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Abstract:  

Different methods have been proposed in the small area estimation literature to deal with outliers 

in individual observations and in the area-level random effects. In this paper, we propose a new 

method based on a scale mixture of two normal distributions. Using a simulation study, we 

compare the performance of a few recently proposed robust small area estimators and our 

proposed estimator based on a mixture distribution. We then compare the proposed method with 

the existing methods to estimate monthly employment changes in the metropolitan statistical 

areas using data from the Current Employment Statistics Survey conducted by the U.S. Bureau of 

Labor Statistics (BLS). 
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1. Introduction 

Small area estimation (SAE) generally relies on some, implicit or explicit, modeling assumptions. 

It may happen that a relatively few observations do not fit into the model that explains well bulk 

of the data. Such observations may adversely affect estimation of the model parameters. This 

calls for development of methods of estimation that are robust to the appearance of outliers, and 

several outlier resistant methods have been proposed in the SAE literature in recent years (Fellner 

1986, Chambers and Tzavidis 2006, Sinha and Rao 2008). 

On the other hand, outliers may suggest a real finite population structure that is not described by 

the assumed base model. Such representative outliers (using Chambers’ 1986 terminology) carry 

important information and it would be unwise to ignore it and rely only on the base model. In the 

non-SAE settings, Chambers (1986) proposed to apply a bias correction to the initial estimator, 

where the initial estimator is based firmly on the assumed working model while the bias 

correction is an estimated mean of residuals after relaxing the modeling assumptions. The bias 

correction idea in application to SAE is to add separate bias correction terms to the initial 

predictors for each area, a method explored by Chambers et al. (2009). The drawback of such 

adaptation of the non-SAE methodology is that inevitably the estimation of the bias correction 

terms for small areas would be based on small samples, potentially leading to inefficient 

estimates. 

The approach proposed in the present paper is a slight modification of a classical linear mixed 

model application to SAE. The underlying distribution is a scale mixture of two normal 

distributions, where outliers are assumed to have a larger variance than the “regular” 

observations. This model explicitly describes the behaviour of the outlying observations relative 

to the other units; thus, it automatically produces estimates (e.g., using MLE) that account for 

outliers.  

A simple formulation of the mixture model used in this paper may still be too strong in certain 

assumptions about the distribution of outliers. First, the outliers are assumed to appear randomly 

across areas. In fact, however, the outliers may be clustered in certain areas. This may lead to bias 

in the prediction of the area-level random effects. We propose an area-level bias correction 
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method that is different from the one of Chambers et al. (2009): the proposed method attempts to 

preserve the efficiency of the initial model by introducing the corrections only to select areas, 

after these areas have been tested on possible outlyingness. Another potentially incorrect 

assumption is that the outliers are distributed symmetrically around a common mean. Failure of 

this assumption may lead to an overall bias across areas. The overall bias correction (OBC) can 

be based on the data combined from all areas, thus the initial modeling assumptions can be more 

safely relaxed to estimate the correction at this higher level. 

In Section 2, we briefly review several existing approaches to outlier resistant SAE. The proposed 

approach is detailed in Section 3. Section 4 contains results of a simulation study that compares 

several methods of robust SAE. Application using administrative Quarterly Census of 

Employment and Wages (QCEW) data for estimation of monthly employment changes in the 

metropolitan statistical areas (MSA) using sample from the Current Employment Statistics (CES) 

Survey conducted by the U.S. Bureau of Labor Statistics (BLS) is described in Section 5. 

2. Review of existing approaches 

Under the prediction approach to surveys, an estimator of mY , the small area m mean, is given 

by: 

 ˆ ˆ
(1 ) ,m m m m mrY f y f Y

 
(1) 

where 1,...,m M ; 1

1

mn

m m mj

j

y n y  is the sample mean,  index mj  denotes observation j from 

area m, 1 ,m m mf N n mN  and mn  are the number of area m population and sample units, 

1

;
M

m

m

N N
1

;
M

m

m

n n ˆ
mrY  is a model-dependent predictor of the mean of the non-sampled part 

of area m.  

In particular, the predictor ˆ
mrY

 
can be obtained using a linear mixed model. A comprehensive 

account about application of the linear mixed model theory to SAE is given by Rao (2003). To 

facilitate the subsequent discussion, we refer to the following special case of the linear mixed 

model, known as the nested-error regression model (Battese, Harter, Fuller 1998):  

,T
mj mj m mjy ux β    (2) 

2~ (0, )
iid

mu N  and 
2~ (0, )

iid

mj N   (3) 

1,..., , 1,..., ,mj n m M  

where mjx is a vector of auxiliary variables for an observation mj , β  is the corresponding vector 

of parameters; mu  are random effects. The distribution of the random effects describes deviations 

of the area means from values T
mjx β ; mj  are errors in individual observations. The random 

variables mu  and mj  are assumed to be mutually independent. (We assume that sampling is non-

informative for the distribution of measurements mjy , given the auxiliary information mjx .) 

The best linear unbiased predictor (BLUP) of mrY  has the form  

 
ˆ ˆ ˆ ,T
mr mr mY ux β  (4) 
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where  1

1

( ) ,
m

m

N
T T
mr m m mj

j n

N nx x  β̂  is the best linear unbiased estimator (BLUE) of β , ˆmu is 

BLUP of mu  and it has the form 

 
2

2 2
ˆˆ ( ).T

m m m

m

u y
n

x β  (5) 

When the variances 
2

 and 2 are not known, they are estimated from the data. This will yield 

the empirical best linear unbiased predictor (EBLUP) for mrY . 

The linear mixed model assumptions about the distribution of the random terms, mu  and mj , 

may hold for most of the observations; however, there may be areas that do not fit the assumption 

on the random effects mu ; there may also be individual observations that are not well described 

by the model assumption on the error terms mj . The influence of the outlying areas or individual 

observations on estimation of the model parameters can be reduced by using bounded influence 

functions for the corresponding residual terms when fitting the model estimating equations. For 

the general case of the linear mixed models, this approach was taken by Fellner (1986). 

Modification of Fellner’s approach, also involving the bounded influence functions, was 

proposed by Sinha and Rao (2008). The predictor for mrY
 
based on such a robustified fitting of 

the linear mixed model is called the Robust Empirical Best Linear Unbiased Predictor 

(REBLUP): 

 ˆ ˆ ˆ .REBLUP T REBLUP REBLUP
mr mr mY ux β  (6) 

An alternative to the mixed model approach to robust SAE is based on M-quantile regression, 

which is a generalization of the quantile regression technique. This approach was proposed by 

Chambers and Tzavidis (2006). 

In M-quantile regression, a separate set of linear regression parameters is considered for quantiles 

q  of the conditional distribution of y  given x . The M-estimator of the vector qβ  
of the q th 

quantile regression coefficients is a solution to estimating equations of the form 

 
1

( ) ,

n

q jq j
j

r x 0

 

(7) 

where T
jq j j qr y x β  are residuals, 1

( 2 () ){ ( 0) (1 ) ( 0)}q jq jq jq jqsr r qI r q I r ,  is a 

bounded influence function, s is a robust estimate of scale. Suppose an observation j  falls into 

quantile jq . The second step consists of finding the average quantile of the observations in each 

area m as 1

1

mn

m m mj

j

q n q . Therefore, each area’s slope 
mqβ is determined by the value of the 

area’s average quantile mq . The M-quantile estimator of mrY
 
is given by 

 ˆ ˆ ,
m

MQMQ T
mr mr q

Y x β  (8) 

where ˆ
m

MQ
q

β  is the estimate of the area’s m slope. 
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We next describe the bias correction approach proposed by Chambers et al. (2009). The 

estimation consists of two steps. First, find robust estimates using any outlier robust estimation 

method, for example, one of the approaches described above. Second, estimate the bias of the 

initial robust estimate using, again, an outlier robust approach but with different tuning 

parameters in the corresponding bounded influence functions. The second step tuning parameters 

should be less restrictive than the ones used at the initial step; that is, there is more reliance on the 

data rather than on the model assumptions, so that the purpose of the second step is to “undo” the 

effect of a possible model misspecification imposed at step one. The final estimate is the sum of 

the robust estimate computed at the first step and the bias correction term computed at the second 

step. 

Let both ( )  and ( )  be some bounded functions, where ( )  is not as restrictive as ( )  

The bias-corrected version of REBLUP (either Fellner’s or Sinha and Rao’s approach) is 

1

1

ˆ ˆˆ ˆ
m

T REBLUP REBLUPn
mj mj mREBLUP BC REBLUP REBLUP

mr mr m m REBLUP
j m

y u
Y Y n s

s

x β
. (9) 

The bias-corrected version of Chambers and Tzavidis’ approach is  

1

1

ˆ
ˆ ˆ

.
m

m

MQTn
mj mj qMQ BC MQ MQ

mr mr m m MQ
j m

y
Y Y n s

s

x β
  (10) 

Here REBLUP
ms and MQ

ms  are some robust estimates of scale for the respective sets of residuals in 

area m. 

3. Proposed approach 

The proposed approach uses the same general form (1). The predictor for the sample-complement 

part is derived from a model (denoted N2) that is based on mixture of two normal distributions 

with common mean and different variances. The model is given by (11)-(13): 

,T
mj mj m mjy ux β    (11) 

2~ (0, )
iid

mu N  and 
2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

mj z z N zN  (12) 

1,..., , 1,..., ,mj n m M  

and the mixture part indicator is a random binomial variable 

| ~ (1; ),z Bin   (13) 

where  

 is the probability of belonging to mixture part 2 (the outlier part, 2 1 ). 

Note that, conditional on the value of the mixture part indicator z , the model is the usual mixed 

effects model as given by (2) and (3).  

We used the EM algorithm for estimation of the model parameters (see Appendix). The predictor 

is given by 

 2 2 2ˆ ˆ ˆ .N T N N
mr mr mY ux β  (14) 
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Let 1 2( , , , , )θ β  denote the set of model parameters. 

Each observation has its own conditional probability { 1| , , } | , ,mj mj mj mjP z y E z yx θ x θ
 
of 

belonging to part 2 of the mixture, so that the observations in the sample can be ranked according 

to these probabilities. The estimate of β  (thus, the synthetic part of the estimator) is outlier robust 

because the outlying observations would be classified with a higher probability to the higher 

variance part of the mixture; hence, they would be “downweighted” according to the formula 

2

1 1 1 1

ˆ ˆ( ) ,
m mn nM M

N T T
mj mj mj m mj mj mj

m j m j

w y u wβ x x x   

where the weights are given by 

2 2
1 2ˆ ˆˆ ˆ(1 )mj mj mjw z z   (15) 

with ˆˆ | , , .mj mj mjz E z y x θ
 

The predictor for the random effect 2ˆN
mu  has the form 

 
2

2 2 2 2

2 2
ˆˆ ˆˆ ( ),N N N N

m m mN
m

u y
D

x β  (16) 

where 

1

2

1

mn
N
m mj

j

D w  ,  

1

2

1 1

ˆ
m mn n

N
m mj mj mj

j j

y w w y , and 

1

2

1 1

ˆ .
m mn n

N T
m mj mj mj

j j

w wx x   

Note that the “direct” estimate 2ˆ N
my  in (16) accounts for outliers.  In fact, this estimate is not 

exactly “direct” because it depends on units from other areas through the estimates of variances 

and the probabilities of belonging to part 2 of the mixture. The sample average my  may or may 

not be affected by outliers. It depends on the contents of the area: for example, if an area contains 

several units that have a high probability of belonging to the “outlier” part of the mixture, it is 

possible that the whole area would tend to be an outlier. Note that if outliers tend to be clustered 

in some areas, this would mean that the distribution of the mixture indicators depends on the area 

label, which would contradict the model assumption (13). The failure of the independence 

assumption may lead to significant biases in the areas with a larger portion of the outlying 

observations. We propose a test to determine that an area is not an outlying area and a simple 

method for the area-level bias correction in areas where the test fails, as described below. 

First, consider the following “bias corrected” variation of 2ˆ N
mrY : 

Bias Correction 1 (BC1). Denote residuals 2 2 2ˆ ˆN T N N
mj mj mj me y ux β  .  

For each area, find the estimate of the mean residual using a mixture of two normal distributions 

model and by treating areas as fixed effects: 

2 ,N
mj m mje    (17) 

2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

mj z z N zN
 

 (18) 

1,..., , 1,..., ,mj n m M  and 

| ~ (1; ).z Bin   (19) 
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The BC1 estimator is 

 2 1 2 2 1ˆ ˆ ˆ ˆ ,N BC T N N BC
mr mr m mY ux β  (20) 

where 1ˆ BC
m  is the estimate of m  from the above model. 

Bias Correction 2 (BC2). As a general rule, BC1 may be inefficient in areas where the estimates 

of m  are based on a small number of observations. Therefore, we propose to use 2 1ˆ N BC
mrY  only 

when we can demonstrate that an area m is an outlying area. Consider the following statistic: 

 1

1

ˆ ˆ .
mn

m m mj

j

n z  (21) 

The distribution of the statistic ˆm  under the independence assumption can be simulated using 

the estimated model parameters. These simulated values can be used to obtain a threshold. If the 

actual estimated ˆm  is greater than the threshold, the whole area is considered an outlier. The 

detailed procedure for an area m can be described by the following steps: 

1. Generate ˆ~ (1; )Bin  and 

2 2
1

2 2
2

ˆ ˆ(0, ) if =0

ˆ ˆ(0, ) if =1

N

N
.  

2. Using the Bayes formula, find the probability of belonging to part 2 of the mixture, given 

the value of :  

 ( ) ˆ{ 1| ; }az P z θ  

 
ˆˆ { | 1; }

ˆ ˆˆ ˆ(1 ) { | 0; } { | 1; }

P z

P z P z

θ

θ θ
 

2

2 22 2
22

2 2

2 2 2 22 2 2 2
1 21 2

ˆ 1
exp

2 ˆ ˆˆ ˆ
.

ˆ ˆ1 1 1
exp exp

2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ  

3. Repeat steps 1 and 2 mn  times: 1,..., ma n . 

4. Let ( )( ) 1

1

mn
ab

m m

a

n z  be the average of mn  simulated values of z .  

5. Repeat steps 1-4 a large number of times: 1,...,b B (say, 500B ).  

6. Using the simulated values ( ) ,b
m  

1,...,b B , estimate a “theoretical value” mp  such that 

{ }m mP p  is smaller than some predetermined level . This value depends on the 

number of units in area m.  

7. If the actual value, obtained as (21), is higher than mp , then the area m has more outliers 

than would be in a “regular” area under the independence assumption; thus, it can be 

regarded as an outlying area, and the bias correction 1ˆ BC
m  from (20) is applied; 

otherwise, the bias correction is not applied. In our simulations, for application of the bias 
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adjustment, we required that an area had at least four sample units and ˆm mp , where 
0.05 :  

 
1

2 ˆ ˆ, if  and 4
ˆ

0,

BC
BC m m m m
m

p n

otherwise
 (22) 

The BC2 estimator is 

 2 2 2 2 2ˆ ˆ ˆ ˆ ,N BC T N N BC
mr mr m mY ux β  (23) 

Remark 1. The data consists of the individual measurements mjy , along with the corresponding 

area labels, while the area-level effects mu  are not observable. It is not obvious what is meant by 

“outlyingness” of an unobserved quantity in the REBLUP approaches. The mixture model 

formulation, on the other hand, allows the description of the outlying areas in terms of the 

observable quantities, i.e., as individual outliers clustered in certain areas. 

Overall Bias Correction, (OBC). By using (22), we correct biases in specific outlying areas. Still, 

it is possible that the assumption that outliers are distributed symmetrically around a common 

mean may not hold. Failure of this assumption would result in an overall bias. In the simulation 

study reported in this paper, we correct the initial estimate by adding a robust estimate of the 

overall mean of residuals to each small area prediction 2 2ˆ N BC
mrY . (Alternatively, the overall bias 

may be corrected by benchmarking the small area estimates to a more reliable aggregate level 

estimate. We did not pursue this approach in the current paper.) The data from all areas are 

involved in estimation of the overall bias. Thus, the OBC estimation is not a problem of small 

area estimation, and the assumptions may be considerably relaxed. Details follow.  

Denote residuals 2 2 2 2 2ˆ ˆ ˆ .N BC T N N BC
mj mj mj m me y ux β

 
Under the model assumption, errors are 

distributed symmetrically around zero as 2
1(0, )N  with probability 1  and as 2

2(0, )N  with 

probability . We propose to use these assumptions only in deriving a tuning parameter to curb 

the very extreme outliers. We then find the robust estimate of mean of the residuals 2 2N BC
mje  and 

use this estimate to correct the bias. If the model parameters 1 2( , , )  are assumed known, then 

we can construct the following robust estimator of the mean of residuals. Let 

2 2 2 2 ,N BC N BC
mj mjr e s where 

2 2
1 2(1 )s . Note that  

2 2

1 2

{ } (1 )N BC
mj

s s
P r c c c , 

where ( )x  is the standard normal distribution function. Thus, we choose a desirable precision 

 and obtain the “tuning parameter” c  for a set of estimated parameters 1 2( , , ) .  

The overall bias corrected estimator is 

 2 2 2 1 *

1 1

ˆ ˆ
,

mnM
N OBC N BC

mr mr mj

m j

Y Y n e  (24) 

where * 2 2min( ,max( , ))N BC
mj mje s c r c . 
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 (In case of the standard normal distribution, the tuning parameter that equals 5 would correspond 

to the choice of 
75 10 . In our simulations, we choose 

610  to obtain a roughly 

comparable level of “tuning” with the standard robust estimation method that uses 5 for the 

tuning parameter; i.e., almost no restrictions on the estimation of the mean of residuals.) 

Remark 2. We could have slightly modified the initial mixture model assumption and allow the 

outlying part to have a different mean. This, in our view, would contradict the definition of 

outlier, which is an unusual observation for a given model: In the absence of additional 

information in the initial model, we opt for the assumption of symmetry.  

The REBLUP and MQ estimators also can be corrected using the overall bias correction; 

however, the OBC alone would not correct the bias in particular outlying areas. For example, the 

following OBC for the REBLUP (SR or Fellner’s versions) estimator can be considered. 

Let 
ˆREBLUP REBLUP

mj mj mre y Y , then the overall bias corrected REBLUP is 

 
1

1 1

ˆ ˆ
,

m
REBLUPnM
mjREBLUP OBC REBLUP REBLUP

mr mr b REBLUP
m j

e
Y Y n s

s
 (25) 

where REBLUPs  is a robust measure of scale for the set of residuals 

; 1,..., , 1,...,REBLUP
mj me j n m M , e.g., ( ) 0.6745REBLUP REBLUP REBLUP

mj mjs med e med e  and b  

is a bounded Huber’s function with the tuning parameter b = 5. 

4. Simulation Study 

The purpose of the simulation study is to compare the performances of different methods under 

different scenarios. We use the same setup as in Chambers et al. (2009) and briefly describe it 

here. Two versions of the population data are generated for 40 areas. From each area, a sample is 

selected using simple random sampling without replacement. The two versions are (a) each area 

has 100 population units and 5 sampled units or (b) each area has 300 population units and 15 

sampled units. The auxiliary variable mjx  is generated from the lognormal distribution with mean 

1.004077 and standard deviation of 0.5 and the population values mjy  are generated as 

100 5mj mj m mjy x u . There are several scenarios for distribution of mu  and mj , as 

described below. 

1. No contamination scenario, [0,0]: ~ (0,3)mu N , ~ (0,6)mj N ; 

2. Outlying areas, [0,u]: for the first 36 areas, ~ (0,3)mu N ; for the last four areas, 

~ (9,20)mu N ; ~ (0,6)mj N  for all observations; 

3. Individual outliers, [e,0]: ~ (0,3)mu N  for all areas; ~ (0,6)mj N  with probability 0.97 

and ~ (20,150)mj N  with probability 0.03; 

4. Individual outliers and outlying areas, [e,u]: for the first 36 areas, ~ (0,3)mu N ; for the 

last four areas, ~ (9,20)mu N ; ~ (0,6)mj N  with probability 0.97 and ~ (20,150)mj N  

with probability 0.03; 

5. Individual outliers only, ~ (0,6)mj N  with probability 0.75 and ~ (20,3000)mj N  with 

probability 0.25; random effects are ~ (0,3)mu N . We included this version because it 
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somewhat resembles the CES situation (a high-peaked center of the distribution and very 

long tails), it is not considered in Chambers et al. (2009) 

The tuning parameters in the bounded Huber’s function for REBLUP are set to b=1.345; for the 

bias-correction of REBLUP (Fellner and SR) and MQ, the tuning parameters are set to b=3. The 

tuning parameter for the overall bias correction is b=5. We used 250 simulation runs for each of 

the above scenarios and compared the estimates with the corresponding population area means. 

To assess the quality of the estimators, we used the median value of the relative bias, 
250 2501 1

1 1

ˆ
100 {250 ( ) 250 }m ms ms mss s

RB med Y Y Y ,  and the median of the relative root 

mean squared error, 
250 2501 2 1

1 1

ˆ
100 250 ( ) 250m ms ms mss s

RRMSE med Y Y Y , index 

1,...,250s denotes the simulation run. 

First, consider scenarios 1-4 (see Tables 4.1 and 4.2). In the no-outliers situations, the estimator 

N2 works similar to the regular EBLUP. The bias corrected versions of N2 lost some efficiency 

compared to the uncorrected N2. If there are only individual outliers or only area level outliers, 

REBLUP and N2 (not the bias-corrected versions) have similar RRMSE’s. Both the original and 

the bias-corrected versions of MQ are less efficient than REBLUP for the four outlying areas. 

(Some discrepancy between our results for MQ and the ones reported in Chambers et al. (2009) 

could be due to the sensitivity of MQ to the choice of the number of quantiles.) N2 estimator has 

a large bias when both the individual and area outliers are present. This bias is corrected in the 

N2+BC versions, so that the RRMSE’s of the N2+BC versions in the four outlying areas is 

comparable to the other estimators. Finally, the OBC version for N2 seems to work uniformly 

well for all considered scenarios. 

For scenario 5 (Table 4.3), N2+OBC version is better than the other estimators. If a similar 

situation happens in the CES data, then this version of N2 estimators may be preferred. 

5. Application to CES sample (based on Quarterly Census of Employment and 

Wages BLS data) 

The purpose of this study is to provide a first glimpse into the prospect of using the alternative 

models for SAE in CES. In this simulation, historical administrative data from the Quarterly 

Census of Employment and Wages (QCEW) program of the U.S. Bureau of Labor Statistics 

played the role of “real” data. (In real time production, the estimates are based on the data 

collected by CES, which is somewhat different from the QCEW data; nevertheless, the use of the 

QCEW data is appropriate for preliminary research.) 

In CES, the goal is to estimate the relative over-the-month change in employment at a given 

month t in areas m=1,…,M, where the areas are formed by cross-classifying industries and 

metropolitan statistical areas (MSA). For area m, the target finite population quantity at month t is 

 
,

,

,

,
, 1

,
m t

m t

mj tj P

m t
mj tj P

y
R

y
 (26) 

where ,m tP  is a set of the area m population establishments having non-zero employment in both 

previous and current months, i.e., , 1 0mj ty and , 0mj ty . The direct sample estimate is 

 
,

,

,

,
, 1

ˆ ,
m t

m t

mj mj tj S

m t
mj mj tj S

w y
R

w y
 (27) 
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where ,m tS  is a set of the area m sample establishments having , 1 0mj ty and , 0mj ty ; mjw  is 

the sample weight for unit mj . 

In order to work at a unit level, we expand ,m tR  around a hypothetical true superpopulation 

parameter (as in Gershunskaya and Lahiri 2008). Define the following variable:  

 
,*

, ,

ˆ( 1)
ˆ ˆˆ ˆ(1 ) ,

ˆ 1

mj mj t

mj t m t m m t

m

w v
y f R f v

w
 (28) 

where ˆ
tR  is the estimated ratio of employment at a statewide level; 

1
, 1 , , 1

ˆ ˆˆ ( )mj t t mj t t mj tv Y y R y  

is the estimated influence function for the ratio; 1
ˆ
tY  is an estimate of the previous month mean 

statewide employment; 
,

1

m t
m m mjj S

w n w is area m average weight; 
,

1
, ,

ˆ ˆ
m t

m t m mj tj S
v n v ; 

1ˆ ˆ
m m mf N n  is the estimated area sample fraction and 

,

ˆ
m t

m mjj S
N w is the estimated number 

of population units. 

We compared performances of several estimators: one estimator is based on the area-level Fay-

Herriot model and the other estimators are based on different unit-level models. We used single 

slope, without intercept linear models, with the past year’s population trend , 12m tR  playing the 

role of an auxiliary variable (i.e., area-level auxiliary information for all observations in area m). 

We considered four States (Alabama, California, Florida, and Pennsylvania) and obtained 

estimates for September 2006 using the sample drawn from the 2005 sampling frame, mimicking 

the production timeline. We fit the models separately for each State’s industrial supersector: a set 

of MSAs within States’ industrial supersectors defined the set of small areas. The resulting 

estimates were compared to the corresponding true population values ,m tR  available from 

QCEW.  

Performance of each estimator is measured using the 75th percentile of the absolute error 

, , ,
ˆ100m t m t m tE R R  and the empirical root mean squared error 

1

2
1 2

,

1

.
M

t m t

m

ERMSE M E   

Summaries of results for each State are reported in Tables 5.1 and 5.2. Overall, the performance 

of N2 (and its bias-corrected versions) is quite satisfactory. In Alabama, the N2 estimator is 

slightly more efficient than REBLUP and better than the other estimators. In California, ERMSEs 

of REBLUP and MQ are smaller than of N2 but, in terms of the 75th percentile, these estimators 

are very close. In Florida, N2 is only slightly better than REBLUP for 75 percent of the areas but 

is much better in terms of the ERMSE, due to a significantly better performance in a few areas. In 

Pennsylvania, in several industries, N2 estimator had a large error due to the overall bias. The 

OBC version of N2 reduced the bias and made a good estimator. 
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Appendix. EM Algorithm for the scale mixture-mixed model (11)-(13) 

Let 
( ) ( ) ( ) ( ) ( )
1 2( , , , , )p p p p p

β  be a set of parameter values after the pth iteration of EM 

algorithm. At the (p+1)th iteration, compute: 
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Table 4.1: Simulation Results Scenarios 1-4 (250 runs), Ni  =100, ni  =  5 

 

No outliers Individual outliers only 

Area 

outliers 

Individual 

and area  

outliers 

Estimator / 

Scenario [0,0] [0,u]/1-36 [e,0] [e,u]/1-36 [0,u]/37-40 [e,u]/37-40 

Median values of Relative Bias (expressed as a percentage) 

EBLUP -0.001 0.067 -0.004 0.191 -0.579 -1.546 

REBLUP (F) 0.003 0.075 -0.374 -0.298 -0.625 -0.977 

REBLUP (SR) 0.005 0.090 -0.370 -0.275 -0.538 -0.902 

MQ 0.020 0.097 -0.374 -0.286 -1.003 -0.468 

N2 -0.001 0.068 -0.450 -0.329 -0.592 -3.528 

F+BC -0.007 -0.003 -0.265 -0.258 -0.043 -0.233 

SR+BC -0.009 -0.001 -0.266 -0.255 -0.034 -0.225 

MQ+BC -0.006 0.001 -0.262 -0.258 -0.243 -0.156 

N2+BC1 -0.006 -0.006 -0.461 -0.466 0.007 -0.399 

N2+BC2 -0.001 0.044 -0.451 -0.332 -0.035 -0.796 

N2+OBC -0.005 0.003 0.002 -0.153 -0.073 -0.842 

SR+OBC 0.003 0.068 -0.224 -0.159 -0.558 -0.794 

Median values of Relative Root MSE (expressed as a percentage) 

EBLUP 0.809 0.859 1.207 1.354 1.041 2.289 

REBLUP (F) 0.821 0.823 0.989 0.972 1.076 1.396 

REBLUP (SR) 0.825 0.827 0.991 0.966 1.035 1.342 

MQ 0.844 0.846 0.996 0.975 1.650 1.468 
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N2 0.810 0.858 1.007 0.983 1.048 4.952 

F+BC 0.913 0.917 1.221 1.224 0.861 1.189 

SR+BC 0.910 0.916 1.219 1.225 0.866 1.179 

MQ+BC 0.914 0.920 1.223 1.226 0.994 1.421 

N2+BC1 0.920 0.922 1.121 1.125 0.865 1.032 

N2+BC2 0.862 0.880 1.004 0.980 0.876 1.375 

N2+OBC 0.859 0.878 0.921 0.944 0.879 1.308 

SR+OBC 0.826 0.825 0.950 0.942 1.045 1.274 

 

Table 4.2:  Simulation Results Scenarios 1-4 (250 runs), Ni  =300, ni  = 15 

 

No outliers Individual outliers only 

Area 

outliers 

Individual 

and area  

outliers 

Estimator / 

Scenario [0,0] [0,u]/1-36 [e,0] [e,u]/1-36 [0,u]/37-40 [e,u]/37-40 

Median values of Relative Bias (expressed as a percentage) 

EBLUP 0.002 0.030 0.003 0.094 -0.199 -0.662 

REBLUP (F) 0.002 0.029 -0.384 -0.357 -0.220 -0.585 

REBLUP (SR) 0.001 0.041 -0.379 -0.334 -0.111 -0.447 

MQ 0.025 0.102 -0.392 -0.288 -1.007 -0.561 

N2 0.002 0.030 -0.456 -0.380 -0.204 -1.569 

F+BC 0.007 0.007 -0.309 -0.312 0.001 -0.285 

SR+BC 0.007 0.008 -0.308 -0.310 0.002 -0.280 

MQ+BC 0.007 0.011 -0.307 -0.302 -0.057 -0.292 

N2+BC1 0.008 0.008 -0.466 -0.472 0.006 -0.414 

N2+BC2 0.004 0.022 -0.456 -0.381 0.000 -0.536 

N2+OBC 0.003 0.007 0.006 0.028 -0.014 -0.156 

SR+OBC 0.001 0.019 -0.222 -0.207 -0.132 -0.329 

Median values of Relative Root MSE (expressed as a percentage) 

EBLUP 0.506 0.517 0.864 0.940 0.526 1.102 

REBLUP (F) 0.517 0.520 0.682 0.675 0.540 0.802 

REBLUP (SR) 0.518 0.522 0.682 0.665 0.514 0.706 

MQ 0.621 0.604 0.776 0.721 1.418 1.013 

N2 0.506 0.516 0.710 0.676 0.528 2.129 

F+BC 0.528 0.528 0.710 0.714 0.494 0.646 

SR+BC 0.528 0.528 0.709 0.714 0.493 0.645 

MQ+BC 0.528 0.527 0.709 0.710 0.525 0.698 

N2+BC1 0.528 0.528 0.736 0.738 0.493 0.668 

N2+BC2 0.518 0.518 0.713 0.677 0.496 0.789 

N2+OBC 0.517 0.518 0.571 0.575 0.496 0.605 
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SR+OBC 0.516 0.519 0.612 0.615 0.517 0.637 

 

Table 4.3: Simulation Results Scenario 5 (250 runs) 

 
Table 5.1: Empirical Root Mean Squared Error, % 

State FH EBLUP 
REBLUP 

(F) 
MQ N2 F+BC MQ+BC N2+BC1 N2+BC2 N2+OBC 

AL 1.868 2.257 1.899 2.023 1.808 2.027 2.133 1.798 1.791 1.873 

CA 2.502 2.339 2.099 2.040 2.179 2.388 2.378 2.344 2.316 2.307 

FL 3.425 2.707 2.771 3.766 1.072 2.887 3.847 1.128 1.091 1.145 

PA 1.418 1.318 1.754 1.664 1.642 2.092 2.129 2.036 1.733 1.264 

 

Table 5.2: 75
th
 Percentile Absolute Error, % 

State FH EBLUP 
REBLUP 

(F) 
MQ N2 F+BC MQ+BC N2+BC1 N2+BC2 N2+OBC 

AL 1.843 1.696 1.382 1.457 1.350 1.667 1.686 1.425 1.350 1.494 

CA 1.571 1.614 1.232 1.235 1.221 1.350 1.278 1.287 1.183 1.221 

FL 1.586 1.316 1.069 1.135 1.018 1.295 1.339 1.046 1.022 1.018 

PA 1.165 1.185 1.276 1.315 1.388 1.667 1.729 1.613 1.397 1.083 

 

 

Ni  =100, ni  =  5 Ni  =300, ni  =  15 

Estimator Med Rel Bias, %  

Med Rel Root 

MSE,%  

Med Rel Bias, 

%  

Med Rel Root 

MSE,%  

EBLUP 0.109 3.440 0.097 2.209 

REBLUP (F) -3.305 4.276 -3.419 3.784 

REBLUP (SR) -3.344 4.276 -3.413 3.821 

MQ -3.250 4.563 -3.512 3.870 

N2 -3.911 4.603 -3.896 4.161 

F+BC -2.300 6.584 -3.030 3.799 

SR+BC -2.282 6.535 -3.033 3.777 

MQ+BC -2.293 6.674 -3.046 3.793 

N2+BC1 -3.907 4.696 -3.900 4.175 

N2+BC2 -3.896 4.598 -3.894 4.164 

N2+OBC 0.136 3.041 0.115 1.731 

SR+OBC -2.647 3.813 -2.725 3.235 
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