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INTRODUCTION 
 
When a statistician designs a stratified sample he or she must determine the allocation of 
the available budget for sample units to the strata.  When a population statistic will be 
estimated for a single quantity, or on several well-correlated quantities, methods for 
doing this are straightforward.  More often, a survey practitioner wishes to make 
estimates for many quantities from a single survey.  In that case, optimal allocation of the 
sample units to strata is not so simple.  Such a problem has multiple objectives, 
minimizing cost as well as the variances of each of the estimates of interest. 
 
Traditionally, this problem is solved by converting the multiple objective functions into a 
single scalar-valued objective in one of two ways. One method involves creating a 
function, such as a linear combination, from the multiple objective function values and 
minimizing this function.  A second method involves choosing one objective (usually 
cost minimization) and turning the rest of the objectives into constraints by setting 
maximum acceptable variances for each estimate of interest. Several authors have 
published such methods [1-8]. 
 
This paper offers an alternative.  Rather than specifying a function of the objectives a 
priori, or choosing a set of arbitrary variance targets, a multi-objective evolutionary 
algorithm is used to generate multiple solutions that, taken together, describe the Pareto 
front for the problem.  The Pareto front consists of a set of non-dominated solutions. A 
solution is said to be dominated if another solution exists that is better on at least one 
objective and at least as good on all the other objectives.  A solution that is not dominated 
by any other solution is said to be non-dominated. Examination of the Pareto front makes 
the trade-offs implied by the choice of function parameters or variance targets in the 
traditional methods explicit. 
 
This paper will describe the multivariate optimal allocation problem.  It will then cover 
the basics of single-objective evolutionary algorithms, and extend these to describe a 
multi-objective evolutionary algorithm.  The paper then offers details of the application 
of the multi-objective algorithm to a multivariate optimal allocation problem from the 
literature.   
 

MULTIVARIATE OPTIMAL ALLOCATION 
 
One goal of stratified sampling is to increase the precision (reduce the variance) of 
estimates of population statistics inferred from a sample.  All other things being equal, 
increased homogeneity of the population being sampled works to increase precision.  By 
dividing the population of interest into non-overlapping subpopulations (sampling strata) 
that are more nearly homogeneous, selecting independent samples from each stratum, and 
combining estimates from the strata, the statistician can make a more precise estimate 
than by choosing a random sample from the population as a whole.  
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Once stratum boundaries have been defined, the problem arises of how many sample 
units to allocate to each stratum.  If the survey practitioner wishes only to make as precise 
as possible an estimate for one variable given a fixed cost, or find the minimum cost 
design to achieve a target variance, this problem has a well-known solution [1]: 
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where nh is the number of sample units allocated to stratum h, Nh is the number of 
population units in stratum h, ch is the cost per unit in stratum h, Sh is the population 
standard deviation for the variable of interest in stratum h, and n is the total sample size.  
(Sh  is usually estimated from frame information or earlier samples.)  If a target variance 
is fixed and cost is to be minimized, then: 
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where W = Nh/N. If cost is fixed and variance is to be minimized then: 
 

∑
∑−

=
hhh

hhh

cSN
cSNcC

n
/)( 0 . 

 
While it is rarely the case that a survey is conducted to estimate the value of only one 
variable, this formula is still broadly useful, since an allocation that is optimal for one 
variable may be near-optimal for variables that are strongly correlated with it.  If, 
however, precise estimates of several variables are needed, and those variables are not all 
highly correlated with each other, it is desirable to have a method to find a good 
compromise allocation that will give adequate precision for all of the variables of interest.  
This is the usual goal of multivariate optimal allocation.  
 
There are two common ways to approach this problem.  One is to minimize a weighted 
sum of the variances of the variables of interest.  Khan and Ahsan [7] propose a method 
in which they formulate this problem as a nonlinear programming problem and use a 
dynamic programming technique to find a solution.  One problem with this approach is 
how to weight the variances.  There is no single solution for doing this, and it is not 
always easy to predict what the consequences of a particular choice of weights are.  Even 
examination of different sets of weights for the variances may not give a representative 
idea of the trade-offs being made due to non-linearity of the relation between the weight 
vector and the vectors of values of the multiple objective functions. 
 
The other approach is to choose an acceptable coefficient of variation for each of the 
variables on which the allocation is to be done. These become constraints on a cost 
function that can be minimized, giving the following convex programming problem:  
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Where tj is the target coefficient of variation (CV) of the jth variable and jY is the 
population mean of jth variable [14].  These approaches turn the multi-objective 
optimization problem of multivariate optimal allocation into a problem with a single 
scalar-valued objective.  By doing so, they allow traditional methods for solving 
optimization problems to be used. 
 

EVOLUTIONARY ALGORITHMS 
 
Briefly, single-objective evolutionary algorithms (EAs) adopt biological evolution as a 
model for computing.  While there are a number of canonical variants of evolutionary 
algorithms, it is common for practitioners to adapt features of two or more variants to 
develop algorithms specific to the solution of their problems.   
 
In general, evolutionary algorithms start with a “population.” Each individual in the 
population consists of one candidate solution for the problem the EA is trying to solve.  
Borrowing terminology from biology, each variable in a solution is referred to as a gene, 
the value for each gene is called an allele, and the structure of the whole solution is 
referred to as a genome.  These candidate solutions are usually generated at random from 
the space (or a well-chosen subspace) of all possible solutions. 
   
The “fitness” of each individual is then evaluated; that is, the value of the objective 
function of the optimization problem being solved is determined for each candidate 
solution. Next, pairs (or n-tuples, should the practitioner wish) of individuals are selected 
to “reproduce.”  This selection is done in such a way as to favor fitter individuals; for 
example, individuals could be selected with probability proportional to their fitnesses.  
 
During reproduction, two operations can be used to produce “children” (the next 
“generation” of candidate solutions). One consists of taking one part of one of the 
individuals selected to reproduce and appending it to the complementary part of the 
individual it was paired with during selection.  This is referred to as “crossover” in the 
EA literature, and is analogous to recombination in biological reproduction (Figure 1)..  
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The second reproductive operator is mutation.  As one might 

 
 
Figure 1.  An example of one-point crossover. 
 
suspect, it consists in changing the value of one of the genes with some probability. 
Following reproduction, each child’s fitness is assessed.  Children are allowed to survive 
into the next generation (where they become the initial population) based on their 
fitnesses.  
 
This process continues, with the children becoming the next generation’s parents, until 
some convergence criterion is reached, or a maximum number of generations is reached.  
One problem with EAs as described to this point is that the best solution may be lost; that 
is, the solution with the overall highest (if maximizing) or lowest (if minimizing) value of 
the objective function may disappear as the algorithm moves from generation to 
generation, never to be seen again.  To address this problem, practitioners usually employ 
“elitism,” allowing the k highest valued members of the current population to survive into 
the next generation. 
 
Should the reader wish a thorough introduction to the field of Evolutionary Algorithms, 
De Jong [9] provides one. 
 
 

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM: THE STRENGTH 
PARETO EVOLUTIONARY ALGORITHM (SPEA2) 

 
As indicated in the introduction to this paper, it is not necessary to use one of the 
common methods of creating a scalar-valued objective function from the values of 
multiple objective functions, or to turn all but one of the multiple objectives in a multi-
objective optimization problem such as multivariate optimal allocation into constraints.  
In fact, algorithms are available to generate the Pareto front described in the introduction.  
Evolutionary algorithms, because they are already generating populations of solutions, 
are a natural choice for such a method.  The investigation described in this paper used a 
multi-objective evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 
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(SPEA2) [10] to find the Pareto front for the example problem from Bethel [6]  as 
corrected in Zayatz and Sigman [11]. 
 
In addition to the population of candidate solutions a single-objective EA uses, SPEA2 
has an archive.  The archive contains all of the currently discovered non-dominated 
solutions to the problem the algorithm is attempting to solve.  The archive has a 
maximum size, and, should it become filled, the fittest non-dominated solutions are kept 
and any less fit solutions beyond the maximum archive size are discarded.   
 
In its first generation SPEA2 initializes its population.  In each generation, it then stores 
any non-dominated solutions (considering both the archive and population) in the 
archive, subject to the maximum size limitation.  Fitnesses are then assigned to 
individuals in both the population and the archive according to a method described 
below.  SPEA2 then uses binary tournament selection to choose partners for reproductive 
selection from the archive.  
 
The phrase “tournament selection” needs a little explanation.  In any EA, it is necessary 
to select individuals for crossover and mutation.  These selections are done in such a way 
that fitter individuals have a greater chance of being chosen to reproduce, thus putting 
pressure on the whole system to evolve fitter and fitter individuals in successive 
generations.  One method of choosing individuals to reproduce is to hold a “tournament” 
in which k individuals are chosen at random and the fittest is selected to reproduce.  The 
larger k gets, the more likely the randomly chosen participants are to contain at least one 
high fitness individual; therefore, larger values of k are associated with greater selection 
pressure.  In binary tournament selection, the value of k = 2. 
 
Recombination and mutation steps, as described for single-objective EAs, are then 
performed to create the next generation.  This generation is the new initial population and 
the algorithm begins at the first step again, continuing until some convergence criterion is 
reached or a maximum number of generations has been reached. 
 
The fitness calculation for SPEA2 is unlike the calculation for single-objective EAs and 
is performed on the population and archive together.  First, an individual is assigned a 
strength equal to the number of individuals it dominates.  Next, it is assigned a raw 
fitness equal to the sum of the strengths of individuals that dominate it.  Note that lower 
raw fitnesses are better, and that a non-dominated individual has a raw fitness of 0. If the 
raw fitnesses were used alone, then the archive would tend to converge to a single 
solution.  The goal of a multi-objective EA is to produce a representative sample of non-
dominated solutions.  This requires the introduction of some other measure to ensure that 
diversity is maintained in the archive.  The measure used in SPEA2 is called the density.  
The Euclidean distance between the individual being evaluated its kth (k is usually the 
square root of the sum of the population and archive sizes) nearest neighbor in the space 
of objective function value vectors is calculated, two added to it to guarantee a positive 
value, and the density is calculated as the inverse of the sum.  The density is then added 
to the raw fitness to produce the final fitness value. 
 

DESIGN OF A MULTI-OBJECTIVE EA TO SOLVE A 
 MULTIVARIATE OPTIMAL ALLOCATION PROBLEM 
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This paper demonstrates the application of the SPEA2 algorithm to Bethel’s multivariate 
optimal allocation problem [6, 11].  To solve any problem with an EA, we first must find 
a representation for a solution.  Bethel’s problem has four variables of interest and six 
strata in its design.  The easiest representation for an allocation to six strata is simply to 
use a vector of six integers.  As a practical constraint, each integer value was allowed to 
vary from 2 to 200, indicating how may sample units were assigned to each stratum.  The 
objective function value vectors contained five floating point values, one for the budget 
(sum of the units allocated to the strata, assuming unit cost in each stratum), and one each 
for the coefficient of variation for each variable of interest, all of which are to be 
minimized.  All objective values were normalized to lie in a range between zero and one.  
A population size of 1,000 was used, and an archive size of 125. 
 

RESULTS 
 

Results, graphed in Figure 1, were quite encouraging.  Figure 1 is a scatterplot matrix that 
compares all of the two-way trade-offs between values of pairs of objectives for the 
solutions on the Pareto front. For example, the center plot in the first row displays the 
tradeoff between values of the CV for the third variable of interest with values of the CV 
for the first variable of interest.  There appears to be some linear relationship between the 
two. 
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Several features of the plot deserve mention.  First, the last row displays the relationship 
between sample size and the CVs for the four variables of interest.  The plots show, as 
one would expect, that as sample size increases, the CVs decrease.  In a single objective 
simple random sample design, as sample sizes increase, one would expect a decrease in 
CV proportional to the square root of the sample size.  Such a decrease would produce a 
smooth curve, but three of the four CV versus sample size plots have distinct inflection 
points, at which the return to increased sample size in terms of reduced CVs becomes 
considerably smaller.  A survey designer interested in minimizing total survey error 
might use the knowledge of where those inflection points lie to choose when to devote 
resources to other parts of the survey process (for example, data editing or questionnaire 
pre-testing) instead of increasing sample size. 
 
The relationships of the CVs to each other also reveal interesting features of the problem.  
The author has previous experience with the solution of this problem [12].  Note the 
apparent linear relationships between CVs for variables one and three, one and four, two 
and three, two and four, and three and four. Note further the apparent lack of a 
relationship between CVs for variables one and two.  When solving the problem using 
cost as an objective and target CV constraints, only the CV constraints for variables one 
and two were binding.   The cause for this is apparent from the relationships revealed in 
the scatterplot matrix.  Perhaps a survey designer might simplify his or her optimization 
problem by dropping the CVs for variables three and four, allowing them to “come along 
for the ride” with variables one and two. 
 

CONCLUSIONS 
 

The use of multi-objective EAs for multivariate optimal allocation holds considerable 
promise.  Not only can they allow the survey designer to allocate his or her resources to 
different parts of the survey process in a more informed way, but they can also illuminate 
relationships between different objectives.  Future research might include the application 
of similar methods to optimal allocation of resources across the entire survey process. 
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