causal parameters
are unbiased and the interval estimates have desirable coverage properties. Further
research is needed on this methodology and evaluation of different approaches for
performing multiple imputations.
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Table 1: Observed Data Structure

Z M(0) M(1) Y (0) Y (1)

0 Observed Missing Observed Missing

1 Missing Observed Missing Observed

Table 2: Observed Data Structure without and with Montonicity Re-
striction. The items indicated with * are dterministic imputations

Z M(0) M(1) Y (0) Y (1)

0 0 Missing 0 Missing
0 1 1* 0 Missing
0 0 Missing 1 1*
0 1 1* 1 1*

1 0* 0 Missing 1
1 Missing 1 Missing 1
1 0* 0 0* 0
1 Missing 1 0* 0

Table 3: Albuminuria and CVD by Diabetes status based on observed
data

No CVD CVD

No Diabetes (N=10280) No Albuminuria 85.4% 5.5%
Albuminuria 7.7% 1.5%

Diabetes (N=1225) No Albuminuria 51.4% 11.4%
Albuminuria 26.8% 10.4%
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Table 4: Distribution of covariates

Diabetes No Diabetes
N = 10280 N = 1225

Race Caucasians 46.4 39.4
African-Americans 27.5 28.7
Hispanic-Latino 22.9 29.4
Others 3.2 2.4

Education Less then HS 36.1 56.4
HS 31.9 25.6
More then HS 32.0 18.0

Gender Male 47.0 46.5
Female 53.0 53.5

Medical coverage Yes 85.2 89.6

Current smoker Yes 26.2 17.1

Blood cholesterol ever taken Yes 57.1 71.8

Age Mean (Std) 49.7 (17.5) 62.3 (14.1)

BMI Mean (std) 27.1 (5.6) 30.1 (6.2)

Income-to-poverty ratio Mean (std) 2.6 (1.8) 2.2 (1.7)

Table 5: Direct and Mediated effects of Diabetes on CVD.

Mediator Method DE (95% CI) OR (95% CI) DE+ (95% CI) OR+ (95% CI)
Binary Restricted 0.27(0.14,0.46) 1.26(0.50,3.18) N/A N/A
mediatior Prior 1 0.29(0.14,0.51) 1.49 (0.57,3.93) 2.21(1.09,4.50) 1.43(0.12,17.70)

Prior 2 0.29(0.15,0.48) 1.56 (0.55,4.42) 2.30(1.36,3.90) 1.36(0.24,7.71)
Continuous Restricted 0.28(0.11,0.55) 1.05(0.77,1.43) N/A N/A
mediator Prior 1 0.34(0.18,0.55) 1.04(1.82,1.31) 2.55(1.40,4.63) 1.09(0.76,1.55)

Prior 2 0.33(0.17,0.53) 1.05(0.85,1.30) 2.63(1.50,4.62) 1.03(0.74,1.43)
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