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Abstract
The U.S. Census Bureau seeks to determine duplicately listed individuals by searching across lists to identify
records with the same name and birth date. The question arises of how many of these agreeing records are random
agreements, two di¤erent people with the same name and birth date. To formally answer this question, we consider
�rst the familiar Birthday Problem and then the more complicated Collision Problem. For each of these problems we
exhibit the explicit probability distributions from which we can compute means and variances for some parameter
values. We apply this result to voter registration lists for Oregon and Washington to estimate the number of �false
matches�that occur across these lists.
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1. Introduction

One sometimes wishes to identify duplicate records in lists. By duplicates we mean two di¤erent records
that refer to the same entity. In the U.S. Census Bureau, the lists are often �les with records that contain
values of Census variables for people. If we are looking for duplicate records for the same person at
di¤erent addresses, then other than some categorical variables for sex and ethnicity, the main personal
variables are name and date of birth. We wish to consider the expected number of random agreements
within a list or between two lists where two records happen to agree on name and date of birth but do
not represent the same person. We consider the problem in the general form of a �nite set, or sets, of
elements, each of which has been randomly assigned with replacement a tag from a �nite set of tags. For
our application, we are thinking of the sets as (records of) people with the same name, and the tags are
birth dates (within a �xed range). For each of the problems we will present the probability distribution,
expected value, and variance. We then discuss an application of these results to voter registration �les for
Oregon and Washington.

2. Two problems of random agreement

2.1 The Birthday Problem

A standard example or problem in an elementary probability course is to compute the probability for a
set A of n people (e.g. the students in a class) what is the probability that at least two people have the
same birthday. What is sometimes referred to as the �birthday paradox� is the fact that the smallest
number n for which this probability is greater than one half is n = 23, an evidently, if not paradoxically,
small number. However, the discussion usually stops short of specifying the probability distribution or the
expected number of duplicates. So to state the problem a little more generally and formally, for a set of
n elements, assign a tag each element, where the tags are selected randomly with replacement from a set
of D tags. Let X (!) be the random variable where ! is a particular assignment of tags and X (!) is the
number of distinct tags in the assignment. The birthday problem is asking for D = 365 to compute the
value of

Pr (X < n) = 1� Pr (X = n) :
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2.2 The Collision Problem

A related problem concerns the number of duplicates across two lists. Here we consider two sets A;B with
m;n elements respectively. The m+n elements are each assigned a tag chosen randomly with replacement
from a set of D tags. For a given assignment ! of tags, we let the random vector X (!) = (i; j) when
there are i elements in set A with tags distinct from any tag in B and there are j elements in B which have
tags that are not assigned to any element of A. The name for this problem arises in hashing where one
is concerned about two distinct records colliding when they are assigned the same address. Presumably,
the problem was considered under other names before the advent of computer science.

3. Some Combinatorial Notations

Consideration of these problems naturally involves the falling factorial power, which is sometimes denoted
[n]k (e.g. in [Constantine [1987]]) where for positive integer k is

[n]k = n (n� 1) (n� 2) : : : (n� k + 1)| {z }
k factors

.

For instance, in the above birthday problem, we see that

Pr (X = n) =
[D]n
Dn

(1)

since we sequentially draw a distinct tag from the remaining unused tags.
The most common combinatorial element is the binomial coe¢ cient

�
n
k

�
which has the combinatorial

interpretation as the number of subsets with k elements can be chosen from a set of n elements. Perhaps
the next most basic combinatorial elements are the Stirling numbers. Following the excellent notational
recommendation of Knuth (Graham et al. [1994]), we denote the Stirling number of the second kind by�
n
k

	
, which has the interpretation as the number of ways a set of n elements can be partitioned into k

subsets. Similarly the Stirling number of the �rst kind
�
n
k

�
has the interpretation as the number of ways

that n objects can be arranged into k cycles. However, the Stirling numbers of the �rst kind will be useful
in the present context as the coe¢ cients of the polynomials determined by the falling (or rising) factorial
powers,

[n]k =
kX
j=1

(�1)k�j
�
k

j

�
nj .

4. Probability Distributions

4.1 The Birthday Problem

For the probability distribution (or mass function) of the birthday problem random variable, we note that
for X = k, we need to assign exactly k distinct tags to the n elements of the set A, so we can divide A
into k subsets and then assign a distinct tag to the elements of each subset. Thus we have

Pr (X = k) =
1

Dn

�
n

k

�
[D]k ,

which reduces to (1) in the case k = n. If we wish to express this in terms of powers of D, we can use the
Stirling numbers of the �rst kind to get

Pr (X = k) =
1

Dn

�
n

k

� kX
j=1

(�1)k�j
�
k

j

�
Dj .
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4.2 The Collision Problem

The combinatorics for the collision problem are considerably more complicated, mainly because we are
only interested in duplicated tags between the two sets and not any possible duplicate tags within each of
the sets. For sets A with m elements and B with n elements, we describe a procedure for selecting tags
so that i elements of A have the same tag as some of j elements of B, and conversely.

1. Select a subset Ai of i elements of A

2. Select a subset Bj of j elements of B

3. For each k, 1 � k � min (i; j)

(a) Partition Ai into k subsets

(b) Partition Bj into k subsets

(c) Assign each of the k subsets of Bj to one of the k subsets of Ai

(d) Assign k distinct tags to the k pairs of subsets

4. For the remaining complementary subset Am�i = AnAi, partition it into u subsets, 0 � u � m� i

5. For the remaining subset Bn�j = BnBj , partition it into v subsets, 0 � v � n� j

6. Assign u+ v distinct tags to these subsets from the D � k remaining tags

Actually since we de�ned the random vector X in terms of unique tags (non-duplicates), the above
procedure produces a tag assignment ! such that X (!) = (m� i; n� j). By counting the number of
ways each sequential selection can be made, we see that we can write

Pr (X = (m� i; n� j)) = 1

Dm+n

�
m

i

��
n

j

�min(i;j)X
k=0

�
i

k

��
j

k

�
k! [D]k

m�iX
u=0

n�jX
v=0

�
m� i
u

��
n� j
v

�
[D � k]u+v .

Aside from combining the two descending factorial powers

[D]k [D � k]u+v = [D]u+v+k

the above expression does not appear to admit much simpli�cation. Again if we wish, we may replace
[D]u+v+k with a polynomial in powers of D using Stirling numbers of the �rst kind for coe¢ cients.

5. Expected Value and Variance

For the birthday problem random variable, it is possible to compute the expected value directly from the
probability distribution by using the recursion formula for Stirling numbers of the second kind�

n+ 1

k

�
= k

�
n

k

�
+

�
n

k � 1

�
along with the somewhat more obscure identity�

n+ 1

m+ 1

�
=
X
k

�
n

k

��
k

m

�
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It is also possible to compute the variance using the above identities along with the analogous ones for
Stirling numbers of the �rst kind �

n+ 1

k

�
= n

�
n

k

�
+

�
n

k � 1

�
and �

n+ 1

m+ 1

�
=
X
k

�
n

k

��
k

m

�
(Graham et al. [1994], pp.264�265). However, I was unable to do anything of the sort with the more
complicated collision problem random vector probability distribution. Fortunately, it was pointed out to
me by Prof. Bikas Kumar Sinha that these calculations are a lot easier using indicator functions.

5.1 The Birthday Problem

For the birthday problem random variable, we want to count the number of distinct tags that are chosen.
To do this, we enumerate the tags and for i = 1; 2; : : : ; D, we de�ne the indicator function Yi by Yi = 1
if the ith tag was never chosen for any of the n elements of A, and Yi = 0 otherwise (i.e. the ith tag was
chosen for one or more of the elements in A). Thus we may express the birthday problem random variable
X as

X = D �
DX
i=1

Yi

since the sum counts the number of distinct tags that were not chosen, so the di¤erence is the number
of distinct tags that were chosen. A virtue of indicator functions is that their expected value is just the
probability that they equal one. In this case,

E [Yi] = Pr (Yi = 1) =

�
D � 1
D

�n
since n independent choices were made from the set of all tags except the ith one. From this we easily
have

E [X] = D �
DX
i=1

E [Yi] (2)

= D
�
1�

�
1�D�1

�n�
since all of the summands are equal. We might note that if we are �nding the expected value of the
number of duplicates, Z = n�X, then viewed as a polynomial in D�1, the leading term is

�
n
2

�
D�1,

E [Z] =

�
n

2

�
D�1

�
1� n� 3

3
D�1 +O

�
D�2

��
.

In terms of the traditional birthday problem, we might note that while n = 23 is the �rst value of n
for which the probability exceeds one-half that there is at least one duplicate birthday (Pr (Z) > 1

2), the
above formula indicates that for D = 365, the �rst value of n for which the expected number of duplicates
exceeds 1 is n = 28.

To compute the variance, we can �nd

E
�
Y 2
�
= E

24 DX
i=1

Yi

!235 :
=

DX
i=1

E
�
Y 2i
�
+
X
(i;j)
i6=j

E [YiYj ] .
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Since Yi is an indicator function, Y 2i = Yi so the �rst summand is the same as before. Also YiYj = 1 if
and only if Yi = 1 and Yj = 1, so this happens exactly when neither the ith nor the jth tag is chosen, so
E [YiYj ] =

�
D�2
D

�n
. Thus

Var [X] = Var [Y ] (3)

= E
�
Y 2
�
� (E [Y ])2

= D
�
1�D�1

�n
+D (D � 1)

�
1� 2D�1

�n �D2 �1�D�1�2n .
We may observe that some lower order terms cancel so we may write

Var [Z] =

�
n

2

�
D�1

�
1� 5n� 7

3
D�1 +O

�
D�2

��
so that when D is large relative to n, the variance of the number of duplicates is nearly equal to the
expected value of the number of duplicates. For example, in the case where D = 365 and n = 28, the
variance is 0:917 so the standard deviation is 0:958. If we use the two term polynomial estimate, we get
the slightly smaller estimated variance 0:910 and standard deviation 0:954.

5.2 The Collision Problem

From the collision problem random vector X =
�
XA; XB

�
, we work with the component XA, the other

component being symmetric. Thus for a random tag assignment ! to the m + n elements of A and B,
XA (!) = i means that their are i elements of A which have tags that are not assigned to any elements
of B. Enumerating the elements of A and the tags, then for each i = 1; 2; : : : ;m and k = 1; 2; : : : ; D, we
de�ne the indicator function Xik by Xik (!) = 1 if the kth tag was not chosen for any element of B, but
it was chosen for the ith element of A, and Xik (!) = 0 otherwise. We see that

XA =
mX
i=1

DX
k=1

Xik

and clearly

E [Xik] =
1

D

�
D � 1
D

�n
for all i; k the expected value is

E
�
XA
�
= mDE [Xik] = m

�
1�D�1

�n
, (4)

a formula even a bit simpler than (2). Of course E
�
XB
�
is obtained by switching m and n: If we want to

know the number duplicates, i.e. elements of A whose tags are also tags assigned to elements of B, we
want Y A = m�XA, and

E
�
Y A
�
= m

�
1�

�
1�D�1

�n�
= mnD�1

�
1� n� 1

2
D�1 +O

�
D�2

��
.

For the variance,

E
h�
XA
�2i

= E

24 mX
i=1

DX
k=1

Xik

!235
=

mX
i=1

DX
k=1

E
�
X2
ik

�
+
X
i6=j

DX
k=1

E [XikXjk] +
mX
i=1

X
k 6=l

E [XikXil] +
X
i6=j

X
k 6=l

E [XikXjl] .
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As before, for indicator functions X2
ik = Xik, so

mX
i=1

DX
k=1

E
�
X2
ik

�
= m

�
1�D�1

�n
.

For each (i; j; k) ; i 6= j, XikXjk = 1 means the kth tag was not chosen for any element of B, but was
chosen for both the ith and jth elements of A, so

E [XikXjk] = Pr (XikXjk = 1) =
1

D2

�
D � 1
D

�n
and since there are m (m� 1)D such terms,

X
i6=j

DX
k=1

E [XikXjk] = m (m� 1)D�1
�
1�D�1

�n
.

On the other hand, for XikXil, k 6= l, we cannot have two di¤erent tags chosen for the same element of A,
so XikXil is always 0, so E [XikXil] = 0. For i 6= j, k 6= l, XikXjl = 1 means that neither the kth nor the
lth tags were chosen for any of the elements of B, while one was chosen for the ith element of A and the
other was chosen for the jth element, so

E [XikXjl] = Pr (XikXjl = 1) =
1

D2

�
D � 2
D

�n
and since there are m (m� 1)D (D � 1) such terms,X

i6=j

X
k 6=l

E [XikXjl] = m (m� 1)
�
1�D�1

� �
1� 2D�1

�n
.

Since Var
�
Y A
�
= Var

�
XA
�
= E

h�
XA
�2i� �E �XA

��2
, we have

Var
�
XA
�
=

m
�
1�D�1

�n
+m (m� 1)D�1

�
1�D�1

�n
+m (m� 1)

�
1�D�1

� �
1� 2D�1

�n �m2
�
1�D�1

�2n
, (5)

so as a polynomial in D�1,

Var
�
XA
�
= mnD�1

�
1� 3n� 1

2
D�1 +O

�
D�2

��
in comparison with E

�
XA
�
(4). However, unlike the coe¢ cients of higher order D�1 terms of E

�
XA
�
which

are polynomials in n, the coe¢ cients of higher order terms of Var
�
XA
�
can involve a factor of m as well

as polynomials in n.

6. Empirical Studies

In their study related to assessing the extent of double voting, McDonald and Levitt (McDonald and Levitt
[2008]) examined the voter registration �les for New Jersey by simulating the occurrence of random name
and birth date agreements. Here at the U.S. Census Bureau, Dr. William E. Winkler simulated birth date
distribution to measure the expected number of random agreements of name and birth date across the
voter registration lists of Oregon and Washington. We similarly compute the likely random agreements of
name and birth date both within each of the voter registration lists in Oregon and Washington and across
the two lists using the analytic formulas for the expected value and variance.
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6.1 The Data Sets

We are working with the voter registration �les for Oregon and Washington state. The Oregon �le contains
the records for 2,040,589 voters and the Washington �le contains the records for 3,407,596 voters. While
these data �les in general appear to be quite clean, there are no doubt some errors in them. If we consider
the birth years listed in the �les, there is a small number of records (< 0:03%) with the birth year missing.
In addition, there are some birth years dating from the 19th and early 20th century. One Mr. Brown has
a birth year listed as 1763. Some of these records may have birth years that are typographical errors and
some of them may be records for people who are no longer voting. We will somewhat arbitrarily restrict
the �les to records with birth years over a 64 year period, from 1927 to 1990. No doubt some of the
records with earlier birth years represent people who are still living and some of them may still be active
voters, but we presume that this subset represents the preponderance of the active voters. The Oregon
list has 1,941,108 and the Washington list has 3,258,537 records with birth years in this interval. These
represent more than 95% of the total records in each state.

For each of these restricted state �les, we sort by the full names and count the number of times each
of these names occurs. By �full names�we mean last name, �rst name, and middle initial. We next
repeated the name count using only �rst and last name for �full names.�We only consider exact name
matches, not attempting to adjust for nicknames or typographical errors. The Oregon list contains 94; 923
names that occur more than once; the Washington list has 183; 304 names that occur more than once.
For each problem we compute the mean and variance over the data sets using the analytic formulas that
we have derived. For some cases, we also estimate the mean and variance using simulation.

6.2 A Note on the Simulation

When we did our preliminary simulation studies, we used the C library program rand(). However, for our
more intensive simulations, we decided to use a more robust random number generator. One reason that
one is cautioned against using rand() is that while the C language requirements specify the form of the
interface for the function, they do not specify its implementation, and historically some common random
number generator functions have been shown to be poor randomness simulators. A more immediate
problem is that the ANSII C speci�cations require that rand() return an integer between 0 and the system-
de�ned constant RAND_MAX, which is commonly de�ned to equal 32; 767, which means that the function
returns a positive two-byte signed integer. Our 64 year age interval requires D = 64 � 365 = 23; 360
distinct birth dates, a range that is covered only one complete time by the output of rand(). If we were to
extend our age interval to 90 years, then there would not be enough random integers to cover all possible
dates. Therefore, we have decided to use another random number generator, the Mersenne twister as
implemented in the Gnu Scienti�c Library (GSL). This generator has passed extensive randomness tests,
is e¢ ciently implemented, and returns a long unsigned integer, which produces more that 4 billion possible
outcomes.

Furthermore, in an attempt to more accurately estimate some of the low probability values, we have
used a varying number of iterations in the simulations. For example, for the birthday problem the proba-
bility that a group of 2 people have the same birth date from our D possible birth dates is 0:0000428082,
a event that should happen about once in about 23; 360 trials. In order for there to be a chance that the
simulations can produce a reasonably accurate average, we used 1; 000; 000 iterations. However, this is
too large a number of iterations to use over a large range of possible group sizes, so we used 100; 000 and
then 10; 000 iterations as the group sizes and the corresponding means increased in value.

6.3 The Birthday Problem

For each state we wish to compute the expected number of names and birth dates that randomly occur
more than once. To do this, we partition the list of voters by full names and consider the number of times
that full names occur. If a name occurs n times and we are randomly assigning D = 64 � 365 birth date
tags, then we want the mean of the random variable Xn;D, the number of duplicate tags in a set of n
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Analytic Mean Std Dev Simulated Mean Sim Mean w/ Year Dist
Oregon 14:50 3:81 14:41 15:68
Washington 35:87 5:99 35:65 38:63

Table 1: Expected Duplicates Including Middle Initial

Analytic Mean Std Dev
Oregon 155:84 12:46
Washington 402:80 20:01

Table 2: Expected Duplicates Without Middle Initial

members. Each full name represents and independent random variable, so the total mean (and variance)
for the state is the sum of the means (variances) for each full name. If we use the means and variances
for for the birthday problem calculated from the analytic probability distribution, we have for Oregon an
expected value of 14:50 and a variance of 14:49, resulting in a standard deviation of 3:81. By comparison,
if we use Birthday Problem means computed via simulation using a Mersenne twister random number
generator, we get an expected value of 14:41, which is about 0:27 standard deviations from the analytic
mean. Since for small values of n, the probabilities are quite small and yet they are counted multiple
times for many names that occur a small number of times, we used 1; 000; 000 draws for 2 � n � 15,
100; 000 draws for 16 � n � 50, and 10; 000 draws for n > 50. As discussed above, these calculations are
based on assuming a uniform distribution for the birth date tags. While the birthdays may be more or
less uniformly distributed among the population, the birth years of the voters is not, There is a greater
concentration of registered voters in their 50�s than in their 20�s or 70�s. If we perform a simulation with
the birthday selected uniformly and the birth year selected using the empirical birth year distribution, the
expected number of duplicate Oregon voters is 15:68 (Table 1).

For Washington, analytic mean 35:83, variance 35:85, standard deviation 5:99, simulated mean 35:65,
simulated year distribution 38:63. As expected, by using the non-uniform birth year distribution, the
mean number of random agreements is increased. While the increase is not great, it is a noticeable eight
or nine percent, a bit higher in this case than the approximately seven percent reported by McDonald and
Levitt (McDonald and Levitt [2008]).

On the other hand, if we look at the voter registration lists using just �rst and last name without the
middle initial (Table 2), we see that the number of expected random duplications increases more than
tenfold. This indicates the added distinguishing power of the middle initial, a data �eld that appears to
be fairly consistently reported in these �les, but which is often missing or inaccurate in �les in general.

In the actual data, Oregon has 47 matching name/birth date pairs in the 64 year range (48 in all),
while Washington had 136 matching name/birth date pairs in the 64 year range (139 in all). There were
no matching triples. Comparing these numbers to the estimated random agreements, since the number of
observed duplicates is many standard deviations from the mean number of random duplicates, we would
conclude that both states de�nitely have some individuals who are registered twice with the same name
and birth date. On the other hand, the number of such cases is quite small and a substantial proportion
(perhaps about 25%)of the matching pairs are probably random agreements (Table 3).

When we omit the middle initial, we �nd around �ve times as many duplications in the �le. However,
the expected number of random agreements increases by almost as much, so it is unclear if we are actually
�nding many more people with duplicate registrations (Table 4).

Actual Dups Mean SDs from Mean Multiple of Mean
Oregon 47 14:05 8:53 3:24
Washington 136 35:87 16:72 3:79

Table 3: Comparison with Observed Duplicates Including Middle Initial
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Actual Dups Mean SDs from Mean Multiple of Mean
Oregon 269 155:84 9:08 1:73
Washington 635 402:80 11:64 1:58

Table 4: Comparison with Observed Duplicates Without Middle Initial

Analytic Mean Std Dev Observed Dups
Oregon 44:687 6:683 7801
Washington 44:690 6:684 7800

Table 5: Across State Expected Duplicates Including Middle Initial

Analytic Mean Std Dev Observed Dups
Oregon 520:926 22:774 9892
Washington 521:354 22:802 9891

Table 6: Across State Expected Duplicates Without Middle Initial

6.4 The Collision Problem

When we consider the expected number of random agreements across the two states, we see again that by
omitting the middle initial increases the number of expected random agreements by an order of magnitude.
However, we now see a very large number of observed duplications compared to the expected number. In
the case of having the middle initial present, the expected random agreements represent only around 0:5%
of the observed duplications, indicating the preponderance of these observed duplicates represent voters
registered in both states (Table 5). When we drop the middle initial we increase the number of observed
duplicates by more than 2000, although a sizable portion of these new duplicates may be random (Table
6).

In any case, one concludes that the individual states do a thorough job of updating their own voter
registration records, so that when someone moves within the state, the voting registration is revised without
creating a duplicate registration. However, when someone moves from one state to the other, the �rst
state often continues to carry the old registration on the books.
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