Selecting Kindergarten Children by Three Stage Indirect Sampling

Hans Kiesl*

Abstract

One cohort of the German National Educational Panel Study will consist of a sample of kindergarten children. No nationwide frame of kindergartens is available in Germany, contrary to the situation for primary schools. Following the works of Lavallée, we present a solution by indirect sampling, using links between kindergartens and primary schools. In the first stage, primary schools are randomly selected and all kindergartens are identified that have a link to the sampled schools. In the second stage, for every sampled school we take a random sample of kindergartens linked to this school. In the third stage, samples of children within the sampled kindergartens are selected. Using the links of the sampled kindergartens to all schools in the population, unbiased estimation for the population of children in kindergartens is possible. Our second stage sampling is in addition to the existing literature.

Key Words: indirect sampling, school sampling, educational survey

1. Introduction

The National Educational Panel Study (NEPS) is a new longitudinal educational survey in Germany with a complex sampling design. Six different samples from various age cohorts are drawn from the population and followed over time. One of the six target populations are children aged 4 (in 2010) who attend a kindergarten (or nursery school). Unfortunately, no complete list of all kindergartens in Germany, which could be used as a sampling frame, is available. Therefore it is not possible to draw a sample of kindergartens directly.

In situations like this, indirect sampling might be an alternative. Here, a sample s_{A} is drawn from some other population U_{A} whose units are linked to the units of the target population U_{B}; the sample s_{B} from U_{B} then consists of all units from U_{B} that are linked to some unit in s_{A}. It is then possible to construct unbiased estimators from s_{B}; the basic reference for the theory of indirect sampling is Lavallée (2007). In our application, a (direct) sample from the population of primary schools in Germany (for which a sampling frame is available) is drawn; we then use links between kindergartens and primary schools to end up with an indirect sample of kindergartens. Since it is not feasible for budget reasons to use the complete indirect sample of kindergartens, we have to add another stage of subsampling; theory for this is quite straightforward, but has not been published in the literature yet.

The remainder of this paper is organized as follows. In section 2 we give a short overview of the theory of indirect sampling. In section 3 we present some theory for unbiased estimation after an additional subsampling stage. We then discuss in section 4 how this sampling and estimation procedure may be applied to construct a kindergarten sample for NEPS.

[^0]
2. Review of Indirect Sampling

2.1 The Central Idea of Indirect Sampling

The idea underlying indirect sampling is rather simple. Consider the task to estimate the total t_{Y} of a variable Y in some population U_{B}. If a sampling frame for U_{B} were available, we would (directly) sample from this frame, using any suitable sampling design with inclusion probabilities $\pi_{i}^{B}>0$ for every $i \in U_{B}$. To get a design-unbiased estimator for t_{Y}, we could use the Horvitz-Thompson-estimator (HT-estimator) $\hat{t}_{Y, H T}=\sum_{s_{B}} \frac{y_{i}}{\pi_{i}^{B}}$, where the summation is over all units in the sample s_{B}.

In certain applications no sampling frame for U_{B} is available. We might, however, have a sampling frame for a population U_{A}, whose elements are somehow "linked" to the elements in the population of U_{B}. A natural idea is then to draw a sample s_{A} from U_{A} (with known inclusion probabilities) and subsequently choose all elements from U_{B} that are linked to elements in s_{A} and define them as the sample s_{B} from U_{B}. Because of the indirect selection of elements from U_{B}, this procedure might be called indirect sampling. The question remains, whether (and how) unbiased estimation for t_{Y} from s_{B} is possible, since the calculation of inclusion probabilities for s_{B} might be difficult or impossible under this setting.

Obviously, the properties of the "links" are crucial to this. If there are units in U_{B} that have no links to any unit in U_{A}, they cannot get into the sample s_{B} and thus have inclusion probabilities of 0 , which rules out the possibility of unbiased estimation. Suppose on the other hand that every unit in U_{B} is linked to exactly one unit in U_{A} (but units in U_{A} might be linked to more than one unit in U_{B}). In this case, the described procedure reduces to (one-stage) cluster sampling. We are thus mainly concerned with situations, where units in U_{B} might be linked to more than one element in U_{A}.

The theory behind indirect sampling (although not yet called that way) started with Ernst (1989) in the context of longitudinal household surveys. A sample of households is drawn at time t_{0} from all existing households (population U_{A}). Since the composition of households changes over time, the population of households changes as well. Depending on the follow-up rules of the longitudinal surveys (see Rendtel and Harms (2009) for a discussion on this topic), at time t_{1} one ends up with a sample of households from U_{B}, the population of all existing households at t_{1}. Links between households $a \in U_{A}$ and $b \in U_{B}$ might be defined by individuals living in household a at time t_{0} and in household b at t_{1}.

In several papers (e.g. Lavallée 1995, Lavallée and Deville 2002) the theory was generalized to other situations. Lavallée (2007) is a comprehensive treatment of indirect sampling with theory and applications, although the notation gets a bit complicated. We review the basic theory in the next subsection, following the ideas of Lavallée, but trying to come up with a simplified notation.

2.2 Unbiased Estimation from Indirect Samples

Let U_{A} and U_{B} be two populations, and let θ be a non-negative function (the "link function") on $U_{A} \times U_{B}$, i.e. for every $a \in U_{A}$ and every $b \in U_{B}$ we have $\theta_{a b} \geq 0$. We say that a link exists between $a \in U_{A}$ and $b \in U_{B}$, if and only if $\theta_{a b}>0$. We then call $\theta_{a b}$ the "weight" of the link between a and b. (The question how best to define this link function depends on the application at hand.)

For every $b \in B$, let $\theta_{+b}:=\sum_{a \in U_{A}} \theta_{a b}$ be the sum of the weights of all links from U_{A} to $b \in B$. We assume that $\theta_{+b}>0$ for all $b \in B$, i.e. there exists a link to every $b \in B$. (Otherwise unbiased estimation is impossible.)

The key observation is that the total of any variable Y in the population U_{B} might be written as follows:

$$
t_{Y}=\sum_{b \in U_{B}} y_{b}=\sum_{b \in U_{B}}(y_{b} \cdot \underbrace{\sum_{a \in U_{A}} \frac{\theta_{a b}}{\theta_{+b}}}_{=1})=\sum_{a \in U_{A}} \sum_{b \in U_{B}} \frac{\theta_{a b}}{\theta_{+b}} y_{b}=\sum_{a \in U_{A}} \tilde{y}_{a}=t_{\tilde{Y}}
$$

with $\tilde{y}_{a}:=\sum_{b \in U_{B}} \frac{\theta_{a b}}{\theta_{+b}} y_{b}$.
Thus, the total of Y in population U_{B} can be written as the total of the variable \tilde{Y} in population U_{A}. Since inclusion probabilities for every $a \in s_{A}$ are known, the HT-estimator may be used for unbiased estimation of $t_{\tilde{Y}}$ and thus also of t_{Y}.

Let s_{A} be a sample of elements from U_{A}, and let π_{a} be the inclusion probability of $a \in s_{A}$. The sample s_{B} is defined as the set of all units in U_{B} that have a link to some element of s_{A}; more formally $s_{B}:=\left\{b \in U_{B} \mid \theta_{a b}>0\right.$ for some $\left.a \in s_{A}\right\}$. The HTestimator for the total of $t_{\tilde{Y}}$ is now also an unbiased estimator for the total of t_{Y}, thus we call it the indirect sampling estimator $\hat{t}_{Y, \mathrm{IS}}$ for the total of t_{Y} :

$$
\hat{t}_{Y, \mathrm{IS}}:=\hat{t}_{\tilde{Y}}=\sum_{a \in s_{A}} \frac{\tilde{y}_{a}}{\pi_{a}}=\sum_{a \in s_{A}} \sum_{b \in U_{B}} \frac{\theta_{a b}}{\theta_{+b}} \frac{y_{b}}{\pi_{a}} \stackrel{(*)}{=} \sum_{a \in s_{A}} \sum_{b \in s_{B}} \frac{\theta_{a b}}{\theta_{+b}} \frac{y_{b}}{\pi_{a}}=\sum_{b \in s_{B}} w_{b_{s}} y_{b}
$$

with weights $w_{b_{s}}=\sum_{a \in s_{A}} \frac{\theta_{a b}}{\pi_{a} \cdot \theta_{+b}}$. (Equality (*) is due to the fact that by definition of s_{B} we have $\theta_{a b}=0$ for $a \in s_{A}$ and $b \notin s_{B}$.)

Note that to evaluate $\hat{t}_{Y, \text { IS }}$, we need to know $\theta_{a b}$ for every $a \in s_{A}$ and $b \in s_{B}$, but we also need to know θ_{+b} for every $b \in s_{B}$. Note also that the weights $w_{b_{s}}$ are in general different from the inclusion probabilities π_{b}^{B}, and they are sample dependent (therefore the subindex s): the weight of unit $b \in s_{B}$ depends on which units in U_{A} that are linked to b are actually in the sample s_{A}. Since a linear homogenous estimator of the form $\sum_{b \in s_{B}} w_{b_{s}} y_{b}$ is unbiased for t_{Y} if and only if $\mathrm{E}\left(w_{b_{s}}\right)=1$ for every b, it follows immediately that $\mathrm{E}\left(w_{b_{s}} \mid b \in\right.$ $\left.s_{B}\right)=1 / \pi_{b}^{B}$, i.e. the indirect sampling weights of a unit $b \in s_{B}$ are in expectation equal to the Horvitz-Thompson-weights. (As a consequence, for units $b \in s_{B}$ that have exactly one link to U_{A} the indirect sampling weight is equal to the Horvitz-Thompson-weight; thus in case of cluster sampling the indirect sampling estimator coincides with the HT-estimator).

Up to now, we assumed that U_{B} is the set of final sampling units. Now suppose that the elements of U_{B} are actually clusters of individual units, i.e. U_{B} is the set of primary sampling units (but note that the links are still defined between units in U_{A} and U_{B}). The value y_{b} of a cluster $b \in U_{B}$ is now itself a total of individual values. Let $y_{b i}$ be the value of the variable Y of the i-th element in cluster b, let e_{b} be the set of all elements in cluster b. Then, $y_{b}=\sum_{i \in e_{b}} y_{b i}$. Suppose that we draw only a subsample from e_{b}; in this case we do not observe y_{b}, but we can estimate it from the sample.

To be more precise, consider a second stage of sampling, independently within the clusters b of the first stage sample s_{B}. The sample of cluster b is called s_{b}. Let $\pi_{i \mid b}$ be the (conditional) inclusion probability of unit i in cluster b, given that $b \in s_{B}$. Then y_{b} can be estimated by $\hat{y}_{b}=\sum_{s_{b}} \frac{y_{b i}}{\pi_{i \mid b}}$, and an estimator for t_{Y} may be defined as follows:

$$
\hat{t}_{Y, \mathrm{IS}, \mathrm{sub}}:=\sum_{a \in s_{A}} \sum_{b \in s_{B}} \frac{\theta_{a b}}{\theta_{+b}} \frac{\hat{y}_{b}}{\pi_{a}}=\sum_{a \in s_{A}} \sum_{b \in s_{B}} \frac{\theta_{a b}}{\theta_{+b}} \frac{\sum_{i \in s_{b}} y_{b i} / \pi_{i \mid b}}{\pi_{a}}=\sum_{b \in s_{B}} \sum_{i \in s_{b}} w_{b i_{s}} y_{b i}
$$

with weights $w_{b i_{s}}=\sum_{a \in s_{A}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{i \mid b} \cdot \theta_{+b}}$.

Lavallée (2007, section 5.1) calls this procedure two stage indirect sampling and shows that $\hat{t}_{Y, \mathrm{IS}, \text { sub }}$ is unbiased for t_{Y}.

3. Subsampling of Indirect Samples

The indirect sampling estimators in Lavallée (2007) and in the previous section assumed that sample s_{B} consists of all units of U_{B} that are linked to the units in the direct sample s_{A} from population U_{A}. In some applications, where U_{B} is much larger than U_{A} or where the number of links is highly variable among the units in U_{A}, this might result in a vary large, or at least quite unpredictably sized sample s_{B}. From a practical point of view, it might be desirable to draw only a subsample of s_{B} as the final sample from U_{B}. In the following, we discuss two different ways to do this, and call them three stage and three phase indirect sampling, respectively.

3.1 Three Phase Indirect Sampling

Consider first the simple case that U_{B} consists of final sampling units (we return to the case in which U_{B} is a population of PSUs below). The indirect sampling procedure results in an indirect sample s_{B} from U_{B}. Suppose we draw a subsample s_{B}^{fin} from s_{B}, using any particular sample design with (conditional) inclusion probabilities $\pi_{b \mid s_{A}}$ (i.e. $\pi_{b \mid s_{A}}$ is the probability that b is chosen for the final indirect sample given the first stage direct sample s_{A}; note that for a given b these probabilities can be different for different samples s_{B} and even for the same sample s_{B} resulting from different direct samples s_{A}). In the literature on direct sampling, this procedure is called two-phase sampling or double sampling; see e.g. Särndal et al. (1992, chapter 9).

Then, the following estimator is unbiased for the total t_{Y} in U_{B} :

$$
\hat{t}_{Y, \mathrm{IS}, 2 \text { phase }}:=\sum_{b \in s_{B}^{\mathrm{fin}}} w_{b_{s}}^{\prime} y_{b} \quad \text { with } \quad w_{b_{s}}^{\prime}=\sum_{a \in s_{A}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \theta_{+b}} .
$$

To see this, consider the following iterated expectations, where we first condition on the direct sample s_{A} (denoting expectation over the first and second phase sampling by E_{1} and E_{2}, respectively):

$$
\begin{aligned}
\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 2 \mathrm{phase}}\right) & =\mathrm{E}_{1}\left(\mathrm{E}_{2}\left(\hat{t}_{Y, \mathrm{IS}, 2 \mathrm{phase}} \mid s_{A}\right)\right) \\
& =\mathrm{E}_{1}\left(\mathrm{E}_{2}\left(\left.\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \theta_{+b}} y_{b} \right\rvert\, s_{A}\right)\right) \\
& =\mathrm{E}_{1}\left(\sum_{a \in s_{A}} \frac{1}{\pi_{a}} \cdot \mathrm{E}_{2}\left(\left.\sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b}}{\pi_{b \mid s_{A}} \cdot \theta_{+b}} y_{b} \right\rvert\, s_{A}\right)\right) \\
& =\mathrm{E}_{1}\left(\sum_{a \in s_{A}} \sum_{b \in s_{B}} \frac{\theta_{a b}}{\pi_{a} \cdot \theta_{+b}} y_{b}\right) \\
& =\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}}\right)=t_{Y}
\end{aligned}
$$

Turning again to the situation that the elements of U_{B} are actually clusters of individual units, we assume that we independently draw subsamples s_{b} from every cluster b of the final indirect sample s_{B}^{fin}. Let $\pi_{i \mid b}$ be the (conditional) inclusion probability of unit i in cluster b,
given that $b \in s_{B}^{\mathrm{fin}}$. Then y_{b} can be estimated by $\hat{y}_{b}=\sum_{s_{b}} \frac{y_{b i}}{\pi_{i \mid b}}$. We might call this a threephase indirect sampling procedure: the first phase being the indirect sampling resulting in s_{B}, the second phase being the subsampling resulting in s_{B}^{fin}, the third phase being the subsampling from within the clusters in s_{B}^{fin}.

Under this procedure, an unbiased estimator for t_{Y} may be defined as follows:

$$
\hat{t}_{Y, \mathrm{IS}, 3 \mathrm{phase}}:=\sum_{b \in s_{B}^{\text {fin }}} \sum_{i \in s_{b}} w_{b i_{s}}^{\prime} y_{b i} \quad \text { with } \quad w_{b i_{s}}^{\prime}=\sum_{a \in s_{A}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \pi_{i \mid b} \cdot \theta_{+b}} .
$$

To prove the unbiasedness of $\hat{t}_{Y, \mathrm{IS}, 3 \mathrm{phase}}$, we calculate iterated expectations, where we first condition on the final indirect sample s_{B}^{fin} (denoting expectation over the first two sampling phases and the third phase by E_{12} and E_{3}, respectively):

$$
\begin{aligned}
\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 3 \mathrm{phase}}\right) & =\mathrm{E}_{12}\left(\mathrm{E}_{3}\left(\hat{t}_{Y, \mathrm{IS}, 3 \mathrm{phase}} \mid s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\mathrm{E}_{3}\left(\left.\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \sum_{i \in s_{b}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \pi_{i \mid b} \cdot \theta_{+b}} y_{b i} \right\rvert\, s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \theta_{+b}} \cdot \mathrm{E}_{3}\left(\left.\sum_{i \in s_{b}} \frac{y_{b i}}{\pi_{i \mid b}} \right\rvert\, s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b}}{\pi_{a} \cdot \pi_{b \mid s_{A}} \cdot \theta_{+b}} \cdot y_{b}\right) \\
& =\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 2 \mathrm{phase}}\right)=t_{Y} .
\end{aligned}
$$

3.2 Three Stage Indirect Sampling

In this section we consider a slightly different sampling procedure that also allows for an unbiased estimation. With three phase indirect sampling, as described in the previous section, there is no guarantee that every unit in the first stage direct sample s_{A} is linked to a unit in the final indirect sample s_{B}^{fin}, although this might be preferable in some applications (see section 4 for an example). In the following, we present an alternative procedure with the desired property.

Again, consider first the simpler case that U_{B} consists of final sampling units. The direct sampling procedure results in the direct sample s_{A} of U_{A}. Consider now for any $a \in U_{A}$ the set Ω_{a} of all units in U_{B} that are linked to a. (Note that U_{B} is the union of all $\Omega_{a}\left(a \in U_{A}\right)$, but apart from the special case of cluster sampling, the Ω_{a} need not be pairwise disjoint.) The idea is now to independently draw a subsample $\Omega_{a}^{\text {sub }}$ from Ω_{a} for every $a \in s_{A}$. For any $b \in \Omega_{a}$, let $\pi_{b \in \Omega_{a}^{\text {sub }}}$ be the (conditional) probability to be in the subsample $\Omega_{a}^{\text {sub }}$, given that a is in the sample s_{A}. The final indirect sample $s_{B}^{\text {fin }}$ then consists of the union of all $\Omega_{a}^{\text {sub }}$. Because the subsampling is done independently, some units $b \in U_{B}$ might appear in different $\Omega_{a}^{\text {sub }}$; this has to be considered when constructing an estimator.

The following estimator is unbiased for the total t_{Y} in U_{B} :

$$
\hat{t}_{Y, \mathrm{IS}, 2 \text { stage }}:=\sum_{b \in s_{B}^{\mathrm{fin}}} w_{b_{s}}^{\prime \prime} y_{b} \quad \text { with } \quad w_{b_{s}}^{\prime \prime}=\sum_{a \in s_{A}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\pi_{a} \cdot \pi_{b \in \Omega_{a}^{\mathrm{sub}} \cdot \theta_{+b}},}
$$

where $\mathbb{1}\left(b \in \Omega_{a}^{\text {sub }}\right)$ is equal to 1 , if $b \in \Omega_{a}^{\text {sub }}$, and 0 otherwise.
To prove the unbiasedness, we condition on the first stage direct sample s_{A} (again denoting expectation over the first and second stage sampling by E_{1} and E_{2}, respectively):

$$
\begin{aligned}
\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 2 \text { stage }}\right) & =\mathrm{E}_{1}\left(\mathrm{E}_{2}\left(\hat{t}_{Y, \mathrm{IS}, 2 \text { stage }} \mid s_{A}\right)\right) \\
& =\mathrm{E}_{1}\left(\mathrm { E } _ { 2 } \left(\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\left.\left.\pi_{b} \cdot \pi_{b \in \Omega_{a}^{\mathrm{sub}} \cdot \theta_{+b}} y_{b} \mid s_{A}\right)\right)}\right.\right. \\
& =\mathrm{E}_{1}\left(\mathrm { E } _ { 2 } \left(\sum_{a \in s_{A}} \sum_{b \in \Omega_{a}^{\mathrm{sub}}} \frac{\theta_{a b}}{\left.\left.\pi_{a} \cdot \pi_{b \in \Omega_{a}^{\mathrm{sub}} \cdot \theta_{+b}} y_{b} \mid s_{A}\right)\right)}\right.\right. \\
& =\mathrm{E}_{1}\left(\sum _ { a \in s _ { A } } \frac { 1 } { \pi _ { a } } \cdot \mathrm { E } _ { 2 } \left(\sum_{b \in \Omega_{a}^{\mathrm{sub}}} \frac{\theta_{a b}}{\left.\left.\pi_{b \in \Omega_{a}^{\mathrm{sub}} \cdot \theta_{+b}} y_{b} \mid s_{A}\right)\right)}\right.\right. \\
& =\mathrm{E}_{1}\left(\sum_{a \in s_{A}} \frac{1}{\pi_{a}} \sum_{b \in \Omega_{a}} \frac{\theta_{a b}}{\theta_{+b}} y_{b}\right) \\
& =\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}}\right)=t_{Y} .
\end{aligned}
$$

Finally, we turn again to the situation where the elements of U_{B} are actually clusters of individual elements. Suppose that we independently draw subsamples s_{b} from every cluster b of the final indirect sample $s_{B}^{\text {fin }}$. Let $\pi_{i \mid b}$ be the (conditional) inclusion probability of unit i in cluster b, given that $b \in s_{B}^{\mathrm{fin}}$. Then y_{b} can be estimated by $\hat{y}_{b}=\sum_{s_{b}} \frac{y_{b i}}{\pi_{i \mid b}}$. We call the complete procedure three stage (as opposed to three phase) indirect estimation, since subsampling from any Ω_{a} does not depend on the remainder of the first stage sample s_{A}, which would be typical for multi-phase sampling.

Under this three stage procedure, an unbiased estimator for t_{Y} may be defined as follows:

$$
\hat{t}_{Y, \mathrm{IS}, 3 \mathrm{stage}}:=\sum_{b \in s_{B}^{\mathrm{fin}}} \sum_{i \in s_{b}} w_{b i_{s}}^{\prime \prime} y_{b i} \quad \text { with } \quad w_{b i_{s}}^{\prime \prime}=\sum_{a \in s_{A}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\pi_{a} \cdot \pi_{b \in \Omega_{a}^{\text {sub }}} \cdot \pi_{i \mid b} \cdot \theta_{+b}},
$$

We prove the unbiasedness of $\hat{t}_{Y, I S, 3 s t a g e}$ using iterated expectations again, first conditioning on the final indirect sample $s_{B}^{\text {fin }}$ (denoting expectation over the first two sampling stages and the third stage by E_{12} and E_{3}, respectively):

$$
\begin{aligned}
\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 3 \text { stage }}\right) & =\mathrm{E}_{12}\left(\mathrm{E}_{3}\left(\hat{t}_{Y, \mathrm{IS}, 3 \text { stage }} \mid s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\mathrm{E}_{3}\left(\left.\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \sum_{i \in s_{b}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\pi_{a} \cdot \pi_{b \in \Omega_{a}^{\mathrm{sub}}} \cdot \pi_{i \mid b} \cdot \theta_{+b}} y_{b i} \right\rvert\, s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\pi_{a} \cdot \mathrm{E}_{b \in \Omega_{a}^{\mathrm{sub}}} \cdot \theta_{+b}}\left(\left.\sum_{i \in s_{b}} \frac{y_{b i}}{\pi_{i \mid b}} \right\rvert\, s_{B}^{\mathrm{fin}}\right)\right) \\
& =\mathrm{E}_{12}\left(\sum_{a \in s_{A}} \sum_{b \in s_{B}^{\mathrm{fin}}} \frac{\theta_{a b} \cdot \mathbb{1}\left(b \in \Omega_{a}^{\mathrm{sub}}\right)}{\pi_{a} \cdot \pi_{b \in \Omega_{a}^{\mathrm{sub}}} \cdot \theta_{+b}} \cdot y_{b}\right) \\
& =\mathrm{E}\left(\hat{t}_{Y, \mathrm{IS}, 2 \text { stage }}\right)=t_{Y} .
\end{aligned}
$$

4. Application: Sampling of Kindergarten Children for NEPS

The German National Educational Panel Study (NEPS) is a new educational survey with a complex design. Six different samples representing different age cohorts of the population in Germany are drawn and then followed over time. In figure 1, the evolution of the different samples over time is shown.

MULTICOHORT SEQUENCE DESIGN

Figure 1: Overview of NEPS survey design
Source: www.uni-bamberg.de/en/neps/
As shown in figure 1, a sample of children aged 4 that attend a kindergarten is drawn in 2010. In 2011, the sampled children will be aged 5 and still attend kindergarten. In 2012, they will be aged 6 and (at least most of them) attend 1st grade in primary school. See Blossfeld et al. (2009) or www.uni-bamberg.de/en/neps/ for more information on the survey.

Children in Germany are not obliged to go to a kindergarten, but roughly 95% of all children aged 4 attend some kind of kindergarten or pre-school. Unlike in some other countries, kindergartens in Germany are completely separated from primary schools. Unfortunately, there is no complete listing of kindergartens in Germany available for sample selection. On the other hand, a complete sampling frame for primary schools is available. Also, despite the spatial separation, kindergartens might be seen as "linked" to primary schools, since every child that eventually leaves a kindergarten joins a particular primary school. Thus, indirect sampling is possible in this application.

Using the notation from the previous sections, let U_{A} be the population of primary schools, and let U_{B} be the population of kindergartens. There are two rather obvious ways to define a link function on $U_{A} \times U_{B}$:
(i) $\theta_{a b}=1$ if there was at least one child moving from kindergarten b to school a in a particular reference period; otherwise $\theta_{a b}=0$;
(ii) $\theta_{a b}=$ number of children having moved from kindergarten b to school a in a particular reference period.

Both definitions result in unbiased estimators. In the general context of indirect sampling, the decision which definition of link function to choose depends on the variance of the respective estimators (which in practical applications have to be estimated by a simulation study) or practical considerations concerning how easy it is to get the values $\theta_{a b}$ and θ_{+b} from the sampled units.

In our application, the first step is to draw a sample of primary schools s_{A}. Then, every school $a \in s_{A}$ is asked to provide $\theta_{a b}$ for every $b \in \Omega_{a}$. In case of link function (i) this means providing the set of kindergartens that sent children to school a in some reference period (e.g. last year). In case of link function (ii) this means providing for every child that joined school a as a first grader in the reference period the name of the kindergarten the child was sent from. Pre-tests for the survey have shown that primary schools are usually able to come up with both kinds of information from their files.

Since the number of kindergartens that a primary school is linked to can be quite different, for budget reasons a decision was made not to survey the complete indirect sample s_{B} but to use some kind of subsampling. s_{B}^{fin} will be drawn by the procedure described in section 3.2. The reason for this is that the complete direct sample of primary schools s_{A} will be used to get a sample of first graders in 2012, and it is desired to then find in every school $a \in s_{A}$ at least some children that were in the kindergarten sample of 2010.

In every kindergarten $b \in s_{B}^{\mathrm{fin}}$, we then ask for the value of θ_{+b}. In case of link function (i) this means providing the number of schools that all those children joined who left kindergarten b during the reference period. In case of link function (ii) this means providing the number of children that left kindergarten b during the reference period and joined some primary school. Pre-tests have shown that the latter information can be given by the kindergartens much more reliably. They know quite well how many children left, but they usually do not know exactly which primary schools (or how many of them) these children joined. For this reason, link function (ii) will be used for the sampling in NEPS.

Finally, again for budget reasons and because the sizes of kindergartens (in terms of number of children aged 4) vary considerably, in every kindergarten $b \in s_{B}^{\mathrm{fin}}$ a subsample s_{b} of children is drawn. Thus, the sample of kindergarten children in NEPS will be drawn following the three stage sampling procedure described in section 3.2 .

5. Conclusion

Indirect sampling proved to be a feasible way to draw a sample of kindergarten children for the German National Educational Panel Study (NEPS). For budget reasons, three stage indirect sampling will be used; we have shown that this procedure allows unbiased estimation of population totals. Since NEPS is a voluntary survey, nonresponse will inevitably occur on every stage of the sampling procedure, i.e. among the primary schools in the first stage direct sample, among the kindergartens in the final indirect sample, and among the sampled children. Methods for dealing with nonresponse in the context of indirect surveys are described in Lavallée (2007) and Xu and Lavallée (2009) and will be used for nonresponse adjustment of NEPS.

REFERENCES

Blossfeld, H.-P., Schneider, J., and Doll, J. (2009), "Methodological Advantages of Panel Studies: Designing the New National Educational Panel Study (NEPS) in Germany", Journal for Educational Research Online, 1, 10-32.
Ernst, L. (1989), "Weighting issues for longitudinal household and family estimates", in Panel Surveys, eds. D. Kasprzyk, G. Duncan, G. Kalton and M.P. Singh, New York: John Wiley and Sons, 139-159.

Lavallée, P. (1995), "Cross-sectional Weighting of Longitudinal Surveys of Individuals and Households Using the Weight Share Method", Survey Methodology, 21, 25-32.
Lavallée, P. (2007), Indirect Sampling, New York: Springer.
Lavallée, P., and Deville, J.-C. (2006), "Indirect Sampling: the Foundations of the Generalised Weight Share Method", Survey Methodology, 32, 165-176.
Rendtel, U., and Harms, T. (2009), "Weighting and Calibration for Household Panels", in Methodology of Longitudinal Surveys, ed. P. Lynn, Chichester: John Wiley and Sons, 265-286.
Särndal, C.-E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, New York: Springer.
Xu, X., and Lavallée, P. (2009), "Treatments for link nonresponse in indirect sampling", Survey Methodology, 35, 153-164.

[^0]: *Regensburg University of Applied Sciences, Fakultaet IM, Postfach 1203 27, 93025 Regensburg, Germany, hans.kiesl@hs-regensburg.de

