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Abstract

Many statistical agencies release samples of census microdata, such as data on individual records,
to the public. Protection of the sensitive values at high risk of disclosure or values of key identifiers
is a crucial problem. Meanwhile, there usually exists missing data in the census. Multiple impu-
tation has been a useful tool to protect data confidentiality and handle missing data. We propose
a new approach to census microdata dissemination: sampling simultaneously with synthesis and
missing data, which generates multiple imputed datasets that simultaneously handle missing data
and disclosure limitation. The basic idea is to fill in the missing data first in the census to generate
multiple complete populations, then replace the identifying or sensitive values in each population
with multiple imputed values, and finally release samples from these multiple imputed populations.
If we release same samples across the imputed populations, the usual one-stage multiple imputation
for missing data will lead to positive bias for estimation. We construct a two-stage multiple impu-
tation to obtain the complete populations and then apply multiple imputation again to replace the
sensitive information repeatedly resulting in multiply synthetic populations. We start with sim-
ple random simpling cases and then deal with stratified random sampling approach. This article
develops methods to obtain valid inferences from the new three-stage imputation process based
on a Bayesian prospective. New combining rules are derived due to the double duty of multiple
imputation involving two additional sources of variability and the elimination of with-in variability
in the census. We use simulations to check the validity of the new combining rules.

Keywords: Bayesian, Confidentiality, Missing, Synthetic, Stratified Sampling.

1. Introduction

Releasing census microdata is crucial due to the large file size and high risk of disclosure.
Statistical agencies usually release a random sample from the census to solve the large file size
issue. However, sampling alone is not enough for the protection of confidential data with sensitive
or identifiable characteristics. In the literature, available standard disclosure limitation techniques,
such as coarsening, perturbation, and swapping, are applied to protect confidentiality adequately.
Moreover, nonresponse are common in census data.

Multiple imputation is a popular tool for handling missing data. This creates multiple, complete
datasets that can be used for analysis or distributed to others for public files, such as the Fatality
Analysis Reporting System [3], the Consumer Expenditures Survey [5], the National Health and
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Nutrition Examination Survey [10], and the National Health Interview Survey [11]. [9] and [1]
provide other more examples of multiple imputation for missing data.

Nowadays it is increasingly applied to protect confidential data in public use files. Typi-
cal methodologies include full synthesis[8] replacing all values but releasing samples and partial
synthesis[4] replacing part of values but releasing populations. Sampling with synthesis[2] was
proposed to disseminate public use census microdata, which is motivated by the shortcomings of
standard disclosure limitation techniques and expanded from full synthesis and partial synthesis.
The format of released data looks exactly like the real data and the data structure and confiden-
tiality have been preserved.

In this paper we generalize the approach of sampling with synthesis to census data with missing
cases, henceforth called sampling simultaneously with synthesis and missing data. Basically we
implement multiple imputation for both missing and synthesis.

We will consider same sampling approach during dissemination: selecting same records from
each population. When only a fixed sample of records is released for analysis, whereas the estimation
of imputation models is based on all records, the existing multiple imputation variance estimator[7]
has positive bias. Hence we construct a different imputation procedure and different inferences
for the same sample approach. We draw m1 different values of the parameters of the imputation
model for missing data and based on each parameter we generate m2 multiple complete datasets.
Therefore, we have m1 ∗m2 completed populations[7], Then for each completed population, we use
multiple imputation to obtain synthetic populations, the total number of which is m1 ∗m2 ∗m3.
The whole process is referring as a three-stage multiple imputation approach.

We describe the imputation process of sampling simultaneously with synthesis and missing
data in detail. Section 2 describes the three-level multiple imputation process. Section 3 provides
derivations of statistical inferences and posterior distributions under the non-informative. prior.
New combining rules for inference are constructed respectively in Section 4. Simulation results are
shown in Section 5. We implement both simple random sampling and stratified random sampling.
We also implement simulation studies to find suitable values of (m1,m2,m3) in Section 5.3. Finally
Section 6 conclude the whole article with some remarks and discussions.

2. Imputation Process

Suppose the population size of the census data is N . Let Pobs denote the observed data and Pmis
denote the missing part for census data. Let Pcom be the completed dataset after filling up missing
data. Prep represents the data that needs to be replaced and Psyn is the synthetic population after
the confidential information has been replaced. dsyn denote the multiple samples for release.

For the same sampling approach with missing data, the released records are only part of those
used to estimate the imputation model. The usual multiple imputation process for missing data
has positive bias(Reiter,2008). We will also illustrate the positive bias here through simulation.
We implement the two-stage imputation approach for missing data that takes all possible variances
into account and adjust the whole imputation process to be specific as:

1. Estimate parameters θ for imputation model based on the posterior (θ|Pobs), and obtain m1

estimated values: θ(1), . . . , θ(m1);

2. Based on each θ(l), fill in Pmis from the distribution (Pmis|Pobs, θ(l)) resulting in m2 datasets

P
(l,1)
com , . . . , P

(l,m2)
com . Totally, m1m2 datasets are restored;
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3. For each P
(l,i)
com , generate m3 sets of P

(l,i,j)
syn from the distribution (Prep|P (l,i)

com , Z), where Z is

an indicator where Z
(l,i)
r = 1 if record r in P

(l,i)
com is selected to have any of its observed data

replaced with synthetic values and Z
(l,i)
r = 0 for those units with unchanged data. In case

of releasing any genuine or sensitive values for the selected units, the agency usually impute

values for the same units in all P
(l)
com’s. We assume this is the case throughout and therefore

drop the superscript l from Z. Total M = m1m2m3 datasets are restored;

4. Release the same records d
(l,i,j)
syn from P

(l,i,j)
syn , for l = 1, . . . ,m1, i = 1, . . . ,m2, and j =

1, . . . ,m3.

The whole process is shown as:
Pobs

l=1

ssgggggggggggggggggggggg
l=m1

++WWWWWWWWWWWWWWWWWWWWWW

θ(1)

i=1

yyssssssssss
i=m2

&&MMMMMMMMMM . . . . . . . . . . . . . . . . . . . . . θ(m1)

i=1

wwoooooooooooo
i=m2

((PPPPPPPPPPPP

P
(1,1)
com

j=1

��������
j=r

��::::::: . . . . . . . . . P
(1,m2)
com

j=1

���������
j=r

��@@@@@@@ . . . . . . . . . P
(m1,1)
com

j=1

���������
j=m3

��@@@@@@@ . . . . . . . . . P
(m1,m2)
com

j=1

}}{{{{{{{{
j=m3

""EEEEEEEE

P
(1,1,1)
syn

��

. . . P
(1,1,m3)
syn

��

. . . P
(1,m2,1)
syn

��

. . . P
(1,m2,m3)
syn

��

. . . P
(m1,1,1)
syn

��

. . . P
(m1,1,m3)
syn

��

. . . P
(m1,m2,1)
syn

��

. . . P
(m1,m2,m3)
syn

��
d
(1,1,1)
syn

. . . d
(1,1,m3)
syn

. . . d
(1,m2,1)
syn

. . . d
(1,m2,m3)
syn

. . . d
(m1,1,1)
syn

. . . d
(m1,1,m3)
syn

. . . d
(m1,m2,1)
syn

. . . d
(m1,m2,m3)
syn

Dim out one part, it will become as following

Pobs
l=1

ssgggggggggggggggggggggggg

��
θ(1)

i=1

yyttttttttt
i=m2

&&NNNNNNNNNNN θ(l)

P
(1,1)
com

j=1

���������
j=r

��8888888 P
(1,m2)
com

j=1

���������
j=r

��>>>>>>>

P
(1,1,1)
syn

��

P
(1,1,r)
syn

��

P
(1,m2,1)
syn

��

P
(1,m2,r)
syn

��
d

(1,1,1)
syn d

(1,1,r)
syn d

(1,m2,1)
syn d

(1,m2,r)
syn

3. Derivations of inference

Suppose Q is the quantity of interest and the analyst seeks for f(Q|dsyn). Assume the ana-
lyst’s distributions are identical to those used to generate dsyn. We assume diffuse priors for all
parameters using Bayesian arguments to derive the distributions. Suppose the sample sizes are
large enough to allow normal approximations of the distributions, and then we just require the
first two components for each distribution. The analyst seeks for f(Q|dsyn). However, when the

same records comprise each d
(l,i,j)
syn , the correlations make the derivations different from those of
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the different sample approach. We estimate the parameters for imputation model based on all the
census data, while the estimate of Q is calculated on the sampled records. We propose an equivalent
expression of the whole process to derive the inferences.

Pobs
_ _�� ��_ _Pmis Dsel | Dexc

_ _�
�

�
�

_ _Dsel/7

combine
ow

+3

))RRRRRRRRRRRRR
//

θ(1)

i=1

xxrrrrrrrrrr
i=m2

&&MMMMMMMMMM

D
(1,1)
com

j=1

���������
j=r

��::::::: D
(1,m2)
com

j=1

���������
j=r

  @@@@@@@

d
(1,1,1)
syn d

(1,1,m3)
syn d

(1,m2,1)
syn d

(1,m2,m3)
syn

The records, or called individuals, or called units in the finally released samples are sampled from
all the records in the population, including the observed part Pobs and the missing part Pmis, Even
though this sampling happens in the last step when releasing, we can assume that we sample these
part of records before the whole imputation process. Note that we assume knowing the records
instead of their realized values beforehand. As shown in the chart above, these sampled records
can be divided into two parts: Dsel, selected for release and Dexc, excluded for release. It is
quite possible that records in both Dsel and Dexc have missing values. Then parameters θ of the
imputation model are estimated based on all the population. Apply the imputation models and
parameters to the selected records Dsel, and we obtain the complete dataset Dcom with respect to
the selected records Dsel. We perform multiple imputation on the estimation of θ and prediction
of the missing values in Dsel. The second-level imputation is nested under the first level. Hence
we will get m1 ∗m2 completed datasets Dcom. Furthermore, we replace the values of confidential
records repeatedly in Dcom and get the synthetic datasets dsyn, which are the samples released.
The parameters of the imputation model for replacement are also estimated from the population
records.

The imputation process suggests

f(Q|dsyn) =

∫
f(Q|θ,Dcom, dsyn)f(θ|Dcom, dsyn)f(Dcom|dsyn)dθdDcom (1)

Notations defined:

• Q(θ): the estimate of Q if the true parameter θ is known,for selected records, Dsel;

• V (θ): the estimate of var(Q|Q(θ), Dsel);

• Q(l), for l = 1, . . . ,m1: the estimate of Q if the parameter θ(l) is known for Dsel, Q̄m1 =∑m1
l=1Q

(l)/m1 and denote Q∗ = {Q(1), . . . , Q(m1)};

• Q(l,i), for l = 1, . . . ,m1 and i = 1, . . . ,m2: the estimate ofQ for the selected sample after filling

up missing data, called Dcom; define Q̄
(l)
∞ = limm2→∞

∑m2
i=1Q

(l,i)/m2 and assume Q̄
(l)
∞ ' Q(l).

Denote Q(∗∗)={ Q(l,i), for l = 1, . . . ,m1 and i = 1, . . . ,m2 };

• q(l,i,j), for j = 1, . . . ,m3 of each l and each i: the calculated quantity measuring Q in each

released sample dsyn; define q̄
(l,i)
∞ = limm3→∞

∑m3
j=1 q

(l,i,j)

m3
and assume q̄

(l,i)
∞ ' Q(l,i);
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• B∞ = limm1→∞
∑m1

l=1(Q(l) − Q̄m1)2/(m1 − 1)

• W1
(l)
∞ = limm2→∞

∑m2
i=1(Q(l,i)−Q(l))2

m2−1 , W1 =
∑m1

l=1W1
(l)
∞/m1 and W1∗ = {W1

(1)
∞ , . . . ,W1

(m1)
∞ };

• W2
(l,i)
∞ = limm3→∞

∑m3
j=1(q(l,i,j)−Q(l,i))2

m3−1 , W2 =
∑m1

l=1

∑m2
i=1W2

(l,i)
∞ /m1m2 andW2∗∗ = {W2

(1,1)
∞ , . . . ,W2

(m1,m2)
∞ };

The derivation proceeds by usingQ(θ) to estimateQ, Q̄m1 to estimateQ(θ), Q̄m1m2 =
∑

l,iQ
(l,i)/m1m2 =∑m1

l=1 Q̄
(l)/m1 to estimate Q̄m1 , and q̄M =

∑
l,i,j q

(l,i,j)/(m1m2m3). Specifically,

f(Q|dsyn) =

∫
f(Q|dsyn, Q(θ), V (θ), Q∗, Q∗∗, B∞,W1∗,W2∗∗) (2)

f(Q(θ)|dsyn, V (θ), Q∗, Q∗∗, B∞,W1∗,W2∗∗) (3)

f(Q̄m1 |dsyn,W1∗,W2∗∗)f(Q̄(l)|dsyn,W2∗∗) (4)

f(V (θ), B∞,W1∗,W2∗∗|dsyn)dB∞dW1∗dW2∗∗ (5)

1. Q(θ) → Q
All quantities associated with imputations are irrelevant for inference about Q given Q(θ) and
V (θ). Assume

Bayes : (Q|Dsel, Q
(θ), V (θ)) ∼ N(Q(θ), V (θ)) (6)

If the released sample size n is not small enough with respect the the population size N , we
need to add the finite population correction factor (1− n/N). Then we will have

Bayes : (Q|Dsel, Q
(θ), V (θ)) ∼ N(Q(θ), (1− n/N) ∗ V (θ)) (7)

If n � N , we can ignore the finite population correction factor. To be clear for the whole
derivation, we will ignore it first and include it later.

2. Q(l) → Q(θ)

The selected values of Dsel and W1∗ are irrelevant for inference about Q(θ) given Q∗ and B∞.
Assume

Bayes : (Q(θ)|Dsel, B∞, Q
∗) ∼ N(Q̄m1 , (1 + 1/m1)B∞) (8)

3. Q(l,i) → Q(l)

Assume
Freq : (Q(l,i)|Dsel, Q

(l),W1(l)
∞) ∼ N(Q(l),W1(l)

∞) (9)

then the posterior distribution is

Bayes : (Q(l)|Dcom,W1(l)
∞) ∼ N(Q̄(l),W1(l)

∞/m2) (10)

where Q̄(l) =
∑m2

i=1Q
(l,i)/m2. Consider Q(l)’s are independent,

Bayes : (Q̄m1 |Dcom,W1∗) ∼ N(Q̄m1m2 ,W1/m1m2) (11)

4. q(l,i,j) → Q(l,i)

The inference of Q(l,i) is only related to q(l,i,j), for j = 1, . . . ,m3 of each l and each i and

Section on Survey Research Methods – JSM 2010

3182



W2
(l,i)
∞ . Assume the sampling distribution

Freq : (q(l,i,j)|Dcom, Q
(l,i),W2(l,i)

∞ ) ∼ N(Q(l,i),W2(l,i)
∞ ) (12)

so that

Bayes : (Q(l,i)|dsyn,W2(l,i)
∞ ) ∼ N(

1

m3

m3∑
j=1

q(l,i,j),W2(l,i)
∞ /m3) (13)

Based on the independence of Q(l,i)’s,

Bayes : (Q̄(l) =
1

n

n∑
i=1

Q(l,i)|dsyn,W2(l,i)
∞ , i = 1, . . . ,m2) ∼ N(

1

m2m3

m2∑
i=1

m3∑
j=1

q(l,i,j),
1

m2m3
W̄2

(l)
∞)

(14)

where W̄2
(l)
∞ =

∑m2
i=1W2

(l,i)
∞ /m2.

5. q(l,i,j) → Q(l)

(Q̄m1 |dsyn,W1∗,W2(∗∗)) ∼ N(q̄M ,
W1

m1m2
+

W2

m1m2m3
) (15)

6. f(V (θ)|dsyn, B∞,W1∗,W2(∗∗))

First define V (l,i,j) = var(Q|d(l,i,j)
syn , Q(θ) = Q(l),W1

(l)
∞ ,W2

(l,i)
∞ ), and use u(l,i,j) to estimate

var(Q|d(l,i,j)
syn ,W1

(l)
∞ ,W2

(l,i)
∞ ). Based on an iterated variance computation to relate these quan-

tities,
u(l,i,j) = E(V (l,i,j)|d(l,i,j)

syn ,W1(l)
∞ ,W2(l,i)

∞ ) +W1(l)
∞ +W2(l,i)

∞ (16)

Rewrite this as an expression of V (l,i,j), we have

E(V (l,i,j)|d(l,i,j)
syn ,W1(l)

∞ ,W2(l,i)
∞ ) = u(l,i,j) −W1(l)

∞ −W2(l,i)
∞ (17)

Assume the sampling distribution of V (l,i,j) has mean V (θ), so that

E(V (θ)|dsyn, B∞,W1∗,W2∗∗) = E{E(v(θ)|dsyn, B∞,W1∗,W2∗∗, Q∗∗, Q∗)|dsyn, B∞,W1∗,W2∗∗}

(18)

= E{
∑
l,i,j

V (l,i,j)/(m1m2m3)|dsyn, B∞,W1∗,W2∗∗} (19)

= ūM −W1−W2 (20)

Assume the sampling variance for V (l,i,j) is negligible, which also implies negligible variance
of ūM . Then f(V (θ)|dsyn, B∞,W1∗,W2(∗∗)) can be treated as a distribution concentrated at
ūM −W1−W2 with negligible variance.

7. B∞, W1 and W2
The analysis-of-variance analysis gives the posterior distribution of (W2|dsyn), (W1|dsyn,W2)
and (B∞|dsyn,W1,W2),

m1m2(m3 − 1)w̄2M
W2

|dsyn ∼ χ2
m1m2(m3−1) (21)
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where w̄2M = 1
m1m2(m3−1)

∑m1
l=1

∑m2
i=1

∑m3
j=1(q(l,i,j) − q̄(l,i)

m3 )2 and q̄(l,i) =
∑m3

j=1 q
(l,i,j)

m3
;

m1(m2 − 1)w̄1M
W1 +W2/m3

|dsyn,W2 ∼ χ2
m1(m2−1) (22)

where w̄1M = 1
m1(m2−1)

∑m1
l=1

∑m2
i=1(q̄(l,i) − q̄(l)

m2r)
2 and q̄

(l)
m2r =

∑m2
i=1 q̄

(l,i)

m2
;

(m1 − 1)bM
B∞ +W1/m2 +W2/m2m3

|dsyn,W1,W2 ∼ χ2
m1−1 (23)

where bM = 1
m1−1

∑m1
l=1(q̄

(l)
m2m3 − q̄M )2.

8. Ts
For large m1, m2 and m3, f(Q|dsyn) can be approximated by a normal distribution with mean
E(Q|dsyn) = q̄M and the variance

var(Q|dsyn) = E{var(Q|Q(θ))|dsyn}+ var{E(Q|Q(θ))|dsyn}
= E{E(V (θ))|dsyn}+ E{var(Q(θ)|Q∗)|dsyn}+ var{E(Q(θ)|Q∗)|dsyn}
= ūM − E(W1|dsyn)− E(W2|dsyn) + E{(1 + 1/m)B∞|dsyn}
+ E{var(Q∗|Q∗∗)}+ var{E(Q∗|Q∗∗)}
= ūM − E(W1|dsyn)− E(W2|dsyn) + E{(1 + 1/m1)B∞|dsyn}
+ E(W1|dsyn)/m1m2 + E(W2|dsyn)/m1m2m3 (24)

We approximate the expectations by E(W2|dsyn) ' w̄2M , E(W1|dsyn) ' w̄1M − w̄2M/m3,
and E(B∞|dsyn) ' bM − w̄1M/m2, so

Ts = ūM − (1 + 1/m2)w̄1M − (1− 1/r)w̄2M + (1 + 1/m1)bM (25)

It is also possible that Ts is negative. We modify it as T ∗s = ūM +(1+1/m1)bM when Ts < 0.
For the special cases, if we only has missing data without synthesis, then W2M = 0, then
T = ūM − (1 + 1/m2)w̄1M + (1 + 1/m1)bM , which is the same as the variance estimator of
two-stage approach for missing data [7]; If there is no missing data and we only sample with
synthesis, then B∞ = 0 and W1M = 0, so T = ūM − w̄2M + 1

r w̄2M , which is the same as
the variance estimator under sampling with synthesis [2]. If including the finite population
correction factor, then

Ts = (1− n/N)(ūM − w̄1M − w̄2M ) + (1 + 1/m1)bM + w̄1M/m1m2 + w̄2M/m1m2m3 (26)

4. Combining rules for inference

We summarize the combining rules for inferences of the same sampling approaches.

4.1. Simple random sampling

For large m1, m2 and m3, we approximate the posterior distribution of (Q|dsyn) as a normal
distribution,

(Q|dsyn) ∼ N(q̄M , Ts) (27)
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When m1, m2 and m3 are modest, we use a t-distribution,

(Q|dsyn) ∼ tvs(q̄M , Ts) (28)

Quantities needed for the combining rules:

q̄M =
1

m1m2m3

∑
l,i,j

q(l,i,j) =
1

m1m2

∑
l,i

q̄(l,i)
m3

=
1

m1

∑
l

q̄(l)
m2m3

(29)

w̄2M =
1

m1m2(m3 − 1)

m1∑
l=1

m2∑
i=1

m3∑
j=1

(q(l,i,j) − q̄(l,i)
m3

)2 (30)

w̄1M =
1

m1(m2 − 1)

m1∑
l=1

m2∑
i=1

(q̄(l,i)
m3
− q̄(l)

m2m3
)2 (31)

bM =
1

m1 − 1

m1∑
l=1

(q̄(l)
m2m3

− q̄M )2 (32)

ūM =
∑
l,i,j

u(l,i,j)/(m1m2m3). (33)

Ts = ūM − (1 + 1/m2)w̄1M − (1− 1/r)w̄2M + (1 + 1/m1)bM (34)

The number of degrees of freedom vs is derived by matching the first two moments of

vsTs
ūM −W1−W2 + (1 + 1/m1)B∞ +W1/m1m2 +W2/m1m2m3

∼ χ2
vs (35)

where Ts = ūM + (1 + 1/m1)bM − (1 + 1/m2)w̄1M − (1− 1/m3)w̄2M .
We determine vs by matching the mean and variance of the chi-squared distribution to those

of (35). Set α = B∞+W1/m2+W2/m2m3

bM
, β = W1+W2/m3

w̄1M
and γ = W2/w̄2M , then

(m1 − 1)α−1|dsyn,W1,W2 ∼ χ2
m1−1 (36)

m1(m2 − 1)β−1|dsyn,W2 ∼ χ2
m1(m2−1) (37)

m1m2(m3 − 1)γ−1|dsyn ∼ χ2
m1m2(m3−1) (38)

Let f = (1 + 1
m1

)bM/ūM , g = (1 + 1
m2

)w̄1M/ūM , and e = (1− 1
m3

)w̄2M/ūM . Write (35) as

Ts

ūM + (1 + 1
m1

)(B∞ +W1/m2 +W2/m2m3)− (1 + 1
m2

)(W1 +W2/m3)− (1− 1
m3

)W2
=

1 + f − g − e
1 + αf − βg − γe

(39)

1. For the expectation of 39, use an iterated expectation and first-order Taylor series expansions
in α−1, β−1 and γ−1 around their expectations, which equal to one, and obtain

E{E(
1 + f − g − e

1 + αf − βg − γe
|dsyn,W1,W2)|dsyn} ' E(E(

1 + f − g − e
1 + f − βg − γe

|dsyn,W2)|dsyn) ' 1

(40)
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2. For the variance of 39, use the iterated variance computation,

E{var( 1 + f − g − e
1 + αf − βg − γe

|dsyn,W1,W2)|dsyn}+var{E(
1 + f − g − e

1 + αf − βg − γe
|dsyn,W1,W2)|dsyn}

(41)
For the interior variance and expectation, use a first-order Taylor series expansion in α around
1. Since var(α−1|dsyn,W1,W2) = 2/(m1 − 1), the above expression equals approximately

E{ 2(1 + f − g − e)2f2

(m1 − 1)(1 + f − βg − γe)4
|dsyn}+ var{ 1 + f − g − e

1 + f − βg − γe
|dsyn} (42)

The first part of 42 is

E{E(
2(1 + f − g − e)2f2

(m1 − 1)(1 + f − βg − γe)4
|dsyn,W2)|dsyn} '

2f2

(m1 − 1)(1 + f − g − e)2
(43)

Use the iterated variance computation for the second part of (42),

E{var( 1 + f − g − e
1 + f − βg − γe

|dsyn,W2)|dsyn}+ var{E(
1 + f − g − e

1 + f − βg − γe
|dsyn,W2)|dsyn} (44)

Use a first-order Taylor series expansion in β−1 around 1 with var(β−1|dsyn,W2) = 2
m1(m2−1) .

and use a first-order Taylor series expansion in γ−1 around 1 with var(γ−1|dsyn) = 2
m1m2(rm3−1) .

The second part of (42) becomes

2g2

m1(m2 − 1)(1 + f − g − e)2
+

2e2

m1m2(m3 − 1)(1 + f − g − e)2
(45)

We get

vs =
f2

(m1 − 1)(1 + f − g − e)2
+

g2

m1(m2 − 1)(1 + f − g − e)2
+

e2

m1m2(m3 − 1)(1 + f − g − e)2

(46)
that is

vs = {
[(1 + 1

m1
)bM ]2

(m1 − 1)T 2
s

+
[(1 + 1/m2)w̄1M ]2

m1(m2 − 1)T 2
s

+
[(1− 1/m3)w̄2M ]2

m1m2(m3 − 1)T 2
s

}−1 (47)

4.2. Stratified random sampling

In practice, comparing to simple random sampling, stratified random sampling approach is
more common and attractive for taking stratifications and differences accross multiple domains
into account. We modify the combining rules to make valid inferences based on stratified sampling
estimation. Suppose Nh is the population size and nh is the sample size in Stratum h, for h =
1, . . . ,H. If Q is the quantity of interest in the census, let q̄Mh be the estimate of Q in Stratum h
and let Tsh be the value of Ts computed based on the records in Stratum h. If nh is not too small
comparing to Nh, we have to include the finite population correction factor into the computation
of Tsh. Then we can combine q̄Mh and Tsh across stratum to estimate Q in the census. In the
combining rules, the point estimate is q̄M = Σh(Nh/N)q̄Mh and Ts = Σh(Nh/N)2Tsh. Inferences
can be similarly made on (Q − q̄M ) ∼ N(0, Ts). When m1, m2 and m3 are modest, we propose
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(Q − q̄M ) ∼ tνst(0, Ts), where νst is derived similarly as νs by matching the mean and variance
of the chi-squared distribution B∞h, W1h,and W2h, which are referring as B∞, W1 and W2 in
Stratum h. Let ūMh, bMh, w̄1Mh and w̄2Mh be the corresponding values of ūM , bM , w̄1M and w̄2M
in Stratum h.

We have

vst = {
[(1 + 1

m1
)ΣH

h=1(Nh/N)2bM ]2

(m1 − 1)T 2
s

+
[(1 + 1/m2)ΣH

h=1(Nh/N)2w̄1M ]2

m1(m2 − 1)T 2
s

+
[(1− 1/m3)ΣH

h=1(Nh/N)2w̄2M ]2

m1m2(m3 − 1)T 2
s

}−1 (48)

For most cases vst is large enough that an approximate normal distribution is adequate for infer-
ences.

5. Simulation

We implement simulations to show the derived combining rules for inference.

5.1. Simple random sampling

We generate a population of N = 105 units comprising five variables Y1, . . . , Y5 drawn from
N(0,Σ), where the element Σij = 5∗0.8|i−j|. Suppose Y5 has missing values. The missing percentage
is p, where we consider p = 15%. We construct regression models on the observed data and predict
the missing values. For the same sample approach, we draw m1 different values of the parameters
and based on each parameter we generate m2 multiple missing datasets. Therefore, we have m1∗m2

completed populations, corresponding to three-stage approach. We replace values of Y4 for all units
with Y1 > q, where q is the 75th percentile of Y1 in the complete population. The replacement values
are generated from the predictive distribution f(Y4|Pcom, Y1 > q), with parameter values(here are
the values for the regression coefficients) calculated from the population. We draw samples with
the same records of size n = 10000 from the total M = m1 ∗m2 ∗m3 synthetic populations. We
run simulations under different scenarios of the values of (m1,m2,m3).

Based on the generated samples, we implement the derived combining rules for twelve quantities
in each simulation iteration, including the population means of Y4 and Y5, the coefficients from a
regression of Y3 on all other variables and the coefficients from a regression of Y5 on all other
variables.

We repeat the whole three-level imputation process 500 times and compare the values of the
derived variance formula with their true values. Specifically, we calculate the ratio of the derived
variance Ts to the true variance var(q̄M ) to check the validity. The closer the ratio is to 1, the more
evidence supports Ts. Furthermore, we consider the nominal coverage rate and average length of
the 95% confidence intervals of the twelve quantities of interest. No negative values of Ts happen
here.

From the results in Figure 1, we can see that for the differently chosen values of (m1,m2,m3),
all the ratios are quite close to 1. Each Ts is approximately unbiased for var(q̄M ). We apply the
student t distribution of the quantity and calculate the corresponding degrees of freedom. The
nominal coverage rates of 95% confidence intervals are approximately 95%. Figure 1 illustrates
that the derived combining rules provide a valid and approximately true variance estimation.

5.2. Stratified random sampling

We simulate a large census dataset comparing five variables Y1, . . . , Y5 in four different strata.Y1

is a binary variable with value 0 or 1 and the probability P (Y1 = 1) = 0.7 keeps across the four
strata. The generating distributions for (Y2, . . . , Y5) and the stratum sizes are shown in Table.
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Figure 1: Boxplots of the calculated ratios of Ts/var(qM ) and the nominal coverage
rate of 95% confidence intervals under different value settings of (m1,m2,m3)

The statistical agencies can apply proportional allocation and choose the same number to set
the sample sizes for release from each stratum. First we use a common sample size n = 10000, where
the finite population correction factors are non-ignorable, especially in Stratum 3 and Stratum 4.

We report the nominal coverage rate and average length of 95% confidence intervals of the
mean of Y5 and Y4. The output is shown in Table 2. The ratio Avg(Ts)/var(q̄M ) (1.007) for Ȳ4 is
approximately as 1. The ratio Avg(Ts)/var(q̄M ) (1.007) for Ȳ5 has 13% positive bias. The nominal
coverage rates of 95% confidence intervals are both close to 95%. We can see that the derived
combining rules adjusted by stratified sampling perform well here.

5.3. Exploration for suitable values of (m1,m2,m3)

To choose a set of suitable values of (m1,m2,m3) is a crucial problem [6] when it comes to
practice, which is related to balancing the efficiency of combining rules and the computation burden.
Too large values of (m1,m2,m3) will cause heavy computation burdens for the statistical agencies,
while too small values of (m1,m2,m3) will reduce the efficiency of the whole imputation process.
We implement several simulation studies to explore the importance roles or affects of different
value choices of (m1,m2,m3). Here we set the population size as N = 10000 and repeat the
whole simulation for T = 5000 times. The data generating systhem is the same as that in the
simple random sampling of Section 5.1. Because the population size is smaller, some values of the
estimated variances become negative. The negative rater will be reported here. We first set the
missing proportion of Y5 as 50% and q as the 90% quantile of Y1, where the missing percentage is
quite large while the replacement percentage is small. Missingness dominates the most variability.
The second senario is that 10% of the values of Y1 are missing and q is 50% quantile of Y1. Sampling
with synthesis plays a more important role for the second case. We choose different sets of values of
(m1,m2,m3) as repectively (10, 3, 3), (3, 3, 10) and (3, 10, 3). This setting will help find the values
of which of m1, m2 and m3 will affect the most to the estimation of variance.

Figure 2 displays the simulation results for the two cases. The first column is referring the
fist case where the missing rate is 50% and the replacement rate is 10%; the second column is
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Table 1: Distributions for simulating (Y2, . . . , Y5) across strata

Stratum size-Nh Simulating models CI length

Stratum 1 80000 logY2 ∼ N(−1 + 0.5Y1, 1)
Y3 ∼ N(Y1 + logY2, 1)
Y4 ∼ N(Y1 + 1.5logY2 + Y3, 1)
Y5 ∼ N(−2.5logY2 + Y3 + 0.1Y4, 1)

Stratum 2 50000 logY2 ∼ N(−2 + Y1, 3)
Y3 ∼ N(2Y1 + 2logY2, 3)
Y4 ∼ N(2Y1 + 3logY2 + 2Y3, 3)
Y5 ∼ N(−5logY2 + Y3 + 0.2Y4, 3)

Stratum 3 30000 logY2 ∼ N(−3 + 1.5Y1, 5)
Y3 ∼ N(3Y1 + 3logY2, 5)
Y4 ∼ N(3Y1 + 4.5logY2 + 3Y3, 5)
Y5 ∼ N(−7.5logY2 + Y3 + 0.3Y4, 5)

Stratum 4 10000 logY2 ∼ N(−4 + 2Y1, 7)
Y3 ∼ N(4Y1 + 4logY2, 7)
Y4 ∼ N(4Y1 + 6logY2 + 4Y3, 7)
Y5 ∼ N(−10logY2 + Y3 + 0.4Y4, 7)

Table 2: Outputs under Stratified random sampling with (m1,m2,m3) = (5, 5, 5)

Q Avg(Ts)/var(q̄M ) 95% CI nominal coverage(%) 95% CI average length

Ȳ5 1.135 95.2 0.135
Ȳ4 1.007 96.0 0.453
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Figure 2: Simulation results for different missing percentages and different replacement
rates: the left column represents the case when 50% values are missing and the thresh-
old percentile of Y1 is 90%; the right column represents the case when 10% values are
missing and the threshold percentile of Y1 is 50%
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the result where the missing rate is 10% and the replacement rate is 50%. In the first case with
large missingness, the estimated variances have a bit positive bias. When m3(= 10) is large,
the boxplot of the nominal coverage rates is more compact and around 95%. Negative values of
estimated variances appear in all the three setting of (m1,m2,m3) with large missingness. While
the synthesis rate is large, only when m3(= 10) is large, the estimated variances has negative values.
The setting (m1 = 3,m2 = 10,m3 = 3) gives the most compact boxplot and the median closest
to 95% with repect to the nominal coverage rate. Meanwhile, when (m1 = 3,m2 = 10,m3 = 3)
most values of the estimated variance are close to the truth. In general, when the replacement rate
is large, we recommend a larger value for m2 comparing to m1 and m3. When the missingness
proportion is large, larger values of m2 and m3 will generate better estimates.

6. Conclusions

We proposed a new approach to protect the privacy of census public use microdata when some
values are missing. A new set of combining rules are derived to enable valid inference from the
released data samples. However, some challenging issues still exist. How to adjust the negative
estimated values of variances needs to be explored more. The direct posterior simulations can be a
good solution. Furthermore, how to choose a proper set of the values of (m1,m2,m3) is crucial. We
implement some simulationss to study which one will affect a lot repectively for large missingness
proportion and large replacement rate.
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