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Abstract 
Model-based prediction theory for finite population sampling and inference (Valliant et 
al., 2000) largely assumes that auxiliary variables are available for all units in the target 
population. These auxiliary variables play many important roles in prediction theory: they 
are used to 1) select samples balanced on the auxiliary variables that, when combined 
with (theoretically) appropriate prediction models based on the auxiliary variables, 
produce bias-robust estimators of population totals with minimum variance; 2) fit models 
to sample data which enable making predictions for non-sample cases based on the 
sample observations; and 3) ultimately make predictions on key survey variables for non-
sample units and compute appropriate model-based standard errors for estimated totals 
based on the predictions. Error-free measurement of the auxiliary variables on the 
population frame would thus seem critical for making appropriate finite population 
inferences. Unfortunately, there has been very little research examining the impact of 
measurement error in the auxiliary variables on the properties of these model-based 
estimators. This simulation study empirically examines the properties of selected model-
based estimators of finite population totals when available auxiliary variables are 
measured with varying levels of error, and assesses the impact of the measurement error 
on theoretical expectations for the estimators. Increased variance in measurement errors 
is shown to increase both the bias and variance of selected model-based estimators, and 
simulation results show that careful attention to the selection of samples with weighted 
balance on reasonable powers of the auxiliary variable, as described in Valliant et al. 
(2000), provides protection against the bias that can be introduced by measurement error 
in unbalanced samples and maximizes efficiency among competing estimators in the case 
of measurement error (as expected by theory in the case of no measurement error). R 
code enabling users to perform similar simulations is provided. 
 
Key Words: Model-based Prediction, Measurement Error, Finite Population Sampling, 
Estimation of Totals, Auxiliary Variables 

 
1. Introduction 

 
Model-based prediction theory for finite population sampling and inference (Valliant et al., 2000) 
largely assumes that auxiliary variables are available for all units in the target population. These 
auxiliary variables play many important roles in prediction theory: they are used to 1) select 
samples balanced on the auxiliary variables that, when combined with (theoretically) appropriate 
prediction models based on the auxiliary variables, produce bias-robust estimators of population 
totals with minimum variance; 2) fit models to sample data which enable making predictions for 
non-sample cases based on the sample observations; and 3) ultimately make predictions on key 
survey variables for non-sample units and compute appropriate model-based standard errors for 
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estimated totals based on the predictions. Error-free measurement of the auxiliary variables on the 
population frame would thus seem critical for making appropriate finite population inferences. 
Unfortunately, there has been very little research examining the impact of measurement error in 
the auxiliary variables on the properties of these model-based estimators (e.g., Bolfarine, 1991). 
This simulation study aims to empirically assess the properties of selected model-based 
estimators of finite population totals when available auxiliary variables are measured with 
varying levels of error, and to determine the impact of the measurement error on theoretical 
expectations for the estimators.  
 
The impact of measurement error in predictor variables on the bias of estimated regression 
coefficients in linear regression models has been well-established (e.g., Biemer and Trewin, 1997; 
Fuller, 1987; Berkson, 1950): the true relationships of predictor variables with dependent 
variables under some model will be attenuated toward zero when the predictors are measured 
with error, and this attenuation will increase with additional variance in the measurement errors. 
More specifically, in some finite population, let Xi represent the value of an auxiliary variable for 
unit i, measured with error. If Ti represents the true value of this auxiliary variable, which is 
assumed to be a latent random variable with some mean and variance, then Xi can be defined as 

2 2,  ~ ( , ),  ~ (0, )i i i i T T iX T T N N εε µ σ ε σ= +  
The random measurement errors denoted by εi are assumed to be independent. For a sample of 
size n from this finite population, a simple linear regression model with a dependent variable Y 
regressed on the predictor variable T can be written as 

2
0 1 ,  ~ (0, ),  1,...,i i i i eY T e e N i nβ β σ= + + =  

If the errors in this regression model are independent of the measurement errors that define the 
values on X, and the dependent variable Y is regressed on X (instead of T) by applying ordinary 
least squares to the sample data (to predict values on Y for non-sample cases, for example), the 
estimated regression coefficient for X will not be equal to 1β  in expectation, but instead will be 
attenuated toward zero (Fuller, 1987): 

2
0 1 ,  ~ (0, ),  1,...,i i i i eY X e e N i nγ γ σ= + + =  
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The ratio determining the degree of attenuation in the simple linear regression coefficient above, 
2 2 2 1( )T T εσ σ σ −+ , is known as the reliability ratio, measuring the proportion of the total variance 

in X that is due to the variance of the true values. Therefore, as the variance of the measurement 
errors increases, the degree of attenuation toward zero will increase as well. Given the importance 
of models in computing predictions for non-sample units in prediction theory for finite population 
inference, the simple case above suggests that measurement error in the auxiliary variables could 
lead to poor (or less than optimal) predictions for the non-sample units, and increased bias in the 
resulting estimates of finite population totals.  
 
The selection of samples with either simple or weighted balance on moments of the auxiliary 
variables (Valliant et al., 2000) also plays a critical role in the theoretical properties of model-
based estimators of finite population totals. Measurement error in the auxiliary variables could 
thus lead to the selection of samples that do not have optimal balance properties. For instance, 
samples may be selected that have nearly optimal balance properties in terms of the auxiliary 
variable measured with error. However, predictions based on this sample may be far from 
optimal, given that population units with true values on the auxiliary variable that may have led to 
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better balance in the sample may have been excluded from the sample due to the measurement 
error.  
 
The objective of this study is to use simulations to empirically examine the impact of 
measurement error in auxiliary variables on the bias and variance properties of selected model-
based estimators of finite population totals. Simulations will be based on a known population data 
set (Hospitals) provided by Valliant et al. (2000), and theoretical properties of the estimators will 
be examined both when the auxiliary variables are error-free and when varying levels of 
measurement error are applied to the variables. Specifically, this study seeks answers to the 
following research questions: 

1. Does measurement error in auxiliary variables lead to bias in estimates of finite 
population totals, and is the amount of bias a function of the type of estimator used? 

2. What are the impacts of measurement error in auxiliary variables on robust estimators of 
standard errors for estimated totals, and the resulting inferences for the totals? 

3. Do the effects of measurement error in auxiliary variables on the performance of model-
based estimators of finite population totals vary in samples that are balanced and 
unbalanced on moments of the auxiliary variables? 

 
2. Methods 

 
2.1 Data Source 
This study will analyze data from the “Hospitals” population in Appendix B.2 of Valliant et al. 
(2000), obtained from a national sample of short-stay hospitals with fewer than 1,000 beds in 
1968 (N = 393). The auxiliary variable X known for the full population will be the number of 
beds in each hospital, and the survey variable of interest Y will be the number of patients 
discharged from each hospital. Figure 1 below presents a scatter plot showing the relationship of 
Y to X in the Hospitals population, along with the fit of a working model [M(0,1,1 : X2), or a 
model including X and X2 as predictors, with variance in Y proportional to X2] that has been 
shown in previous studies (Section 3.5, Valliant et al., 2000) to be a reasonable model for this 
population.  

 
Figure 1: Scatter plot of the data in the Hospitals population, including the fit of the working 
model M(0,1,1 : X2) that will be assumed to hold for the simulation study. 
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The known total number of discharges for the Hospitals population is 320,159. This will be the 
target parameter T for all estimation procedures in the simulation study, and the relative bias (%) 
of a given estimator T̂  based on a set of S = 1,000 simulated samples (defined 

as
1

ˆ100 / /
S

s
s

RB T S T T
=

  = × −    
∑ ) will be computed based on this value. Figure 1 clearly 

illustrates the strong relationship of the auxiliary variable measuring number of beds with the 
number of discharges in this population (reported by Valliant et al., 2000, to be r = 0.91); 
relationships between available auxiliary variables and survey variables of interest will likely not 
be this high in practice, and this study should be replicated in populations where auxiliary 
variables do not have this strong of a relationship 
 
The present study will simulate the selection of samples and the estimation of total number of 
discharges based on those samples, considering scenarios with and without measurement error in 
X. The measurement error in X will be introduced prior to sampling from the Hospitals population 
as described in the section below. 
 
2.2 Introduction of Measurement Error 
In practice, a survey statistician will construct a sampling frame and / or analyze previous 
samples where the key auxiliary variables may be measured with error. Measurement error may 
arise, for example, when linking auxiliary variables measured with error in a commercial 
household database (e.g., Experian) to a sampling frame representing lists of household 
addresses. Measurement error may also arise in the collection of administrative data that is 
eventually linked to sampling frames (Davern, 2006).  
 
To simulate the impact of measurement error in auxiliary variables on model-based sample 
selection, estimation and inference, the first step in each simulated sample will be to either use the 
Hospitals population as it currently exists, assuming no measurement error in the auxiliary 
variable X, or introduce measurement error in the number of beds on the sampling frame 
according to a pre-specified algorithm. In simulations where this auxiliary variable is measured 
with error, the error will be introduced as follows: 

• Assign a random draw from the UNIFORM(0,1) distribution to each of the 393 units in 
the Hospitals population. 

• Low Error Simulations: These simulations will assume that 80% of hospitals in the 
population will have the number of beds enumerated correctly (i.e., there is little error in 
the collection of the number of beds for administrative purposes). If the random draw 
from the UNIFORM(0,1) distribution falls between [0.1, 0.9), including 0.1, the number 
of beds will be measured without error. If the random draw falls between [0.05, 0.10) or 
[0.9, 0.95), the number of beds will be either 10% lower or 10% higher than truth, 
respectively (rounded to provide an integer count). If the random draw falls between [0, 
0.05) or [0.95, 1], the number of beds will be either 25% lower or 25% higher than truth, 
respectively. 

• High Error Simulations: These simulations will assume that only 10% of hospitals will 
have the number of beds enumerated correctly (an admittedly extreme case); if the 
random UNIFORM(0,1) draw falls between [0.45, 0.55), the number of beds will be 
measured without error. If the random draw falls between [0.25, 0.45) or [0.55, 0.75), the 
number of beds will be either 25% lower or 25% higher than truth, respectively (rounded 
to provide an integer count). If the random draw falls between [0, 0.25) or [0.75, 1], the 
number of beds will be either 50% lower or 50% higher than truth, respectively. 
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• The reliability ratio, defined by Biemer and Trewin (1997) as the variance in the true 
values of X divided by the total variance in X (the variance of the true values plus the 
variance of the errors) and shown in the Introduction to represent the degree of 
attenuation of the coefficient for X in a simple linear regression of Y on X, will be 
computed for each simulated sample based on the error introduced in X. Means of the 
reliability ratio will be computed for each set of simulated samples, and the relationship 
of estimation error (differences between estimates of the total number of discharges and 
the true total) and the reliability ratio will be examined. 

By design, this algorithm does not introduce any kind of systematic measurement error in the 
auxiliary variable (e.g., larger hospitals consistently have more measurement error). The objective 
of this algorithm is to explore the impact of changing reliability ratios on model-based estimates 
of finite population totals according to different combinations of sampling methods and 
estimators, as described in the next section. 
 
2.3 Sample Designs, Estimators, and Variance Estimators 
Six (6) unique combinations of sampling methods, estimators, and variance estimators will be 
considered for each of the three measurement error conditions defined above, resulting in a total 
of 18 unique simulations. In each simulation, S = 1,000 samples of size n = 50 will be selected 
from the population of N = 393 hospitals. Based on the 1,000 samples, the relative bias (%), 

empirical root mean squared error (RMSE, defined as 2

1

ˆ( ) /
S

s
s

T T S
=

−∑ ), 95% confidence 

interval coverage (based on a critical value of t0.975,49 = 2.01 and a specified variance estimator), 
and mean 95% confidence interval width for a given estimator of the population total (and 
corresponding variance estimator) will be computed. For samples where models are fitted to the 
sample data, outliers (or poorly fitted observations) will be defined as having standardized 
residuals that are larger than three (3) in absolute value. The total number of outliers will be 
computed for each of the samples and then averaged across the 1,000 samples, to see if 
measurement error has a tendency to introduce more outliers when using model-based 
approaches. This section describes the six combinations of sampling methods, estimators and 
variance estimators in detail, along with theoretical expectations for each combination in the case 
of no measurement error in the auxiliary variable. 
 
1. Unbalanced Sampling / Expansion Estimator

exp
ˆ

sT NY=

: In the combinations with unbalanced sampling, 
simple random samples without replacement (SRSWOR) will be selected from the Hospitals 
population, which by definition are not balanced in any way on values of the auxiliary variable X. 
For a given sample s, the expansion estimator will be computed as . The simple 
expansion estimator, which fails to incorporate any information in the auxiliary variable X, is 
theoretically justified by a simple homogeneous mean model with independent homoscedastic 
errors, which clearly does not hold for the Hospitals population (Figure 1). If a more general 
second-order polynomial model M holds for the Hospitals population (which is assumed to be the 
case in this study), then under unbalanced sampling, the expansion estimator will have bias of the 
form 

2
( ) ( )

exp
1

ˆ[ ] [ ]j j
M j s

j
E T T N X Xβ

=

− = −∑ .   (1) 

Thus the amount of bias is a function of the discrepancies between the sample means for the 
number of beds and the squared number of beds and the true population means on these variables, 
and larger discrepancies tend to be more likely in unbalanced samples. The expansion estimator is 
expected to be unbiased over all simple random samples, due to negative biases cancelling with 
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positive biases. However, SRSWOR in general does not do well at achieving balance (Section 
3.4.1, Valliant et al., 2000); as the sample size increases, the bias of the expansion estimator never 
becomes inconsequential. Also, given the lack of balance, the RMSE of the expansion estimator 
is expected to be higher than under more balanced sampling. A design-based variance estimator 
will be used for the expansion estimator in this case, which is expected to be biased under the 
specified working model, where the variance of Y is a function of X (rather than a constant). 
Results based on this combination (expected to be poor) will be used as a reference for 
comparison of performance with the other combinations below.  

 
2. Unbalanced Sampling / Ratio Estimator

R̂ s
s

XT NY
X

=

:  Under the assumed second-order polynomial model 
M for the Hospitals population, the bias of the ratio estimator, which incorporates the auxiliary 

information on X in the sample and is defined as , is  

( ) ( )2

0

ˆ[ ] .
j j

s
M R j

j s

X XE T T NX
X X

β
=

 
− = − 

 
∑   (2) 

This bias could be substantial in unbalanced samples, and an upcoming combination will consider 
the use of simple balance in samples to eliminate the bias. To protect against potential 
misspecification of the variance structure for Y under the assumed model for the Hospitals 
population (with the ratio estimator, the variance is proportional to X), the asymptotically 
consistent and robust jackknife variance estimator (Section 5.4.2, Valliant et al., 2000), which is 
guaranteed to have positive bias and will result in conservative inferences, will be used for this 
model-based estimator. Given the slight misspecification of the mean component of the model 
underlying the ratio estimator [M(0,1: X)], we expect overestimates of the sampling variance, and 
given that no precautions have been taken regarding the design of the sample for this 
combination, this robust variance estimator will not guarantee sound or conservative confidence 
intervals. Further, because individual points with large leverage may seriously inflate jackknife 
variance estimates and cause them to be become unstable (Valliant et al., 2000, p. 143), each 
simulation in this study that uses a robust jackknife variance estimator will compute the total 
number of points in each sample with leverage greater than 2p / n, where p is the number of 
predictors in the model fitted to the sample data (e.g., p = 1 for the ratio estimator) that underlies 
the estimator of the total and n = 50. 
 
3. Unbalanced Sampling / Minimal Model Estimator: The minimal model estimator for the 
Hospitals population includes as predictor variables the function of X that defines the variance of 
Y in the working model (X2), along with the corresponding standard deviation of Y (as a function 
of X). Hence, the model includes X and X2 as predictors of Y for non-sample cases. Estimates of 
the power used to define the variance of Y as a function of X in the minimal model are generally 
based on previous data or similar populations; using results from previous investigations of the 
Hospitals population, we will assume that the variance for this model is proportional to X2. The 
minimal model is primarily used with samples having weighted balance (see combination 6 
below), which per Theorem 4.2.1 in Valliant et al. (2000) will achieve a lower bound on the 
variance of the estimated total. More careful modeling is generally necessary in unbalanced 
samples; using the same minimal model estimator consistently will likely lead to more bias 
relative to the weighted balance condition, and a higher RMSE (in some samples, the model will 
simply not make any sense). This combination will be used for comparison with the weighted 
balance combination in cases involving measurement error, to see if balanced sampling in 
combination with a minimal model estimator still minimizes the variance of the estimated total in 
the case of measurement error. The same robust jackknife variance estimator will be used to 
estimate variances of this estimated total. 
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4. Simple Balanced Sampling / Expansion Estimator

 

:  Restricted random sampling (RSRS), as 
implemented in the restrict.srs() function of Valliant et al. (2000), will be used to select 
simple random samples that have simple balance on the first two moments of X (for this and the 
next combination). The E1 and E2 parameters of this algorithm (Section 3.4.4 of Valliant et al., 
2000) will be set to 0.125, such that about 90% of samples will be rejected, leading to samples 
with reasonable balance on the first two moments of X (Herson, 1976). The expansion estimator 
will be unbiased in samples with simple balance, even despite the incorrect modeling. The robust 
jackknife variance estimator will be used for conservative variance estimation, given the balanced 
sampling and the clear misspecification of the mean structure for Y inherent to the expansion 
estimator (Section 5.6, Valliant et al., 2000; future work could derive the variance of the 
expansion estimator under the working model for the Hospitals population). This combination 
once again serves as more of a reference case to which results from other combinations will be 
compared in the case of measurement error in X, as one would typically not use the simple 
expansion estimator in the presence of a strongly predictive auxiliary variable like the number of 
beds. 

5. Simple Balanced Sampling / Ratio Estimator

 

: The bias of the ratio estimator in the case of 
unbalanced sampling (defined for the second combination above) can be removed by balancing 
on the j-th power of X in the general polynomial model (defined in Section 3.2 of Valliant et al., 
2000), using a sample with simple balance (i.e., a sample that is balanced on means of every 
power term for X up to the j-th power in the general polynomial model). The use of the 
restrict.srs() function will aim at satisfying this condition for the first two moments of X, 
given the assumed model for the Hospitals population. In general, samples with simple balance 
will make both the expansion estimator and the ratio estimator unbiased under the general 
polynomial model. As in the case of unbalanced sampling, the robust jackknife variance estimator 
will be used for variance estimation. Per Section 5.6 of Valliant et al. (2000), robust variance 
estimators will tend to be conservative and over-estimate variance when the regression 
component of a model is incorrectly specified; in this case, the misspecification is not severe. 

6. Weighted Balance Sampling / Minimal Model Estimator

 

: By Lemmas 3.3.1 and 3.3.2 
presented in Valliant et al. (2000), under weighted root(v) balance (as defined in Section 3.3 of 
Valliant et al., 2000, and implemented using restricted PPS sampling in their 
restrict.pps() function), where v is the function of X to which the variance of Y is 
proportional, the minimal model estimator defined above will be the best linear unbiased 
predictor (BLUP) of the population total. Further, by Theorem 4.2.1 (Valliant et al., 2000), a 
sample with weighted root(v) balance will also achieve minimum variance in the estimated total, 
and the minimal model estimator under root(v) balance has been shown to have lower RMSE than 
the ratio estimator under simple balance, per simulation results (Section 3.5.1, Valliant et al., 
2000). To ensure theoretical results, when samples with weighted root(v) balance are selected in 
the simulations, the assumed variance for the minimal model estimator will be the variance v (i.e., 
X2) used for selecting the root(v) balanced sample. The robust jackknife variance estimator will 
be used for variance estimation for this combination, given the potential that the variance of Y has 
been mis-specified in the working model. In simulations involving measurement error and 
weighted balance sampling, an R function named gamma.fit() (available upon request from 
the author) will be applied to the full Hospitals population to estimate the power of X to which the 
variance of Y is proportional, and means of these estimates will be computed across the 1,000 
samples. Rounding of these estimates is described in the R code available from the author. 
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The objectives of the simulations presented in this study are to evaluate the properties of these 
various combinations of sampling methods and estimators in the presence of different levels of 
measurement error in the auxiliary variable X, and empirically examine whether the theoretical 
expectations described above are altered by the measurement error. Different levels of 
measurement error should not matter in the combinations where the expansion estimator is used; 
in these cases, only alternative sampling methods are expected to have an impact on the 
properties of the expansion estimator. As previously mentioned, the combinations involving 
expansion estimators are expected to produce poorer results to which other results will be 
compared. 
 
2.4 Simulation Notes 
Simulations were programmed using the R software (Version 2.9.2). The R code defining a 
flexible R function for running the simulations entitled aux.me.sim(), along with the code for 
all functions called by this function and results from applying the function for the 18 simulations, 
can be requested from the author. This function enables the user to input one of the six 
combinations of sampling method and estimator defined in the section above, parameters used to 
define measurement error (i.e., cut points for the random values from the UNIFORM distribution 
and magnitudes of measurement error in the specified brackets, e.g., the value of X will be 25% 
lower if the UNIFORM draw is between 0 and 0.05), if applicable, and the sample size and the 
number of samples to select. In all simulations in this study, 1,000 samples of size n = 50 were 
selected and analyzed under a given set of simulation parameters. Future work could examine the 
sensitivity of the results to variation in the sample sizes. 
 
3. Results 
 
Empirical results from the 18 simulations are presented in Table 1. Considering first the case of 
no measurement error in the auxiliary variable X, we see that the simulation results largely 
support theoretical expectations. For all six combinations of sampling method and estimator, 
there is very little bias in the estimate of the population total for the number of discharges Y 
(320,159). The expansion estimator in the case of unbalanced sampling has the most bias 
(although the bias is fairly minimal), and the bias is in a negative direction. The minimal model 
estimators under both unbalanced and weighted balance sampling have the least relative bias.  
 
In the case of no measurement error in the auxiliary variable X, the largest differences between 
the six combinations of sampling method and estimator arise in the RMSE of the estimators and 
the properties of confidence intervals based on the robust jackknife standard errors. As expected 
based on theory, the minimal model estimator under weighted balance sampling has the smallest 
RMSE and mean confidence interval width, while the expansion estimators have by far the 
highest mean confidence interval width and the expansion estimator in the case of unbalanced 
sampling has the highest RMSE (which was also expected). Figure 2 shows box plots of the 
1,000 estimates for each of the six combinations under no measurement error, where the 
increased efficiency due to the minimal model estimator in combination with a weighted balance 
sample is evident.  The 95% confidence interval coverage for the combinations appears to be 
close to nominal, save for the expansion estimator in the case of balanced sampling; this could be 
due to a sub-optimal choice of variance estimator in this case. Finally, outliers do not appear to be 
substantial problems for models fitted to the sample data in the case of no measurement error, but 
a fairly large number of points with high leverage were detected on average across the samples 
(more than 10% of sample points on average in some cases). This could be a function of the small  
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Table 1: Empirical results from the 18 simulations, presented by the six combinations of sample balance / estimator and level of measurement 
error in the auxiliary variable X. 
 No Measurement Error in X Low Measurement Error in X 

Sample 
Balance / 
Estimator 

Rel. 
Bias 
(%) 

RMSE 95% CI 
Cover. 

Mean 95% 
CI Width 

Mean 
Outlier / 
HL Ct. 

Rel. 
Bias 
(%) 

RMSE 95% CI 
Cover. 

Mean 95% 
CI Width 

Mean 
Reliab. 
Ratio 

Mean 
Gamma 

Est. 

Mean 
Outlier / 
HL Ct. 

Unbalanced / 
Expansion -0.24 29924.85 0.95 122016.80 N/A -0.17 31169.90 0.95 122338.00 0.98 N/A N/A 

Unbalanced / 
Ratio 0.10 13930.44 0.94 54815.16 0.38 / 

5.66 0.22 14255.99 0.94 57664.38 0.98 N/A 0.40 / 
5.83 

Unbalanced / 
Minimal 0.03 12615.44 0.94 51264.66 0.38 / 

3.24 0.16 12862.90 0.95 52867.96 0.98 N/A 0.42 / 
3.31 

Simple / 
Expansion 0.18 12452.82 1.00 124132.8 0.35 / 

0.00 -0.01 12727.67 1.00 124202.70 0.98 N/A 0.39 / 
0.00 

Simple / 
Ratio 0.15 12005.67 0.97 55123.84 0.37 / 

5.67 -0.01 12262.45 0.97 58068.69 0.98 N/A 0.42 / 
5.81 

Weighted / 
Minimal 0.03 9976.87 0.96 40384.44 0.51 / 

4.11 -0.06 10321.60 0.96 42100.24 0.98 1.51 0.52 / 
3.88 

 
 High Measurement Error in X 

Sample 
Balance / 
Estimator 

Rel. 
Bias 
(%) 

RMSE 95% CI 
Cover. 

Mean 95% 
CI Width 

Mean 
Reliab. 
Ratio 

Mean 
Gamma 

Est. 

Mean 
Outlier / 
HL Ct. 

Unbalanced / 
Expansion -0.17 31169.90 0.95 122338.00 0.72 N/A N/A 

Unbalanced / 
Ratio 0.84 24287.69 0.96 101633.70 0.72 N/A 0.26 / 

6.69 
Unbalanced / 

Minimal -0.90 23469.62 0.95 94522.43 0.72 N/A 0.36 / 
3.65 

Simple / 
Expansion -0.11 18283.34 1.00 123955.40 0.71 N/A 0.36 / 

0.00 
Simple / 

Ratio -0.08 17937.33 0.99 101700.10 0.71 N/A 0.24 / 
6.73 

Weighted / 
Minimal -0.03 18255.97 0.95 72959.44 0.72 1.22 0.67 / 

3.63 
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sample size or an indication that the jackknife variance estimator may not be the most stable 
choice among alternative robust variance estimators.  
 

 
Figure 2: Distributions of sample estimates for 1,000 samples as a function of sampling method 
and estimator used, in the case of no measurement error (the dashed line shows the true 
population value for the total number of discharges). 
 
For the sake of comparison and given the small sample size (n = 50), five of these six simulations 
were repeated in the case of no measurement error using the robust sandwich variance estimator 
(Section 5.3, Valliant et al., 2000), which like the jackknife variance estimator is consistent but 
does not involve dividing by a factor involving 1 minus the leverage (as is the case with 
alternative robust variance estimators, including the jackknife). For the final five combinations in 
Table 1 considering robust variance estimators, 95% confidence interval coverage under the 
sandwich variance estimator was 0.93, 0.93, 1.00, 0.96, and 0.94, respectively; and mean 95% 
confidence interval width was 53003.42, 47975.44, 122726.00, 53274.77, and 38985.08, 
respectively. Compared with the results in Table 1, these results suggest that inflation in the 
jackknife variance estimates due to points with high leverage was not severe.   
 
Two of the primary research questions motivating this study concerned whether measurement 
error in auxiliary variables leads to bias in model-based estimates of totals and whether the 
amount of bias was a function of the combination of sampling method and estimator used. The 
results in Table 1 show that when the level of measurement error in an auxiliary variable is 
relatively low (mean reliability ratio around 0.98), the relative biases for the six combinations of 
sampling method and estimator are largely similar to those in the case of no measurement error 
(nothing is expected to change in the cases of the expansion estimators when measurement error 
in X is present, and this is shown). However, in the case of relatively high measurement error in 
the auxiliary variable X (mean reliability ratio around 0.72), more interesting results emerge. In 
the case of unbalanced samples under the high measurement error condition, the measurement 
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error introduces a relatively large amount of bias in the model-based ratio and minimal model 
estimators, in a positive direction for the ratio estimator and a negative direction for the minimal 
model estimator (potentially due to the curvature in the model being fitted for the minimal model 
estimator). This bias is much larger than the bias in the expansion estimator under unbalanced 
sampling, and the use of simple balanced or weighted balance sampling appears to remove the 
bias introduced by measurement error. These findings suggest that attention to reasonable sample 
balance on moments of the auxiliary variable can provide a form of protection against the 
potential bias introduced by measurement errors in model-based estimators of finite population 
totals.  
 
A third research question under investigation in this study concerned the impacts of measurement 
error in auxiliary variables on the variability of estimates and corresponding inferences for the 
finite population total. The RMSE, 95% confidence interval coverage, and mean 95% confidence 
interval width for the six combinations of sampling method and estimator were largely similar for 
the low measurement error condition compared to the no measurement error condition. These 
properties of the estimators all increased slightly in the case of low measurement error, 
suggesting that measurement error may have an impact on the efficiency of the estimates and 
corresponding inferences. Once again, more interesting results emerged in the high measurement 
error condition. Interestingly, the RMSE of the minimal model estimator under weighted balance 
sampling was very similar to that of the expansion estimator and the ratio estimator under simple 
balanced sampling, and in general reductions in RMSE for the other five estimators relative to the 
combination of unbalanced sampling and the expansion estimator were not as high as in the case 
of no measurement error in X. Of note, the use of the robust jackknife variance estimator in 
conjunction with the minimal model estimator under weighted balance sampling led to much 
narrower 95% confidence intervals on average relative to the other five combinations. These 
results suggest that although measurement error can have a negative impact on the precision of 
these model-based estimates of finite population totals, use of the minimal model estimator in 
conjunction with weighted balance sampling once again results in more efficient inference 
relative to the other five combinations, as expected by theory. 
 
Finally, Figures 3 and 4 present scatter plots of the simulation results that demonstrate a 
negligible relationship of the reliability ratio with estimation error for each of the six 
combinations of sampling method and estimator, under both low and high measurement error 
conditions. Figure 3 provides another visual representation of the increased efficiency in the 
estimates under simple or weighted balance sampling in the case of low measurement error, and 
Figure 4 shows how the effect of sample balance on efficiency (relative to Figure 3) is decreased 
as measurement error increases. 
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Figure 3: Scatter plots demonstrating a minimal relationship of reliability ratio with estimation 
error (labeled “T.hat – T” on the y-axis) in the low measurement error condition, for each 
combination of sampling method and estimator across the 1,000 samples (the thick black line is 
the fit of a Lowess smoother to the plotted points, which largely lays on the horizontal line at 0). 
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Figure 4: Scatter plots demonstrating a minimal relationship of reliability ratio with estimation 
error (labeled “T.hat – T” on the y-axis) in the high measurement error condition, for each 
combination of sampling method and estimator across the 1,000 samples (the thick black line is 
the fit of a Lowess smoother to the plotted points, which largely lays on the horizontal line at 0). 
 
 
4. Summary 
 
The results of this simulation study have shown that measurement error in auxiliary variables can 
have a negative impact on both the bias and precision of model-based estimators of finite 
population totals. Careful attention to the selection of samples balanced on reasonable powers of 
the auxiliary variable, as described in Valliant et al. (2000), has been shown empirically to 
provide protection against the bias that can be introduced by measurement error in unbalanced 
samples, and minimal model estimators in combination with samples having weighted balance 
have been shown to maximize efficiency in cases involving measurement error, as expected by 
theory. The simulation results also suggest that there is a negligible relationship between the 
reliability ratio for an auxiliary variable measured with error on a sampling frame and the 
resulting estimation error for all combinations of sampling methods and estimators that were 
studied. 
 
This work could be extended by studying the effects of measurement error in multiple auxiliary 
variables, including categorical variables, on the performance of these combinations of sampling 
method and estimator, and considering overall effects of measurement error on the estimation of 
totals for multiple Y variables in multi-purpose surveys. In addition, future work should also 
consider the possibility that the amount of measurement error may be greater for auxiliary 
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variables with higher values (i.e., there is a correlation between error and the size of the value on 
the auxiliary variable, which was not considered in these simulations). Future work could also 
consider larger populations and auxiliary variables having weaker relationships with key survey 
variables. Larger populations would enable more study of the impact of altering sample sizes on 
the results presented in this study. 
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