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Abstract
It is shown how to model conditional probabilities subject to log-linear constraints and

construct estimators that are more efficient than the Horvitz-Thompson weighted sum esti-
mator for estimating population sizes in the context of a poststratified survey with unknown
stratum sizes. Our approach rests on computing an “hybrid” predictor, similar to that of
Pfeffermann et al. (1998), and the expansion of a specific parameterization for conditional
probabilities restricted by log-linear constraints, as proposed by Thibaudeau (2003). This
parameterization facilitates the computation of MLE’s and makes it possible to apply the
method of Laplace for variance estimation.
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1. Introduction

We present a method for finite population prediction based on modeling log-linear
conditional probabilities in the context of poststratified survey data. We show that
the proposed method performs well when survey units can be stratified according
to a highly discriminating poststratification, even if the sizes of the populations
represented by the poststrata are unknown.

Cochran (1977, 134-135) defines poststratification essentially as a special case
of stratification. He motivates stratification (pp. 89-90) as a device to create more
homogeneous subpopulations, relative to the whole population. Predictors built
on these homogeneous poststrata are likely to be more accurate than those not
involving any post-stratification. Identifying a discriminating poststratification is a
way to achieve this homogeneity objective.

Cochran also states that to take full advantage of stratification, the stratum
totals must be known. Indeed, many authors have shown how to develop successful
strategies for prediction based on poststratifications with known stratum totals.
Such strategies can be either model based (Gelman, 2007; Little, 2007; Lu, Gelman,
2003) or model assisted (Sarndal et al., pp. 269-271. The limiting factor in these
approaches is to find useful poststrata of known sizes. Typically, poststratifying
variables are confined to basic demographic items such as age, race and sex. In
these cases, stratum sizes are known because these items are recorded in a census
of the entire population. But we cannot expect poststratifications based on such
variables always to be sufficiently discriminating with respect to all the variables
under study.

This paper explores prediction methods involving useful poststratifications which
may not have known cell totals. We substitute for the unknown sizes of the strata
design-based estimates arising from the survey itself, assuming that the design-based
estimated stratum totals are unbiased. Having estimated postratum population to-
tals, we carry through the same analysis that could be done with known totals.
We focus on modeling log-linear conditional probabilities in the context of strictly
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categorical data. Our approach leads to defining ”hybrid predictors.” The predic-
tors are hybrid in the sense that they combine a design-based component, defined
through weighted sums, and a model-based component, namely MLE’s of log-linear
conditional probabilities. We present an example involving the hybrid predictor
based on the Survey of Income and Program Participation.

We explore variance estimation methods for the hybrid predictor. Because one
component of the predictor is design-based and another component is model-based,
various strategies for estimating the variance are available. One strategy is to
use a strictly design-based variance estimation method. In the context of SIPP,
one such method is balanced repeated replication (BRR) (Wolter, 1985, pp. 110-
145). Alternatively, an hybrid variance estimation strategy that matches the hybrid
nature of the predictor is available. In this context, the variability of the hybrid
predictor is explicitly decomposed according to three sources: The first source of
variability is the design-based component. The second source is the model-based
component. The third source is the coupling between these two. The total variance
of the predictor is the sum of the two variances corresponding to the design-based
and model-based components and the covariance.

The hybrid variance estimation approach is to estimate the variance correspond-
ing to the design-based component using BRR, but to use a model-based method
to estimate the variance corresponding to the model-based component. We exper-
iment with such a method: the method of Laplace (Tierney, Kass, Kadane 1989;
Tierney, Kadane 1986). The nominal advantage of such a method is its asymptotic
properties, namely convergence in probability. The drawback is the large sample
properties may not hold if the model is misspecified. We conduct a simulation
to understand the behavior of either variance estimation procedure and ultimately
make a recommendation as to which one is better.

The next section describes the type of prediction problems we address, as well as
a perspective on the methods commonly used to solve such problems, together with
our proposed method. Section 3 discusses in detail an instance of our method in
the context of a longitudinal survey, the Survey of Income and Program Participa-
tion. Section 4 presents the notation and theoretical underpinnings of our method
in this instance. Section 5 gives results comparing our prediction method with more
traditional predictors based on weighted totals in terms of variance estimates. Sec-
tion 6 recalls the method of Laplace for estimating the variance of the model-based
component of our proposed predictor, and section 7 concludes with a summary and
discussion.

2. Log-Linear Modeling in Complex Surveys

The keystone of our prediction strategy is the estimation of conditional probabil-
ities, possibly under restrictions defined by high-dimensional log-linear constraints
(Agresti, p. 215.) We give rigorous definitions for valid classes of such estima-
tors, and for the predictors they can support, in later sections. In this section, we
place the predictors and estimators within the broader perspective of survey-based
predictions based on cross-classification. We identify four general approaches to pre-
diction: design-based, model-based, model-assisted, and the hybrid approach. The
last of these is the focus of this paper. The classification for a given predictor de-
pends on whether the sizes of the poststrata are assumed to be known, and whether
the sample design is explicitly taken into account through estimation weights.

We define a class of predictors that is the object of our study. Let e = (e1, ..., eQ)′
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and f = (f1, ..., fR)′ be vectors of indices, where eq = 1, ..., Eq indexes categorical
variable q and fr = 1, ..., Fr indexes categorical variable Q+ r, for q = 1, ..., Q and
r = 1, ..., R. We consider the full cross-classification of E1 × ... × EQ × F1 × ... ×
FR multi-indexed categories. Let yef denote the population total of attribute y
corresponding to category (e1, ..., eQ, f1, ..., fR)′. A subscript is replaced with the
symbol ‘+’, or a vector of subscripts with +, to indicate summation over all possible
values of the corresponding index or vector of indices. For example, ye+ =

∑
f yef

is the population total corresponding to marginal multi-indexed category e. The
objective is to predict ye+. The general form of the predictors considered in the
paper is

ˆ̂ye+ =
∑
f

(
P̂e|f

)
ŷ+f (1)

In Eq. (1), ŷ+f is either the known population total ( ŷ+f = y+f ) within cat-
egory f , or the Horvitz-Thompson (HT) weighted-sum estimator (Cochran, 1977,
p. 259), for that same total. The term P̂e|f is always an estimator for the propor-
tion of the population in the domain defined by marginal category f that is also
included in marginal category e. This estimator may be restricted by log-linear con-
straints or not, and may be weighted or unweighted. If it is weighted, the weights
are design-based, accounting for the complex probability sample. Table 1 gives a
taxonomy, according to the literature on survey estimation, for the four cases where
ŷ+f is known or estimated and P̂e|f is unweighted or weighted. This taxonomy
applies to predictors that incorporate either unrestricted or restricted estimators.

The predictor represented in the bottom right corner cell of Table 1 integrates
weights both in the estimation of the poststrata totals, ŷ+f , and in the estimation

of the proportions P̂e|f . This is the ”Info S” predictor discussed in Sarndal et al.
(2005, pp. 53-56), in the context of compensating for nonresponse. This predictor
is calibrated to the weighted sample, rather than to the population. In effect, it is
an instance of implicitely estimating of the poststrata sizes to do prediction. We
will focus on predictors with this feature in the context of the ”hybrid” predictor, in
the bottom left of Table 2. For this predictor weights are also used to estimate the
sizes of the poststrata, but the model-based approach is applied for the estimation
of the relational parameters.

It is useful to look at the same taxonomy in the situation where the realtional
parameter is unrestricted, in which case it is only a ratio. In that case, a more
specific taxonomy applies. (table 2). Then, the model-assisted predictor becomes
the In the Known/Weighted cell of Table 2, The predictor (1) becomes the ”post-
stratified” or ”separate ratio” estimator (Cochran p. 270), a model-assisted esti-
mator based on the poststratification defined by marginal categories f . In the
Known/Unweighted (upper-left) cell of Table 2, (1) is the model-based ratio esti-
mator. In the lower-right Unknown/Weighted cell of Table 2, (1) is the strictly
design-based Horvitz-Thompson estimator.

This paper focuses on restricted hybrid predictors, as identified in Table 1.
Pfeffermann et al. (1998) use a predictor of this type to forecast labor-force flows
in the presence of measurement error. In their application, the model is logistic
regression, while log-linear modeling is done here. Hybrid-type predictors may
be practical when the population sizes ŷ+f are not known and there is enough

evidence of model validity to support model-based, unweighted estimates P̂e|f .
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Table 1: Taxonomy for Predictors Based on Conditional Probabilities
Parameter Estimation

Unweighted Weighted
Poststrata Sizes Known Model-Based Model-Assisted
Poststrata Sizes Estimated Hybrid Design-Based

Table 2: Taxonomy for Predictors Based on Unrestricted Conditional Probabilities
Parameter Estimation

Unweighted Weighted
Poststrata Sizes Known Model-Based Separate Ratio
Poststrata Sizes Estimated Hybrid Horvitz-Thompson

With hybrid estimators, we want to know how much the estimator (1) is penalized
for not knowing y+f and using the HT estimator to approximate it. In later
sections, we propose a method based on linearization to answer this question.

3. Application to the Survey of Income and Program Participation

For this expose we assume a nontrivial, but simple, structure to illustrate the neces-
sity of estimated population totals and their contributions to variances. The Survey
of Income and Program Participation (SIPP), a longitudinal survey conducted by
the U.S. Census Bureau, is the source of our example.

SIPP measures the economic well being of the U.S. general population in rela-
tion to participation in government social programs, such as unemployment com-
pensation and several programs of economic assistance. Participants in the survey
are asked to report on their status in relation to several programs for each month
they are in the cohort. But participants are interviewed only every four months in
”waves” or installments.

The longitudinal nature of SIPP makes it a prime candidate for specifying ho-
mogeneous poststrata: we expect relatively high within-stratum homogeneity when
defining postrata through values of wave 1. For example, tables 3 and 4 show sam-
ple counts for the state of California for wave 1 and wave 2 of the 2004 panel. It
gives a cross-classification of each screened respondent by two qualitative variables
(employment status – employed vs. unemployed – and medical insurance coverage
– insured vs. uninsured) for each wave.

Table 3: No College Degree
Wave 2

Employed Unemployed
Wave 1 Covered Not Covered Covered Not Covered

Employed Covered 1252 44 8 4
Not Covered 82 604 2 13

Unemployed Covered 20 2 13 1
Not Covered 4 40 1 25
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Table 4: College Degree
Wave 2

Employed Unemployed
Wave 1 Covered Not Covered Covered Not Covered

Employed Covered 1451 22 10 2
Not Covered 38 181 0 6

Unemployed Covered 12 2 11 0
Not Covered 2 14 1 11

Modeling is expected to yield superior estimators in this example because each
qualitative variable tends to be consistent across wave, and because the models
will incorporate information from both waves in predicting wave 2 characteristics.
By contrast, the HT estimator, which is the benchmark “traditional” design-based
estimator, is based strictly on wave 2 information. In the notation of Section 2, the
example has the following structure:

Q = 2 , R = 3 , e = (j, k) , f = (l,m, n)

yef = yjklmn , ye+ = yjk+++ , y+f = y++lmn , P̂e|f = Pjk | lmn

Here yjklmn denotes the population count of individuals with education n, labor
status m at wave 1, coverage l at wave 1, labor status k at wave 2, and coverage j
at wave 2. Educational level n takes value 1 for no college degree and 2 for college
degree. Labor force status values are 1 for employment and 2 for no employment,
and medical insurance levels are 1 for coverage and 2 for lack of coverage. As
before, a single “hat” over a population total ŷ with appropriate subscripts denotes
the Horvitz-Thompson estimator for that total.

For the example in this paper, the generic predictor (1) becomes:

ˆ̂yjk+++ =
2∑
l=1

2∑
m=1

2∑
n=1

(
P̂jk | lmn

)
ŷ++lmn (2)

We also consider predictors obtained by confining the predictor in (1) to domains
defined by education, defining

ỹjk++n =
2∑
l=1

2∑
m=1

(
P̂jk | lmn

)
ŷ++lmn (3)

As defined in the next Section, P̂jk | lmn is a model based estimator for Pjk | lmn,
the proportion of individuals with coverage/labor status j, k at wave 2 among the
population with education n and coverage/labor status l,m at wave 1. We will
compare ˆ̂yjk+++ and ỹjk++n with their HT counterparts, ŷjk+++ and ŷjk++n, re-
spectively.

4. A Likelihood for Conditional Probabilities under Log-linear
Constraints

We define a specific likelihood for the cross-classified survey counts with respect to
parameters Pjk | lmn for the purpose of deriving a maximum likelihood estimate,
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P̂jk | lmn. The model likelihood is expressed in terms of “reference likelihoods” for
the individual cell probabilities of the individual cells of tables 3 and ??.

Let x = (x11111, x21111, ..., x22222)′ be the vector of the counts, assumed multi-
nomial, for the 32 cells defined by education and by medical coverage and labor
force status at both waves in the sample, in the same order of subscripts as before.
Denote the corresponding cell probabilities by π = (π11111, π21111, ..., π22222)′, and
let τ = (τ111, τ211, ...τ222)′ be the vector of joint marginal probabilities for health
insurance coverage and labor-force at wave 1, along with education . Also denote
by P =

(
P11 | 111, P21 | 111, ..., P22 | 222

)
the conditional probabilities of coverage and

labor-force status at wave 2 conditional on coverage and labor-force status at wave
1 and education. Formally,

τlmn = π++lmn =
2∑

j,k=1

πjklmn (4)

and
Pjk | lmn = πjklmn / τlmn (5)

With the object of modeling P realistically, we model π explicitly: the multi-
nomial cell probabilities are assumed to follow the constraints of a standard hier-
archical log-linear model ( Bishop, Fienberg, Holland p. 34) with certain higher-
order interactions suppressed. Doing so, we implicitly constrain P . Denote by
Ωπ, Ωτ , ΩP the respective parameter spaces for π, τ , P Then we define Ωπ
explicitly, corresponding to a log-linear model that includes second-order and lower-
order interactions for each pair of variables except pairs involving employment status
and coverage between different waves. The other parameter spaces Ωτ , ΩP then
inherit their meaning from Ωπ and equations (4)–(5).

It turns out (Thibaudeau, 2003) that this model for π leaves τ unconstrained,
i.e.

Ωτ = {v ∈ R8 : v1, . . . , v8 ≥ 0 and v1 + · · ·+ v8 = 1}

while the vector of conditional probabilities P in (5) range freely over a 7-
dimensional set regardless of τ . The suppression of interactions thus has the effect
of reducing the 32-dimensional probability vector π which would contain 31 free
parameters, to a 14-dimensional space, in such a way that Ωπ is in one-to-one
correspondence with Ωτ × ΩP . The likelihood of x with respect to parameters
π factors:

L(x;π) =
2∏

j,k,l,m,n=1

(πjklmn)xjklmn I[π∈Ωπ ] = Lτ (xf ; τ )LP (x |xf ; P ) (6)

where

Lτ (x; τ ) =
2∏

l,m,n=1

(τlmn)x++lmn I[τ∈Ωτ ] (7)

and

LP (x;P ) =
2∏

j,k,l,m,n=1

(
Pjk | lmn

)xjklmn
I[P ∈ΩP ] (8)

To specify the parametric restrictions on Pjk | lmn more formally, we develop a
non-singular parameterization for P that reflects the log-linear constraints imposed
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through ΩP . One source of non-degenerate parameterizations for log-linear models
is Liu, Massam, Dobra (2009): they propose parametric expressions driven by the
structure of the interactions involved in the log-linear model. Such parameteriza-
tions have meaningful interpretations, but do not naturally provide for a hierarchy
of conditionality among the the variables of the model, as would be appropriate in
this case. Instead we follow the parametrization of Thibaudeau (2003) specifically
designed to reflect the order of conditioning for cell probabilities subject to log-
linear constraints. This parameterization leads to a set of algebraically independent
conditional probabilities for each “layer” of conditioning in the log-linear model. In
our application there are two layers of conditioning, the top layer corresponding to
coverage at wave 2 conditional on everything else, and a second layer for employ-
ment status at wave 2, conditional on everything else except coverage at wave 2.
The parameters for the top layer of conditional probabilities in this setting are:

γ1 = P11 | 111 / (P11 | 111 + P21 | 111)
γ2 = P12 | 111 / (P12 | 111 + P22 | 111)
γ3 = P11 | 211 / (P11 | 211 + P21 | 211)
γ4 = P11 | 112 / (P11 | 112 + P21 | 112)

The parameters for the second layer of conditional probabilities are:

γ5 = P11 | 111 / (P11 | 111 + P12 | 111)
γ6 = P11 | 121 / (P11 | 121 + P12 | 121)
γ7 = P11 | 112 / (P11 | 112 + P12 | 112)

The model parameterization for P is defined by these seven equations, with all
γa ranging freely in the unit interval [0, 1]. These seven degrees of freedom fully
describe the allowed conditional probabilities for second-wave status given first-
wave status and the education covariate. Appendix A gives the explicit mapping
(12) from γ = {γa}7a=1 to P Substituting for Pjk | lmn in terms of γ using (12),
we can re-write down the likelihood factor (8) in the closed exponential-family form

LP (x;P ) = Lγ (x;γ)

=
7∏
i=1

(γi)zi (1− γi)ti−zi
2∏

l,m,n=1

(Γlmn)−zl+2m+4n+1 I[γ∈[0,1]7]

where Γlmn is defined in (12)-(13) in Appendix A, and where z = (z1, z2, . . . , z15)′ ≡
A′x and t = (t1, t2, . . . , t7)′ = B′(z8, z9, . . . , z15)′ are defined in Appendix B. Here
z is a sufficient statistic (for P ) defined from the cell counts x, and z has full
rank in the sense that the 32× 15 matrix A does.

5. Using Conditional Probabilities for Prediction

To illustrate our method and some of its relative advantages, we study three specific
predictors in the setting above. These predictors are ỹ12++1, ˆ̂y12+++, as defined in
Section 3, and ˜̃y2++++, where

˜̃y2++++ = ˆ̂y21+++ + ˆ̂y22+++ (9)

We compare the variances of ỹ12++1, ˆ̂y12+++, ˜̃y2++++ to those of their Horvitz-
Thompson counterparts, ŷ12++1, ŷ12+++, ŷ2++++. To do so, we apply Balance
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Table 5: Hybrid and Horvitz-Thompson Estimation of Domain Totals
Estimator

Horvitz-Thompson Hybrid
Domain Estimate Variance Estimate Variance

Not Covered - Total 3518150 2.823× 1010 3551468 2.552× 1010

Covered and Unemployed 178762 3.890× 108 179133 4.031× 108

Covered, Unemployed w/o College 84073 2.208× 108 84038 1.697× 108

Repeated Replication (Rao, Shao, 1996; Wolter, 1985), a common variance esti-
mation procedure which the SIPP survey has been designed to enable. BRR is
a nonparametric variance estimation procedure which does depend on parametric
model assumptions for its validity. Our simulation in appendix C indicates BRR is
relatively free of bias in this context. But at the same time, our simulation shows
BRR is inacurate when the number of its degrees of freedom –the number of es-
timation strata– is small. In the case of the state of California, SIPP has only
23 estimation strata to produce variance estimators through replication. This is
too small a number for comfort about the accuracy of BRR for estimating a given
variance.

We are interested not so much in the variance of each predictor as in the differ-
ence between the variance of the hybrid and that of the HT estimator. Certainly,
the difference between the BRR estimates of these two estimates is an unbiased
estimator for the actual difference. Furthermore the difference between the two
BRR estimates will be substantially more accurate than the BRR estimates them-
selves if the later are substantially correlated. Assuming that is the case, we retain
the difference between the BRR variance estimate of the hybrid and that of the
HT estimator as a measure for the relative performance of the hybrid and the HT
estimator.

There appears not to be a substantial difference between hybrid predictors and
their corresponding HT estimators in terms of variance, for the first two populations.
However, the difference between hybrid and HT is large for prediction confined to
the domain of non-college-degree holders. This is no surprise as hybrid prediction
makes use of information retrieved from all poststrata, including from the post-
strata involving college-degree holders. The HT estimator, on the other hand, does
not benefit from a model to exploit the information available from all the post-strata,
using only information retrieved from the post-strata involving non-college-degree
holders.

Beyond the gain in efficiency from using a model to predict the sizes of small
domain populations, our method is useful in a variety of context. To show this
we decompose the variance of the hybrid predictor defined in (1) into the sum of
a model-based component and a design-based component and a covariance. The
model-based variance component stems from the uncertainty about the model pa-
rameters, as estimated by their MLE’s. The design-based variance component
reflects the sampling variance inherent to the design and its impact on the HT
weighted totals involved in the hybrid predictor. The total variance of the hybrid
predictor is approximately the sum of these two variance components discounted
by the coupling between them.

This decomposition of the variance can be carried through using BRR to esti-
mate each variance component, as exhibited in table 5. This decomposition of the
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Table 6: Linearization of the Variance of the Hybrid Predictor
Replication

Variance Component Linearized Direct Method of Laplace
Model-Based 1.553× 108 N/A 2.268× 108

Design-Based 2.039× 107 N/A N/A
Covariance −1.863× 106 N/A N/A
Total Variance 1.720× 108 1.697× 108 N/A

variability is meaningful as the variability of the design-based component provides
a measure of the ”cost” of having to estimate the strata totals with weighted sums.
In our example, the variability component of the variance due to design-based esti-
mation is less than Ten percent of the total variance. What’s more, the covariance
between the model-based and design-based components is negative. This suggests
not much is lost from not knowing the sizes of the poststrata.

6. Model-Based Variance Estimation and Model Selection with the
Method of Laplace

The shortcomings of BRR leaves us with a desire for another type of technique for
variance estimation. The method of Laplace is a model-based technique that can be
used for estimating the variance of the model-based component of a predictor. The
following result is an extension of Theorem 1 in Tierney, Kass and Kadane (1989).

Let M (γ̂;x) be a smooth function of all its arguments. An approximation for
the variance of the model-based component of M (γ̂;x) is

V L [M (γ;x) |x ] = lim
c→∞

c |M (γ̂c;x)−M (γ̂;x)| (10)

where γ̂ is the MLE of γ and

γ̂c = max
γ

arg [(M (γ;x) + c)Lγ (x;γ)] (11)

The approximation in (10) is a low order asymptotic approximation derived
from the version of the method of Laplace for approximating posterior variances in a
Bayesian context, as propoposed in Tierney and Kadane (1986). The approximation
for the posterior variance of in turns serves as an approximation for the frequentist
variance of an functional derived from maximum likelihood estimation.

A relatively large discrepancy between the BRR variance estimates of the param-
eters and the estimates obtained through the method of Laplace would suggest the
model is not appropriate. Based on our simulation results in Table 9 (appendix C)
, the discrepancies between BRR and the method of Laplace in Table 7 are not
unexpectedly large. Again, the simulation suggests that the culprit is BRR. The
standard deviations for the BRR variance estimate are substantially larger than for
the method of Laplace, when the model is correct.

The method of Laplace can also serve to test specific hypotheses about the
parametric structure of the model, thereby serving as a tool for model selection.
One such hypothesis of interest is whether or not the information on education
is useful to predict health coverage, given coverage and employment status at the
previous wave are known, and unemployment status at the current wave is also
known. This is equivalent to testing the hypothesis: H0 : γ4 − γ1 = 0. Similarly,
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Table 7: Model Parameters: Estimates and Variances
Variance

Parameter Estimate Replication Method of Laplace Significant
γ1 .9665 1.785× 10−5 2.080× 10−5 –
γ2 .9168 4.143× 10−4 3.672× 10−4 –
γ3 .1142 8.869× 10−5 1.174× 10−4 –
γ4 .9806 6.756× 10−6 7.861× 10−6 –
γ5 .9895 2.407× 10−6 4.312× 10−6 –
γ6 .7976 2.252× 10−3 1.624× 10−3 –
γ7 .9882 5.187× 10−6 5.060× 10−6 –
γ4 − γ1 .01414 1.633× 10−5 1.2228× 10−5 Yes
γ7 − γ5 -.001357 6.125× 10−6 7.957× 10−6 No
Hybrid - HT -35 2.765× 104 – No

we can test whether or not education is useful to predict employment status, given
the rest of the variables at wave 1 and 2, by testing H00 : γ7 − γ5 = 0.

Table 7 gives the variance obtained through the method of Laplace for the test
statistics γ̂4− γ̂1, and γ̂7− γ̂5 for H0 and H00 respectively. The results suggest that
education does significantly improve the prediction of coverage, even in presence of
the previous wave information and the current employment status. But, it appears
there is little basis for including an interaction term between education and em-
ployment status when the rest of the variables in the model, and their interactions
with employment status as given, are present.

7. Discussion

The paper investigated the properties of predictors integrating model-based features
and estimated strata sizes. The sizes are etimated from the same survey the predic-
tors are derived from. This approach is driven by the goal of selecting poststrata
primarily on the basis of their discriminatory power, rather than on the basis of
extraneous knowledge of poststrata sizes.

Our results suggest that a good model and a good design-based weighted-total
estimation —both of these together— is a combination that is hard to beat for
prediction. Table 5 indicates a substantial variance reduction when using the hybrid
approach. In addition, the decomposition of the variance in Table 5 suggests the
cost of estimating the totals involved in the hybrid approach is small, in terms of
total variance.

These results indicate the desirability of having known poststrata totals to de-
rive predictors based on poststratification may be overplayed. Of course not every
prediction situation is as easy to model as that in the paper. But, the cost of
estimating poststrata totals may be modest in other situations as well. Then the
statistician should entertain more discriminatory poststratifications, as compared
to rigid postratifications guided only by the insistance on knowing the sizes of the
poststrata.

We also note that in the context of the specific predictions considered in the
paper we need not have full model validity, in the sense of the best fitting model.
Our basic requirement is that the predictors involving components derived from a
model are unbiased. In the case of predicting the small domain, we were able to test
agains biases from our model-based estimator, relative to the Horvitz Thompson
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estimator (table 7). The absence of bias, along with a lower variance than that of
Horvitz-Thompson estimator guarantees the model-based estimator is desirable.

We explored two different approach for estimating the model-based variance.
That is the variance of the sampling noise filtered through the maximum likelihood
estimators. A simulation suggests BRR and the method of Laplace are unbiased for
the model-based variance, when the model is correct (table 8). But, for a moderately
large sample, BRR is substantially less stable than the method of Laplace (table 9).
The natural question is do these results extend to cases when the model in incorrect.
In other words, is the method of Laplace robust to some model specifications? This
shall be the object of additional research.

A. Parameterization for Log-Linear Conditional Probabilities

The conditional probabilities P (jk | lmn) are uniquely determined by the param-
eters γa, a = 1, . . . , 7, defined in Section 4, according to the following scheme
developed in Thibaudeau (2003), with {(jk)}2j,k=1 = {11, 21, 12, 22} :

{Pjk | 111}2j,k=1 =
(
γ1γ2γ5, (1− γ1)γ2γ5, γ1γ2(1− γ5), γ1(1− γ2)(1− γ5)

)
/Γ111

{Pjk | 211}2j,k=1 =
(
(1− γ1)γ2γ3γ5, (1− γ1)γ2(1− γ3)γ5, (1− γ1)γ2γ3(1− γ5),

γ1(1− γ2)(1− γ3)(1− γ5)
)
/Γ211

{Pjk | 121}2j,k=1 =
(
γ1γ2γ6, (1− γ1)γ2γ6, γ1γ2(1− γ6), γ1(1− γ2)(1− γ6)

)
/Γ121

{Pjk | 221}2j,k=1 =
(
(1− γ1)γ2γ3γ6, (1− γ1)γ2(1− γ3)γ6, (1− γ1)γ2γ3(1− γ6),

γ1(1− γ2)(1− γ3)(1− γ6)
)
/Γ221

{Pjk | 112}2j,k=1 =
(
(1− γ1)γ2γ4γ7, (1− γ1)γ2(1− γ4)γ7, (1− γ1)γ2γ4(1− γ7),

γ1(1− γ2)(1− γ4)(1− γ7)
)
/Γ112

{Pjk | 212}2j,k=1 =
(
(1− γ1)2γ2γ3γ4γ7, γ1(1− γ1)γ2(1− γ3)(1− γ4)γ7, (1− γ1)2γ2γ3γ4(1− γ7),

γ2
1(1− γ2)(1− γ3)(1− γ4)(1− γ7)

)
/Γ212

{Pjk | 122}2j,k=1 =
(
(1− γ1)γ2γ4(1− γ5)γ6γ7, (1− γ1)γ2(1− γ4)(1− γ5)γ6γ7,

(1− γ1)γ2γ4γ5(1− γ6)(1− γ7), γ1(1− γ2)(1− γ4)γ5(1− γ6)(1− γ7)
)
/Γ122

{Pjk | 222}2j,k=1 =
(
(1− γ1)2γ2γ3γ4(1− γ5)γ6γ7, γ1(1− γ1)γ2(1− γ3)(1− γ4)(1− γ5)γ6γ7,

(1− γ1)2γ2γ3γ4γ5(1− γ6)(1− γ7),

γ2
1(1− γ2)(1− γ3)(1− γ4)γ5(1− γ6)(1− γ7)

)
/Γ222

(12)

where Γlmn is defined implicitly through (12) and for all values of l,m, n,

2∑
j,k=1

Pjk | lmn = 1 (13)
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B. Sufficient Statistic

The sufficient statistics z and totals t appearing in the likelihood (9) are defined
here, again following the approach of Thibaudeau (2003), as

z = (z1, z2, . . . , z15)′ = A′x , t = (t1, t2, . . . , t7)′ = B′(z8, z9, . . . , z15)′

where

A =



1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1 0 0 0 0 0 0 0 0 0 1



(14)

and

B =



1 1 0 0 1 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1
2 1 1 1 0 0 1
1 1 0 1 1 1 1
2 1 1 1 1 1 1


(15)
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Table 8: Simulation: Variance Estimators for MLE’s
Parameter Actual BRR Method of Laplace
γ1 1.978× 10−5 2.048× 10−5 1.925× 10−5

γ2 3.456× 10−4 3.844× 10−4 3.731× 10−4

γ3 1.205× 10−4 1.199× 10−4 1.190× 10−4

γ4 8.199× 10−6 8.253× 10−6 8.179× 10−6

γ5 3.109× 10−6 3.476× 10−6 3.426× 10−6

γ6 2.243× 10−3 2.373× 10−3 2.346× 10−3

γ7 4.026× 10−6 4.286× 10−6 4.247× 10−6

Table 9: Simulation: Standard Deviations of BRR and the Method of Laplace
Parameter BRR Method of Laplace Difference
γ1 6.388× 10−6 2.036× 10−6 6.210× 10−6

γ2 2.144× 10−4 1.644× 10−4 1.356× 10−4

γ3 3.74× 10−5 1.201× 10−5 3.504× 10−5

γ4 3.063× 10−6 1.576× 10−6 2.560× 10−6

γ5 1.485× 10−6 9.579× 10−7 1.110× 10−6

γ6 8.348× 10−4 4.133× 10−4 7.271× 10−3

γ7 1.775× 10−6 1.065× 10−6 1.372× 10−6

C. Simulation

We conduct a simulation based on the model described in Section 4. The MLE’s
derived from the SIPP data is substituted as the ”true parameters” in the model for
purpose of simulation. Our main goals is to get an idea of the biases and variances
of both BRR and the method of Laplace when used to estimate the variance of the
MLE’s. 1000 samples of the same size as the observed data (3800) were drawn from
the multinomial probability function prescribed by the model.

Table 8 shows the expected value of both methods against the true value of the
variances for the MLE’s of each conditional probability. Both method are fairly
bias free and there is no winner or loser. However, Table 9 shows the standard
deviations for both variance estimators. The method of Laplace is the clear winner,
as BRR has standard deviations anywhere from 30 percent to 200 percent larger.
This should not come as a surprise since the simulation implicitely assumes the
model is correct. How robust the method of Laplace is under model misspecification
remains an object of speculation. In revenge, BRR is nonparametric and in theory
is unbiased regardless of any model assumptions.

Another purpose of the simulation was to validate the discrepancies between
BRR and the method of Laplace, as observed in Table 7. In that respect, Table 9
displays the standard deviation of the differences between BRR and the method of
Laplace. Under that light, the discrepancies observed in Table 7 are not excessive.
Again, the results of the simulation suggest the main culprit for these discrepancies
is the instability of the BRR estimates. Essentially, the variability of the method
of Laplace is the order of a constant relative to the variability of BRR.
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