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Abstract
The National Health Interview Survey (NHIS) is a population-based survey which has collected

health information from the U.S. civilian noninstitutionalized population since 1957. Major goals
of the NHIS include the production of quality data as well as precise and reliable estimates of health
conditions. This paper summarizes the results of alternative weighting techniques for NHIS data.
The first approach applied different raking methods to the NHIS interim weights using marginal
population totals for age, sex and race/ethnicity, education and income. The second approach con-
sisted of nonresponse adjustments found by predicting the probabilities of household response and
altering the weights using a weighting class adjustment. These predicted probabilities were found
using two methods applied to the NHIS paradata: logistic regression and recursive partitioning.
Raking was then also applied to these nonresponse adjusted weights.

Key Words: survey weighting, raking, nonresponse adjustment, logistic regression, recursive
partitioning

1. Introduction

The National Health Interview Survey (NHIS) has been continuously conducted since 1957
and seeks to gain a nationally representative sample of the civilian, noninstitutionalized
population of the United States. The NHIS consists of face-to-face personal interviews
where the interviewee is asked to provide information about topics in the gamut of health
issues as well as acute and chronic conditions the interviewee may suffer from. The 2007
NHIS consists of 75,764 records at the person level, only 75,504 of which were able to be
included in the analysis due to the fact that 260 persons met a non-inclusion criterion[9].

In order to gain inference using the NHIS data, responses to the NHIS need to be
extrapolated to the population as a whole to ensure the sample was representative of the
entire population. Thus, an accurate and reliable weighting procedure is invaluableto any
researcher working with this data. Currently, the NHIS uses the procedure outlined in
Table 1 to obtain weights for each of the sampled individuals in the survey. The first-stage
ratio adjustment helps to bring down standard errors of estimates by including geographical
information about the population by region and residence/race-ethnicity within non-self-
representing primary sampling units (PSUs). The second-stage ratio adjustment performs
a similar task but for the demographic variables of age, sex and race/ethnicity.

The purpose of this paper is to obtain alternative sets of weights by modifying various
stages of the current weighting procedure. One modification was done to the nonresponse
adjustment (step 2), another modificationwas applied to the second-stage ratio adjustment
(step 4) to account for noncoverage, and finally both modifications were applied simulta-
neously. Socio-demographic variables are useful in reducing standard errors of estimates,
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Table 1: Current NHIS Weighting Procedure

1. Initial value for the weights is the inverse of the probability that an individual was
selected

2. Initial value is then multiplied by a household nonresponse adjustment

• These will be called the interim weights

3. All weights corresponding to persons in non-self-representing PSUs are then sub-
jected to a first-stage ratio adjustment

4. All weights are finally subjected to a second-stage ratio adjustment (or post-
stratification) to the U.S. population by age, sex and race/ethnicity

• These will be called the final or post-stratified weights

especially if values of these demographic variables are known for the entire population.
Thus, a raking on age, sex and race/ethnicity is proposed and should perform similarly to
the second-stage ratio adjustment, while an additional raking on education and family in-
come levels is proposed to further reduce standard errors in the estimates. An alternative
nonresponse adjustment is analyzed as well in the hope that this method will improve the
estimates obtained with the current method. All alternative weighting adjustments are alter-
ations of the interim weights. The goal of subsequent analyses will be to match closely the
interim weights to the final weights using only demographic variables, as well as investigate
new areas of nonresponse adjustment applied to the interim weights.

2. Raking

2.1 Overview

Raking works by iteratively adjusting the sample weights, multiplying each weight by the
ratio of the population control total and the corresponding sample total for a given variable.
The method has been shown to work well when demographic variables are included, such as
age, sex and race/ethnicity, but a drawback of the method is that exact marginal population
counts are required. In the following analyses, estimates for these marginal counts are
used instead of exact counts. Raking is also beneficial in cases when exact cell counts are
unattainable, e.g., when the total number of males in the U.S. is known and the total number
of individuals under 18 in the U.S. is known, but perhaps the total number of males under
18 in the U.S. is unknown. More complete descriptions of the procedure and analysis of its
effects on estimates are given in the seminal paper [7] whereas practical considerations and
the method employed are explained in detail in [3].

2.2 Methodology

For the NHIS weights, a post-stratification is already done on age, sex and race/ethnicity,
thus an improved weighting procedure will require additional demographic variables that
are correlated with variables of interest in order to lower standard errors of survey estimates.
In addition to age, sex and race/ethnicity, individual education level and family income will
be utilized in the same way NHIS uses post-stratification, but raking will be necessary
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as only estimates of marginal population totals are known for these additional variables,
while estimates of the cell counts are unknown. It is possible that a number of variables of
interest in NHIS (e.g., type of insurance coverage, frequency of hospital visits, etc.) will
be correlated with education, income or both and including these variables may help to
improve the current weighting procedure. The abbreviations of raking 1 through raking 6
will correspond to the following rakings:

1. Raked on Age, Sex, Race/Ethnicity (A/S/RE)

2. A/S/RE, Education

3. A/S/RE, Coarse Income

4. A/S/RE, Education, Coarse Income

5. A/S/RE, Fine Income

6. A/S/RE, Education, Fine Income

Raking 1 should be nearly identical to the post-stratified weights discussed in the intro-
duction. There will be a slight disparity however, due to the final weights being adjusted
for nonresponse as well as utilizing an additional ratio adjustment. Most analyses of the
weights will not include this raking except where relevant as most interest lies in the inclu-
sion of the education and income variables. The difference between being raked on coarse
income and fine income is the groupings used to determine the control counts. The control
counts for age, sex, race/ethnicity, education and income were obtained from the 2007 Cur-
rent Population Survey (CPS)[6] and used as estimates for the marginal population totals.

2.3 Imputation

While the person data file is complete for age, sex and race/ethnicity, education and income
variables suffered from missing values that needed remedy in order to get accurate counts to
perform the raking. Without some form of imputation for these missing values, the raking
would not be possible.

2.3.1 Education

A total of 2,286 observations, roughly 3% of the individuals sampled, had a missing value
for education level, all of which were recorded by the data collector as having a value of
either “refused”, “not ascertained” or “don’t know.” The small amount of missing data for
this variable did not warrant any exotic imputation methods, thus a naı̈ve hot-deck imputa-
tion was done. In other words, missing values for education were assigned a random value
where the assignments were done with respect to the distribution of the control counts for
each education group. The goal was to match as closely as possible the distribution of the
population counts for education before any raking was done. This imputation was neces-
sary for the raking to converge, and more elaborate and intelligent approaches will clearly
accomplish the same goal with more assumptions being made to model the missingness
mechanism.

2.3.2 Income

A total of 11,589 observations, roughly 15% of the individuals sampled, were missing or
undetermined for the family income variable. Another drawback is that the income values

Section on Survey Research Methods – JSM 2010

3250



present in the NHIS public use data fell within one of four coarse groups for income and
thus give a rougher picture of family income than may be desired. The scope of this miss-
ingness indicates that a more robust strategy than naı̈ve hot-deck should be employed to
impute the missing income values. The multiply imputed income dataset that is available
from the data release[9] was used to place those missing observations into income groups,
in this case given by the more refined groups for income. Five imputations were performed,
meaning raking was done five separate times to obtain five different sets of weights. Each
set of weights that was adjusted for income using raking required use of this imputed in-
come variable and thus each quantity of interest was estimated five times and averaged over
all five to arrive at a final estimate. Computation of the standard errors of these estimates
proceeded in the normal fashion, with the inclusion of an additional error term due to the
variation in the different imputations[14]. Finally, when the distributions of the different
sets of weights were compared, the average over the five sets of weights corresponding to
each of the five imputations was used.

3. Nonresponse

3.1 Overview

In order to perform an adequate nonresponse adjustment, some useful information must be
provided for both the respondents and the nonrespondents. It has been posited that nonre-
sponse results from two broad factors that are able to be used by researchers: survey design
variables and interviewer characteristics[2, 10]. The first source of variation is immutable
once the survey is designed and carried out, and difficulties can arise when using the de-
sign as the only adjustment for nonresponse. A correction for nonresponse that takes into
account interviewer characteristics can be done by utilizing paradata recorded at the family
level. Paradata includes information recorded about the interview process into a Contact
History Instrument (CHI). Interviewers enter information about the contact attempt as well
as the mien of the interviewee during the attempt by recording any “doorstep concerns” or
modes of contact used and subsequent outcomes[2].

To use the paradata to correct for nonresponse, a weighting class adjustment was pro-
posed by attempting to model the mechanism of nonresponse and alter the weights accord-
ingly. Two methods were used to predict the probability of response: logistic regression
and recursive partitioning. Once a predicted probability of response is obtained, its inverse
is calculated and truncated at a value of two[8, 12]. This inflation factor is applied to the
sample weights in order to correct for the non-inclusion in analyses of those individuals
who did not respond to the survey.

3.2 Logistic Regression

3.2.1 Method

Logistic regression[13] is used to obtain a propensity of response in order to obtain nonre-
sponse adjustments. Fitting an adequate model to the paradata can prove to be a daunting
task, and various other methods are needed in selecting the best variables for the model.
The ten predictors having the highest absolute correlation with the nonresponse variable
were used. Using correlation to obtain predictors for the model is an ad-hoc method to
reduce the number of variables under consideration and will not necessarily result in an
optimal solution. However, with the scope of the problem this method of paring down the
variable space seemed to perform well. A further paring was done using stepwise model
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selection where the Bayesian Information Criterion (BIC) was used to obtain the model
with the best tradeoff in deviance and number of model parameters. The BIC is defined as

BIC = −2 logL(y, θred) + p log n

where p is the number of parameters in the current model, n is the total number of observa-
tions and L : Rn ×Rp → R is the likelihood function taking as arguments the data as well
as the parameters in the current model. The parameters θred ∈ Rp are the reduced (or cur-
rent) model parameters, the name used to emphasize the overall goal of getting as close to a
“perfect” fit as possible using the fewest parameters. This amounts to minimizing the BIC
by finding the highest value of the likelihood possible using the fewest model parameters.

The BIC indicates when a model achieves an adequate amount of parsimony, but a
statistic to describe how well the model fits the data is also necessary. The residual deviance
performs this task and is defined as

D = −2 log
L(y, θred)
L(y, θfull)

where θfull ∈ Rn are the parameters for the saturated model. The saturated model fits the
data exactly as it possesses as many parameters as there are observations. Thus reducing
the deviance amounts to obtaining a fit that is as close to an exact fit as possible. If this can
be acquired with relatively few parameters, an adequate model is obtained. However, there
is nothing to say what exactly constitutes a “low” deviance, therefore the null deviance is
defined as

D0 = −2 log
L(y, θ0)

L(y, θfull)

where θ0 ∈ R is simply an intercept for the relevant response variable. If the null deviance
is reduced significantly with the proposed model, an adequate fit is obtained, though this
certainly depends on structure of the model and the response variable.

3.2.2 Goodness of Fit

Using the ten variables with highest absolute correlation with nonresponse and stepwise
model selection with BIC as a criterion resulted in poor performance of the model as not
all of the coefficients could be determined, most likely due to a lack of identifiability in
the model as many of the predictors were categorical. Those variables whose coefficients
could not be determined were dropped so that a model is obtained with which predictions
can be made. This final model is dependent on the variables reluc22r, unable3r,
ctstat3, mode p and totcount, definitions of which are supplied in Table 2.

There are some serious drawbacks using the logistic regression model, and the fit
could be improved vastly. First, all coefficients in the model are significant at the .001
level, though one of the coefficients seems counterintuitive. For the categorical variable
unable3r, when it is equal to 1 the model intercept decreases by 4.41, but when it is
equal to 0 the model intercept only decreases by 2.59. Thus, no matter what value was
entered for unable3r, the predicted probability of response will still decrease. In other
words, if the interviewer enters a value of 0 for “# times respondent is reluctant,” it will
still decrease the probability of response even though it seems like this should not be the
case, though the reduction is still less than if the interviewer had entered 1 for the variable,
meaning the respondent was reluctant 1 or more times.

With this approach 10,406 observations were ignored due to missingness in the co-
variates, though 10,011 of these values should be ignored regardless because no interview
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Variable Description
reluc01r # times “not interested/don’t want to be bothered” was entered
strat05r # times “called household” entered
unable3r # times “respondent is reluctant” entered
reluc22r # times “no concerns” entered
reluc03r # times “interview takes too much time” entered
unable8r # times “other” entered for reason unable to conduct interview
ctstat1 # contacts made with sample unit members
ctstat3 # noncontacts
totcount total count of CHI records for this case
mode p # personal visit attempts for this case

Table 2: Definitions of pertinent variables in the paradata that are used for both nonre-
sponse adjustments. Most variables dealing with “# times X was entered” were actually
categorical variables with 3 categories: “0”, “1 or greater”, “not recorded’.’

was conducted as the result of some non-inclusion criterion, such as the individual selected
was institutionalized or in the military. However, the missingness in any of the variables
(ctstat3, mode p or totcount) caused 395 additional observations to be ignored
that may contain valuable information. One potential remedy is to treat the missing val-
ues of these variables as zeros. This might be a large assumption, but it seems logical to
assume that if no value was recorded for “# of noncontacts” then the interviewer may not
have experienced a noncontact to record. A similar argument can be made for “# personal
visit attempts” and “total count of CHI records.” Though rational, this assumption is base-
less and relying too heavily on it may cause a misinterpretation of the results. Also of note
is that for many of the observations with a missing value for any of these variables, the
values of the other variables are also missing. In other words, if ctstat3 is missing for
a particular record, mode p and totcount are also missing for that record. This leads to
the potential solution of treating these variables as factors and treating the missing values
as separate levels of the factors. For example, ctstat3 (“# of noncontacts”) can take any
value from 0 to 63, but as this number increases the number of families with the corre-
sponding number of noncontacts decreases rapidly. Categories are created to best split the
data among respondents and nonrespondents. One drawback here is that the “best” split-
ting is unknown and would require some knowledge of the response variable which could
cause problems when trying to predict the response variable using this information. This
idea, however, is explored further in the next section. All of these remedies require assump-
tions that may not necessarily be grounded in reality, so the default method of ignoring the
missing values was used.

Finally, the ROC curve and concordance table in Figure 3.2.2 show the model’s ability
to predict response in the given data, with 93% concordance indicating an adequate fit but
leaving room for improvement. The ROC curve seems to have an area-under-curve close
to one, but again this could be improved with a better fit. Investigating the fit, the null
deviance is almost halved from 25,988 to 13,810 using only 7 additional degrees of free-
dom compared with the null model. The expected value of the residual deviance should be
equal to the degrees of freedom in the model, therefore in practice if the residual deviance
for a binomial model is not close to the degrees of freedom a dispersion parameter may
need to be included and estimated[13, 15]. The final model had 34,048 degrees of freedom
indicating under-dispersion and a possible need for estimation of a dispersion parameter,
but when included the fit and results were largely unchanged, thus the simpler model was
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preferred. When analyzing binary responses using logistic regression, the deviance has no
guarantee of being chi-square-distributed as the theory suggests[15], and the fairly signif-
icant reduction in null deviance with such a large problem in scope is able to illuminate
some merits of the model, but it is merely an adequate model and alternate methods would
be preferred.
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Figure 1: ROC curve and concordance table for the predicted probability of nonresponse
obtained through logistic regression. The area-under-curve is quite high, though there is
room for improvement. Similarly, 93.0% concordance is quite high but again could be
improved upon using various alternative methods.

In future analyses using logistic regression, exploration of two-way interactions may
prove interesting but could suffer from the same identifiability problems and would be de-
cidedly less parsimonious than the current model. Using “in-house” data—data in which
many of the variables are given in more detail—could allow for categorical variables to be
treated as linear terms, and parsimony and identifiability would be more easily achieved at
the expense of potentially worsening the fit depending on how the values are distributed.
The handling of missing values when using logistic regression leaves much to be desired
as currently the values are simply ignored and any remedy will require strong assumptions
about the missingness as well as the data. Finally, inflation factors obtained with logistic re-
gression tend to be overly variable and spread out, essentially creating one-person “groups”
based on propensity scores that are too fine to account for overall nonresponse in the sur-
vey. This has the undesired effect of over-inflating many of the weights. One solution to
this is to place the inflation factors into groups defined by the quintiles of their distribution
and proceed as before, but with the quintile value used in place of the inflation factor. Mod-
eling nonresponse from the paradata using logistic regression has its shortcomings, thus
alternative approaches to handling nonresponse should be investigated.

3.3 Recursive Partitioning

3.3.1 Method

Using logistic regression to model nonresponse is subject to the various pitfalls described
above, and still another problem with the approach is the high variability of the predicted
probabilities. While one solution to this problem is to split the predicted probabilities into
separate classes[12], other methods can be used to achieve the same goal. Recursive par-
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titioning has the desired properties and uses a technique similar to CHi-square Automatic
Interaction Detection (CHAID)[8, 11] to correct for nonresponse by using predictors to split
the respondents and nonrespondents into groups that are as homogeneous as possible[5].

Recursive partitioning works by searching through all possible splits of the data with
respect to a given set of predictors and determining which of these is the local optimum.
The number of ways to find a local optimum are manifold, one way defining a measure
of impurity of a distribution of responses at each node and searching for the split which
achieves the minimum of this value. Impurity measures can include different types of
entropy as well as deviance, the one used in subsequent analyses being the Gini index and
defined as

Hi = 1−
∑
k

p2ik

where i indicates the index for the current node at which the split is being determined and
pik is the estimated proportion of the kth class of the response variable at node i[5, 15].
The algorithm that determines the best-fitting tree terminates when either less than 20 ob-
servations are being considered at a test node, less than 6 observations fall within a terminal
node or when the Gini index can no longer be significantly reduced. For nonresponse ad-
justments, the predicted probability of response is simply the proportion of respondents at
the corresponding terminal node.

As in logistic regression, recursive partitioning too has a tendency to overfit when the
number of predictors is large, thus similar methods for achieving parsimony should be
considered when selecting variables. One such method is pruning where the “cost” R of a
current tree is altered to include the size of the tree. Thus, a new cost Rα is defined as

Rα = R+ α · n

where n is the number of terminal nodes in the tree. Ten-fold cross-validation is used to find
the optimal value of α and determine a subtree which minimizes Rα[15]. This procedure
is strikingly similar to the stepwise model selection used for the logistic regression model.

3.3.2 Goodness of Fit

To grow the decision tree modeling the response mechanism, all variables in the paradata
that did not suffer from a large number of missing values were considered at each node
for splitting. The final pruned tree is given in Figure 2 and shows each splitting criterion
and the predicted probabilities of response at each terminal node. For categorical variables
(reluc01r, reluc03r, reluc22r, strat05r, unable3r, unable8r) a
value of “a” in the tree means the corresponding value of that variable in the paradata was
not recorded, a value of “b” means the corresponding value was 0, and a value of “c” means
the corresponding value was 1 or greater.

To elucidate the process of prediction, consider two families who had values recorded
in the paradata given in Table 3. Recall the meanings of the variables are given in Table 2.
The ellipses indicate that the value of these variables do not affect in any way the predicted
probability which can be either a benefit or a drawback depending on the problem. The
predicted probability for Family 1 is the proportion of families in the dataset who have
reluc01r equal to “MISSING” or “1,” ctstat1 less than 0.5 and strat05r equal
to “0” or “1” which for this dataset is 0.1489. Similarly for Family 2, following the tree
in Figure 2 to the rightmost node shows that this family will have a predicted probability
of response of 0.9806. Similar to the logistic regression approach, inflation factors are
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Figure 2: Dendrogram of fit for predicted probability of nonresponse obtained from re-
cursive partitioning. The predicted probabilities are found by traversing the tree, making
a decision at each node corresponding to the values of the predictors of the given obser-
vation. The variable descriptions are given in Table 2, where here a value of “a” means
the corresponding variable of that variable in the paradata was not recorded, a value of “b”
means the value was 0 and a value of “c” means the value was greater than or equal to 1. A
summary of how prediction is done with this tree is given in Table 3.

truncated at a value of two so as not to allow single individuals to be over-representative of
a certain population.

Figure 3 shows the difference between the distribution of the nonresponse inflation
factors for both logistic regression (left) and recursive partitioning (right). The inflation
factors arising from logistic regression indicate a larger spread than thos obtained from
recursive partitioning, and as explained in section 3.2.2 this can potentially cause problems.
The recursive partitioning factors have a similar, yet more discretized distribution than the
logistic regression factors. Additionally, more weight seems to be at lower values for the
recursive partitioning, meaning that there is less occurrence of small groups of individuals
representing large populations. A final potential benefit of recursive partitioning is that
it can be interpreted in a fairly straightforward manner due to its use of rules defined by
predictors as opposed to linear combinations of the predictors.

Though recursive partitioning paints a relatively more optimistic picture than logistic
regression, there are still some drawbacks. The model relies on local optima to define the
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Variable Name Family 1 Family 2
reluc01r MISSING 0
strat05r 1 ...
unable3r ... 0
reluc22r ... ...
reluc03r ... ...
unable8r ... ...
ctstat1 0 ...
ctstat3 ... 2
Pr(Response) 0.149 0.981
1/Pr(Response) 6.716 1.020
Inflation Factor 2.000 1.020

Table 3: Example calculation of inflation factors using the tree in Figure 2. Ellipses (‘...’)
indicate the corresponding variable can take any value.
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Figure 3: Distributions of nonresponse inflation factors. Logistic regression tends to give
inflation factors that are more “spread out” while recursive partitioning gives more dis-
cretized values.

splits and thus is not guaranteed to find the globally optimal decision tree. One possible
solution to this is to use random forests[4] to aggregate many trees that are defined on dif-
ferent subsets of predictors and observations. This can help to reduce error in the model but
can reduce the interpretability as well. Another drawback is the dearth of variables used in
the final tree. Due to the stopping criteria supplied as well as the pruning, recursive parti-
tioning results in a decision tree which only takes into account a relatively small number
of variables, meaning some meaningful variables may be completely ignored. This prob-
lem can also be present in logistic regression when trying to achieve parsimony, though it
certainly depends on the methods used to select the final variables. With decision trees,
random forests can also be used to incorporate as much meaningful information as pos-
sible in the model. Recursive partitioning ostensibly has a slight advantage over logistic
regression in flexibility and interpretability, thus it is compared with logistic regression in
the subsequent section.
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4. Performance

4.1 Comparison of Estimates

There are myriad tests that can be run to determine if the new sets of weights are worth-
while. Unfortunately, all of these tests will rely heavily on certain assumptions. Various
estimates of variables of interest will be found along with their standard errors, but it is dif-
ficult to tell which estimate is “better” due to the lack of a true value for the given variable.
Typically a low standard error in the estimate will indicate confidence in the estimate, but
the closeness of an estimate to the “truth”—the bias—can be just as valuable. The esti-
mate obtained using the NHIS post-stratified weights for each variable will be assumed to
be the “true” value of that variable because the NHIS weights are design-based and give
unbiased estimates, therefore, all estimates utilizing alternative weighting strategies will be
compared to the NHIS estimates.

In the following analysis, variables of interest were chosen for the population of indi-
viduals under the age of sixty-five. Four of these variables pertained to insurance coverage,
with definitions of each variable given in [1]. The last three variables deal with self-reported
health status. Table 4 shows the results for three of the six different raking adjustments with
no nonresponse adjustment compared to the NHIS estimates. The relative standard errors
(RSE) for the raked estimates were nearly identical to those for the NHIS estimates so
they were not included, and all are below the typical threshold of 0.25. Relative root mean
square errors (RRMSE) were also similar for each of the rakings, thus the relative absolute
bias (RAB) for each of the weighting methods was calculated. Since the RSEs were close
to equal across weighting methods and the bias is a component of the RRMSE, the RAB
was used in order to make comparisons and gain insight into which method is performing
the “best.” Similar tables are available for the nonresponse adjusted weights where those
adjusted using logistic regression have RRMSEs and RABs slightly larger than the corre-
sponding statistics for estimates found using recursive partitioning, though in the end these
differences are not significant. Both nonresponse adjustments increase all of the RRMSEs
and RABs when compared to those that are not adjusted for nonresponse, where the high-
est increases come from variables whose proportions NHIS estimated to be relatively low
(such as “Health Status: Fair/Poor” and the insurance variable “Other”). The nonresponse
adjustments make matters worse due to the fact that they were performed on the interim
weights in the NHIS which had already included a nonresponse adjustment. Essentially this
resulted in two adjustments which produced much larger weights than desired to the fact
that inflation factors are increasing through both of these adjustments. Performing future
analyses on weights that do not include a nonresponse adjustment will hopefully mitigate
this problem.

NHIS Est. Raking 2 Raking 3 Raking 4
Variable (under 65 years old) Est. (%) RSE RRMSE RAB RRMSE RAB RRMSE RAB
Uninsured 16.64 .017 .020 .010 .018 .007 .017 .003
Private 66.80 .007 .009 .005 .007 .001 .007 .001
Other (military, Medicare or other gov. care) 2.68 .059 .058 .000 .058 .004 .058 .005
Medicaid 13.88 .023 .028 .013 .025 .006 .024 .004
Health Status: Excellent/Very Good 69.77 .005 .059 .001 .009 .005 .018 .007
Health Status: Good 22.78 .013 .025 .008 .058 .000 .007 .001
Health Status: Fair/Poor 7.44 .021 .020 .010 .028 .013 .058 .004
Average — .021 .031 .007 .029 .005 .027 .004

Table 4: Statistics for raking with no nonresponse adjustment. RRMSE is calculated using
the NHIS estimate as the “true” value. Relative absolute bias (RAB) is done similarly.
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An accurate view of the performance of the weighting methods may be obfuscated by
the amount of statistics included in Table 4, thus the average of the RAB over the different
variables of interest was computed for each of the weighting methods and ranked from
lowest to highest. Averaging over all variables of interest will make analysis slightly easier
and is justified due to RAB being a relative statistic. Without a nonresponse adjustment,
including education and income (detailed or not) resulted in a lower average RAB over the
variables of interest than any of the other raking methods. When nonresponse adjustments
are included, including education and income also results in a lower average RAB over the
variables of interest, though the detailed income groupings are favored.

4.2 Comparison of Weight Distributions

Another method of assessing the potential utility of alternative weighting methods is to
compare the distributions of the weights themselves. Various statistics can be computed,
such as coefficient of variation (CV), median, maximum, inner quartile range (IQR) and
standard deviation (SD). The CV, IQR and SD all give an idea of how closely distributed
the weights are to one another, so relatively small values for these statistics will be desired
as discussed in section 3. The CV and SD are both sensitive to outliers which the IQR at-
tempts to overcome. When analyzing weights, outliers are important to investigate because
they indicate that one or a few people are representing an abnormally large segment of the
overall population. The median gives an idea as to where the weights are most heavily
concentrated without taking into account any of the outliers, whereas the maximum shows
the most individuals in the overall population that are represented by one individual. All of
these statistics will be beneficial to studying which weighting method is best, and they are
included in Table 5.

Weighting Method CV Median Max IQR SD
NHIS Weights

Post-Stratified 0.559 3731 46787 2345 2191
Interim 0.573 3915 42065 2401 2246

Raked
Raking 1 0.566 3726 46348 2324 2218
Raking 2 0.570 3709 49682 2372 2232
Raking 3 0.566 3729 46797 2331 2219
Raking 4 0.570 3696 48900 2380 2233
Raking 5 0.571 3687 45203 2371 2238
Raking 6 0.575 3654 46015 2422 2252

Nonresponse Adjusted (with no raking)
Logistic Regression 0.819 3349 92821 2338 3209
Recursive Partitioning 0.783 3405 98274 2317 3066

Table 5: Various statistics for each set of weights obtained. Raking tends to lower the
median of the weights while increasing the CV and standard deviation, while adjusting for
nonresponse tends to decrease the median and IQR while greatly increasing the CV and
standard deviation.

Post-stratified weights achieve the lowest CV and SD, which are to be expected. These
weights are more closely distributed due to the multiple ratio adjustments performed. The
multiple ratio adjustments are done on fairly homogeneous population groups so the result-
ing weights obtained from these adjustments will have a smaller variance due to the fact
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that the adjustments create weights that have within-group means similar to the means esti-
mated for the whole population within these groups. The closest CV and SD to that of the
post-stratified weights are raking 1 and raking 3, while raking 2 and raking 4 are close as
well. Raking 1 is simply raked on age, sex and race/ethnicity, and these results indicate that
perhaps this is the best we can do at the current time. Raking 3, which includes income, is
distributed nearly identically to raking 1, suggesting income may be a viable demographic
variable to consider as well. Rakings 1 and 3 both have lower IQR than the post-stratified
weights, thus these weightings might have some outliers that could cause problems. This is
a potential avenue for improvement. Finally, nonresponse adjustment seems to have some
major flaws. The maximum weight for both nonresponse-adjusted weights is roughly dou-
bled from their raked counterparts, indicating a large amount of weight is being placed on
a single response. However, this increase in the outliers results in a reduction of the IQR,
both values being lower than that of the post-stratified weights. Some investigation into
the outliers of the weights could prove beneficial and may result in weights that are closer
to the post-stratified weights. Statistics for raked and nonresponse-adjusted weights are
similar to those for the nonresponse-adjusted weights that did not include any raking.

Figure 4 also sheds light on the effect raking has on the distribution of the weights.
The maximum weight in each case was roughly 46,000, thus the plot is truncated at a value
of 15,000 in order to see the distribution of the weights more clearly. Raking 3 achieves
a distribution closest to that of the NHIS weights, which is a raking including age, sex,
race/ethnicity and income. This could be due to a number of factors. First, income was
multiply imputed, meaning the distribution of raked weights including a raking on income
is the mean across the five different imputations. This may help to further refine the distri-
bution, but this is not the case in rakings 4 and 6 which also include income. Another reason
for this may be the fact that the income variable only includes four categories, meaning the
weights are only slightly altered from the weights obtained in raking 1. It seems they are
altered in the correct direction though, thus income is a viable alternative demographic vari-
able to include for post-stratification. Raking on the more refined income groupings seems
to place higher weight on more observations whereas the other rakings have a smoother
distribution. Distribution plots for nonresponse-adjusted weights are similar, but shifted
left as higher weight is placed on the outlying observations resulting in less weight being
placed on the bulk of the remaining observations.

5. Conclusion

Raking has some potential advantages. Estimates may be more reliable as the weights now
match estimated population counts for education and income whereas the current NHIS
weights do not. For variables that are assumed to be highly correlated with education and
income, this could have some hidden improvements in the estimates that may be diffi-
cult to quantify. Some possible outlets are to use cross-validation to get a better idea of
what the “true” bias of these raked estimates are as opposed to assuming the post-stratified
estimate is the truth. Furthermore, when taking the post-stratified estimates as truth, rak-
ing on education and income results in lower RAB than simply raking on age, sex, and
race/ethnicity, while raking on income yields weights that are similarly distributed to post-
stratified weights with the added benefit of accurately representing income levels in the
estimates.

The downside to requiring the weights to match additional demographic control totals is
that RSEs increase as well as CVs and SDs for the weight distributions, ostensibly resulting
in less desirable weights. Another problem arises from the fact that the control totals were
obtained from CPS and thus also include error. This error was not estimated in the current
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Figure 4: Comparison of raked weight distributions. Raking 3 (age, sex, race-ethnicity,
coarse income) seems almost identical to the NHIS post-stratified weights, whereas the
other sets of weights tend to place more value at different peaks of the distribution. Rakings
1 and 5 were not included as they were similar to rakings 4 and 6, respectively.

study, and the CPS estimates were taken at face value. Education and income values both
had to be imputed, income values heavily so, which propagates yet additional error and
further reduces the reliability of the estimates.

Nonresponse adjustment is a foggier issue. When comparing recursive partitioning to
logistic regression, recursive partitioning seems to have some advantages. The predicted
probabilities are easily interpreted and the method is highly flexible and can support any
amount of missing data. Additionally, recursive partitioning results in lower RAB and CV
when compared with logistic regression, though this difference is only slight. Both adjust-
ments resulted in weights that were more densely distributed at lower values but with a few
outliers, and an investigation into these outliers may prove beneficial. Finally, nonresponse
adjustment seeks to answer the question of imputing responses for those individuals that
refused to participate in the survey. Not adjusting for this will result in estimates that are
misleading.

The obvious drawbacks to nonresponse adjustment are that the estimates obtained are
significantly different from those obtained using the NHIS weights which also includes a
nonresponse adjustment. This indicates a more robust nonresponse adjustment is necessary.
Nonresponse adjustment also has a tendency to over-inflate weights that are already near
the maximum value, resulting in the creation as well as the aggravation of outliers.

While still in the nascent stages of altering the weighting procedures performed in
the NHIS, it seems that raking has some potential advantages over the current weighting
procedure, though there are numerous pitfalls to be addressed. Similarly, more robust non-
response adjustment procedures applied in addition to the raking could result in estimates
that are better than those obtained with the current procedure. Additional analyses such
as cross-validation to estimate bias and refine the estimates as well as ratio adjustments
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to reduce standard errors and more robust nonresponse adjustments would aid in produc-
ing weights with myriad beneficial properties. Currently it is difficult to say if or by how
much the current weighting procedure can be improved by using the above techniques, but
it never hurts to try.
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