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Abstract 
We have described a method (2001a, 2003a, 2004) for merging two independent samples 
using data fusion (also known as statistical matching). One sample contains (X,Z) and the 
other contains (X,Y), both drawn from a common nonsingular normal (X,Y,Z) 
distribution. Following Kadane (1978) and Rubin (1986), we employ regression in our 
approach. We assess the uncertainty introduced during the merge that is due to the 
unobserved (Y,Z) relationship by repetition over a range of (Y,Z) values that are 
consistent with the observed data. An essential part of our algorithm is to add random 
residuals to the regression estimates. Our initial approach for estimating the residual 
variance could fail (be negative) because it used subtraction of estimates from both files. 
Innovations due to D'Orazio, et al. (2006a) and Kiesl and Raessler (2009) give improved 
results, yielding a robust algorithm. 
 
Key Words: Statistical matching 
 
 

1. Introduction 
 
We provide a brief introduction to data fusion (also known as statistical matching) in this 
section. The statistical matching book by D'Orazio, et al. (2006a) is a comprehensive 
reference, and is recommended reading for anyone who wishes to know more about the 
subject. 
 
Suppose there are two sample files, File A and File B, taken from two different surveys. 
Suppose further that File A contains variables (X,Y), while File B contains variables 
(X,Z). X, Y, and/or Z may be vectors. The objective of data fusion is to combine the 
information in these two files to obtain at least one synthetic file containing variables 
(X,Y,Z). 
 
In contrast to record linkage (also known as exact matching), the two files to be 
combined are not assumed to have records for the same entities. In data fusion the files 
are assumed to have little or no overlap; hence, records for similar entities are combined, 
rather than records for the same entities. For example, one may choose to match 
individuals who are similar on characteristics like gender, age, poverty status, health 
status, etc. 
 
All statistical matches described in the historic literature have used the X variables that 
appear in both files as part of the matching process. To illustrate with a simple example, 
suppose File A has 3 records with X, Y values: 
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(x1, y1), (x2, y2), (x3, y3), where x1, y1, etc. are specific values of X, Y, 
 
while File B has 4 records with X, Z values: 
 
(x1, z1), (x3, z3), (x4, z4), (x5, z5), where x1, z1, etc. are specific values of X, Z. 
 
In this example, x1 and x3 are given values of X, and they appear in both files. x2, x4, 
and x5 are given values of X that appear only in one file. 
 
If only the X variables are used to define matches, this is akin to assuming that Y and Z 
are uncorrelated, given X; if the variables have normal distributions, then the assumption 
is that Y and Z are conditionally independent, given X. This "conditional independence" 
assumption has been discussed extensively in the data fusion literature (e.g., Rodgers 
(1984), and references given therein). It has been shown (e.g., Moriarity and Scheuren 
(2001a)) that the "conditional independence" value of the covariance of (Y,Z) is just one 
of many possible values that are consistent with the observed data. Assuming conditional 
independence can lead to final synthetic files with very different distributions than final 
synthetic files created with other assumed, feasible values of the covariance of (Y,Z). 
 
Given the assumption of conditional independence, one could merge (match) the records 
with identical values of X to create: 
 
(x1, y1, z1), (x3, y3, z3). 
 
Notice that matching on the given values of x1 and x3 (where X is, say, age) does not 
imply that the (y1, z1) and (y3, z3) paired data came from the same entities in the 
population. 
 
What to do with the remaining records is less clear and techniques vary. Broadly, the 
various strategies employed for statistical matching can be grouped into two general 
categories: "constrained" and "unconstrained." Each is described in turn. 
 
Constrained matching requires the use of all records in the two files, and thus it preserves 
the marginal Y and Z distributions. In the above example, for a constrained match one 
would have to end up with a combined file that also had additional records that used the 
remaining unmatched File A record (x2, y2) and the two unmatched File B records (x4, 
z4) and (x5, z5). In other words, all of the records on both files get used. Notice that, as 
would generally be the case, one could not limit the role of X in the matching so as to 
require identical values of X to allow a match; in at least some cases, matches would 
have to be allowed where X’s were close (similar) to one another. 
 
Unconstrained matching does not have the requirement that all records are used. 
Referring to the above example, one might stop after creating (x1, y1, z1) and (x3, y3, 
z3). Usually in an unconstrained match, though, all the records from one of the files (say, 
File A) would be used (matched) to "similar" records on the second file. Some of the 
records on the second file may be employed more than once, or not at all. Hence, in the 
unconstrained case, the remaining unmatched record on File A, the observation (x2, y2), 
would be matched to make the combined record (x2, y2, z??). The observations (x4, z4) 
and (x5, z5) from File B might or might not be included. 
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A number of practical issues, not discussed in this brief overview, often need to be 
addressed in data fusion; for example, alignment of universes (i.e., the sums of the 
weights in the data files should be equal) and alignment of units of analysis (i.e., 
individual records represent the same units, e.g., persons). 
 
Rodgers (1984) includes a more detailed example of combining two files, using both 
constrained and unconstrained matching, than the brief sketch provided here. We 
encourage the interested reader to consult that reference for an illustration of how sample 
weights are used in the matching process, etc. 
 
Some more recent literature (e.g., Raessler (2002)) includes examples of data fusion 
where an actual match (a "statistical match") of the data files does not occur. For this 
reason, we have decided that the terminology "data fusion" is preferable to "statistical 
matching", because it is more general. 
 

2. The Use of Regression in Data Fusion 
 
Regression-based data fusion was described in Kadane (1978) and Rubin (1986). 
Moriarity and Scheuren (2001a, 2001b, 2003a, 2003b, 2004) described innovations and 
extensions of the methods described by Kadane and Rubin, Kadane's method in 
particular. 
 
Kadane (1978) described a model for data fusion. One model assumption was that the 
variables in the sample files had a multivariate normal distribution. He pointed out that 
this model was not universal; sample files could contain variables that were binary, 
variables that took integer values only, etc. The data fusion literature contains a number 
of contributions that consider these situations, e.g., D'Orazio, et al. (2006b). Clearly, 
regression-based data fusion is not always the most appropriate method to apply. Given 
the current state of development of regression-based data fusion, alternatives should be 
considered anytime the sample files contain data that do not appear to have a multivariate 
normal distribution, and it is not feasible to apply transformations to the data to obtain 
something reasonably close to a multivariate normal distribution. 
 
Kadane's use of regression was to produce estimates of the "missing" values in the 
sample files: for File A, containing (X,Y), the "missing" value to be estimated was Z; for 
File B, containing (X,Z), the "missing" value to be estimated was Y. In order to produce 
these estimates, Kadane needed to make some assumption about the (Y,Z) relationship, 
and he correctly noted that a number of different assumptions about the (Y,Z) 
relationship were consistent with the observed data. He emphasized the necessity for 
exploring a range of assumptions about the (Y,Z) relationship. His emphasis of this 
necessity was the genesis of the paradigm of assessing the uncertainty in data fusion. 
 
Kadane's model, with some minor changes and innovations, has been shown to be a 
sound theoretical framework when the variables in the sample files have a multivariate 
normal distribution (Moriarity and Scheuren (2001a)). Thus, regression-based data fusion 
can be considered a feasible and defensible approach for sample files with continuous 
variables that have a multivariate normal distribution. 
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3. Adding Random Residuals to Regression Estimates 
 
The most essential innovation we developed for Kadane's and Rubin's methods is adding 
random residuals to the regression estimates. The methods did not work correctly without 
this innovation (Moriarity and Scheuren (2001a)). 
 
Our initial approach for this step (e.g., Moriarity and Scheuren (2001a)), which used 
subtraction of estimates created with information from both files, was not guaranteed to 
work correctly. It was not always feasible because it could yield a residual variance 
estimate that was negative. It became apparent (Moriarity and Scheuren (2003b)) that this 
was a crippling limitation when the residual variance being estimated was close to 0. 
 
The method for generating residuals for RIEPS (Raessler (2002, p. 100) defines RIEPS as 
"regression imputation with random residual") discussed in Raessler (2002) used a 
different approach that had the advantage of always being feasible, but also had 
shortcomings (Moriarity and Scheuren (2004)). 
 
D'Orazio, et al. (2006a) suggested using maximum likelihood estimation. Research we 
conducted in 2009 indicated that maximum likelihood estimation gave better results than 
our initial method, but there still were occurrences of negative residual variance 
estimates. Specifically, for the simulation described in Moriarity and Scheuren (2001a), 
our initial method gave negative residual variance estimates for the Y variable in File B 
for 143 out of the 1873 repetitions of the simulation; the maximum likelihood estimation 
method gave negative residual variance estimates for the Y variable in File B for 107 out 
of the 1873 repetitions of the simulation. 
 
Kiesl and Raessler (2009) suggested an innovation of Raessler's RIEPS algorithm to 
address the shortcomings that were noted in Moriarity and Scheuren (2004). The essence 
of the innovation was to iterate one part of the RIEPS algorithm to improve the statistical 
properties of the residual variance estimate. The original algorithm used what we referred 
to as the "primary" regression estimates (with no residual added) to produce "secondary" 
regression estimates; a sum of squares calculation involving the secondary regression 
estimates was the basis of the RIEPS residual variance estimate. The innovation iterates 
the primary/secondary process by taking the residuals estimated by the first set of 
secondary estimates, adding these residuals to the primary regression estimates, 
producing a new set of secondary regression estimates, generating an updated set of 
residuals, etc. 
 
We implemented Kiesl and Raessler's suggested innovation in the simulation framework 
described in Moriarity and Scheuren (2001a). For each occurrence of the simulation, the 
iterative process was implemented with the following rules/parameters: 
 
1. Maximum number of iterations allowed: 25 
2. If the updated residual variance estimate was less than or equal to the previous one, the 
iteration process was terminated 
3. If the relative increase in the updated residual variance estimate [(update-
current)/current] was less than a specified tolerance (we used 0.005) the iteration process 
was terminated 
 
We allowed these rules to operate independently for the Y and Z iterations. 
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A comparison of Kiesl and Raessler's suggested innovation with the methods we 
have previously investigated (our initial method, the original RIEPS method, the 
maximum likelihood method) shows clearly that Kiesl and Raessler's innovation 
is the best method to use. In Table 1, "d_resy" is the average difference between 
the Y residual variance estimate and the true value, and "d_resz" is the 
corresponding Z average difference. "min_y" shows the largest underestimate of 
the Y residual variance estimate, and "min_z" shows the corresponding Z 
underestimate. 
 
Table 1 
    d_resy  min_y  d_resz  min_z 
our initial method  0.006  -0.34  0.04  0.01 
original RIEPS  -0.04  -0.33  -0.02  -0.19 
maximum likelihood  0.02  -0.18  0.02  -0.10 
Kiesl/Raessler innovation 0.03  -0.14  0.02  -0.05 
 
The innovation provides a notable improvement in the properties of the residual 
variance estimates, compared to the original RIEPS method. The downward bias 
of the original RIEPS method (negative values of d_resy, d_resz) is not present in 
the innovation. As with the original RIEPS method, the innovation always 
produces a nonnegative residual variance estimate. The statistical properties of the 
residual variance estimates from the innovation are similar to those generated 
from the maximum likelihood method. 
 
Table 2 provides detailed information about the number of iterations that occurred 
in the 1873 simulations: 
 
Table 2 
 
Number of Y iterations Number of Z iterations Frequency Cum. 
  0     0     79  79 
  1     1    295  374 
  1     2    121  495 
  2     2    386  881 
  3     1    135 1016 
  3     3    231 1247 
  4     1     44 1291 
  4     2     19 1310 
  5     3    217 1527 
  6     5     48 1575 
  6     7     79 1654 
  7     5     5 1659 
 10     9     93 1752 
 10    10     38 1790 
 13    10     82 1872 
 19    16     1 1873 
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Table 2 shows that the maximum number of allowed iterations (25) was an 
appropriate choice for the specified tolerance level of 0.005. In all but one case 
(when there were 19 Y iterations and 16 Z iterations) the outcome would have 
been the same if we had used a maximum of 15 instead of a maximum of 25. 
 
Table 2 also shows that it is useful to allow the stopping rules to operate 
independently for the Y and Z iterations. 
 
Note that there were 79 occurrences of "0" iterations for both Y and Z in Table 2. 
This actually corresponds to the situation where there is no convergence of the 
iterative process, which can and does occur; the residual variance estimates 
continue to increase with every iteration. Thus, it is important to implement 
stopping rules that both check for convergence (e.g., relative growth less than a 
small value) and control the total number of iterations (to halt iterative processes 
that are diverging). Not surprisingly, almost all of the occurrences of divergence 
occur for simulated values when Corr(Y,Z) is far from the conditional 
independence value; the (X,Y,Z) distribution is still non-singular, but approaching 
singularity. Of course, in the absence of auxiliary information about Corr(Y,Z), 
these areas should be included when assessing the uncertainty in data fusion, even 
if they are "hard" areas to work with. 
 

4. Determining the Range of Admissible Values For the (Y,Z) Relationship 
 
Kiesl and Raessler's innovation for generating random residuals solves one of the two 
major previously unsolved problems in regression-based data fusion. The remaining 
major unsolved problem is analytically determining the range of admissible values for the 
(Y,Z) relationship (the covariance matrix ∑YZ or the correlation matrix ρYZ), so that a 
lattice of admissible values that represent all areas of the admissible space can be 
efficiently generated. (By "admissible", we mean a value of ∑YZ or ρYZ (Cov(Y,Z) or 
Corr(Y,Z) in the univariate case) that yields a positive definite covariance matrix for 
(X,Y,Z).) Solutions currently exist for a number of special cases, but a general result that 
has been proven mathematically is not yet known to exist. 
 
For univariate (X,Y,Z), the range of admissible Corr(Y,Z) is known. The values must fall 
in the interval: 
 

Corr(X,Y)*Corr(X,Z) ±√(1-(Corr(X,Y))2)*√(1-(Corr(X,Z))2) 
 
The midpoint of this interval, Corr(X,Y)*Corr(X,Z), is the "conditional independence" 
value of Corr(Y,Z). That is, if Y and Z are independent given X, then 
Corr(Y,Z)=Corr(X,Y)*Corr(X,Z). 
 
Rodgers and DeVol (1982) derived a bound for the range of admissible Corr(Y,Z) for 
multivariate X, univariate (Y,Z). Let ρXX be the correlation matrix of X, ρXY be the 
correlation matrix (in this case, a column vector) of (X,Y), and ρXZ be the correlation 
matrix (in this case, a column vector) of (X,Z). Rodgers and DeVol showed Corr(Y,Z) 
must lie in the interval: 
 

ρYX (ρXX)-1 ρXZ ±√(1-(ρYX (ρXX)-1 ρXY)2)*√(1-(ρZX (ρXX)-1 ρXZ)2) 
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Again, the midpoint of this interval, ρYX (ρXX)-1 ρXZ, is the conditional independence 
value of Corr(Y,Z). 
 
Raessler (2004) determined via a grid search that the space of admissible values for 
Corr(Y,Z1) and Corr(Y,Z2) in the two-dimensional case (X,Y,Z1,Z2) is an ellipse, with the 
conditional independence value at the center. 
 
Raessler and Kiesl (2009) determined analytically that for multivariate Y and univariate 
Z, the space of admissible values for the correlation matrix is an ellipsoid, with the 
conditional independence value at the center: 
 

(ρYZ - ρYX (ρXX)-1 ρXZ)' C (ρYZ - ρYX (ρXX)-1 ρXZ) < 1, 
 

where C=((ρZZ - ρZX (ρXX)-1 ρXZ) -1(ρYY - ρYX (ρXX)-1 ρXY) -1) 
 
Note: since Z is univariate, (ρYZ - ρYX (ρXX)-1 ρXZ) is a column vector, and 
(ρZZ - ρZX (ρXX)-1 ρXZ) -1 is a scalar. Also, without loss of generality, Raessler and Kiesl 
assumed that the covariance matrix was a correlation matrix, so ρZZ=1. 
 
Raessler and Kiesl's formula also applies to the case of univariate Y and multivariate Z, it 
covers the case (X,Y,Z1,Z2) previously solved via a grid search, and it also yields the 
univariate (X,Y,Z) result and Rodgers and DeVol's result that are shown above. 
 
Note that in general, the space of admissible values is convex. If (∑YZ)1 and (∑YZ)2 are 
two admissible values, then the corresponding covariance matrices for (X,Y,Z), say, ∑1 
and ∑ 2, are both non-singular, positive definite matrices. Any linear combination of ∑1 
and ∑2, that is, a*∑1 + b*∑2, where a, b are nonnegative scalars, a+b=1, can be shown to 
be positive definite, using the definition that A is positive definite if x'Ax>0 for all 
nonzero vectors x. Thus, any linear combination of two admissible values (∑YZ)1 and 
(∑YZ)2 is also an admissible value. 
 
The conditional independence value of ∑YZ, ∑ YX (∑XX)-1 ∑XZ, always is an admissible 
value. Thus, in the general case, the conditional independence value should be the center 
point of the space of admissible values. 
 
A comparison of Raessler and Kiesl's result with ∑(Y,Z)|X, the covariance matrix of (Y,Z) 
given X (the residual covariance matrix of (Y,Z) after regressing (Y,Z) on X), indicates a 
clear link. At the conditional independence value of ∑YZ, ∑ YX (∑XX)-1 ∑XZ, ∑(Y,Z)|X is 
block diagonal, with the upper block equal to ∑YY - ∑YX (∑XX)-1 ∑XY, and the lower block 
equal to ∑ZZ - ∑ZX (∑XX)-1 ∑XZ. C in Raessler and Kiesl's result is the product of the 
inverses of these blocks. The column vector (∑YZ - ∑YX (∑XX)-1 ∑XZ) in the Raessler/Kiesl 
formula is the upper diagonal element of ∑(Y,Z)|X. 
 
A potential generalization of Raessler and Kiesl's result for vector Y (say, with dimension 
m) and vector Z (say, with dimension n) is to assume without loss of generality that the 
covariance matrix is a correlation matrix, and construct a column vector (call it YZ) of 
length mn from the rows of (ρYZ - ρYX (ρXX)-1 ρXZ), and construct the direct product (or 
Kronecker product) of (ρYY - ρYX (ρXX)-1 ρXY) -1 and (ρZZ - ρZX (ρXX)-1 ρXZ)-1, which is 
dimension mn by mn; call this direct product C. Then, construct the following: 
 

(YZ)' C (YZ) <1. 
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Note that this always gives an expression that is conformable, i.e., the matrices have 
dimensions that are suitable for matrix multiplication. 
 
A limited empirical evaluation of this formula for a range of (X1,X2,Y1,Y2,Z1,Z2) 
correlation matrices we generated for the research we presented at the 2003 Joint 
Statistical Meetings (Moriarity and Scheuren (2003b)) gave good results. We plan to do a 
more extensive empirical evaluation. 
 

5. Conclusion 
 
Regression-based data fusion has progressed significantly in the last ten years from its ad 
hoc origins. It has been shown to be a methodology with a sound theoretical basis for 
large sample files that are simple random samples from multivariate normal distributions. 
However, open questions remain. There are opportunities for future contributions to this 
area. 
 
When a proven analytic result is available for determining the range of admissible values 
for ∑YZ in all cases, the existing contributed R package 'StatMatch' (D'Orazio (2009)) 
could become more powerful than it already is by incorporating this result and the 
Kiesl/Raessler innovation for generating random residuals. 
 
It is important to remember that data fusion, in the absence of auxiliary information, 
cannot be expected to provide any sort of "best estimate" of the (Y,Z) relationship. What 
data fusion can do is create synthetic datasets for a range of plausible values of the (Y,Z) 
relationship, which allows sensitivity analyses to be carried out. 
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