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Abstract
We present a novel latent space representation of the relative propensity for a respondent to
form ties with members of a particular social group, a quantity related to overdispersion. In
many applications collecting complete network data is financially or practically infeasible.
Instead, we use data where respondents are asked for the number of ties they have with
members of various subpopulations or “How many X’s do you know?” data. We connect this
data with recent work using models which represent dependence in a fully observed network
through distance in an unobservable “social space,” known as latent space models (Hoff
et al., 2002). This yields a latent space representation of overdispersion, further elucidates
how these data measure social structure indirectly, and suggests a latent space model for
such data.
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1. Introduction

Social network data consist of relationships (knowing, trusting, etc.) between in-
dividual actors, or egos, and another member of the network, known as the alter.
Network data are increasingly common in the social and behavioral sciences and
typically contain higher order dependence structure. This issue has given rise to
a number of statistical models, with one recent attempt being the family of latent
space models first applied to networks in Hoff et al. (2002). The latent space model
assumes that the actors in the network form ties independently given their (latent)
position in some unobservable “social space.”

In this paper we derive a latent space interpretation of overdispersion in “How
many X’s do you know?” data. Overdispersion describes the variation in relative
propensity for a respondent to form ties with members of a particular social group.
Zheng et al. (2006) describe overdispersion as an indicator of the likelihood of having
exactly one tie to a particular subopulation. We measure overdispersion using data
collected through standard surveys, known as “How many X’s do you know?” data.
Here, X, represents a subpopulation of interest. These subpopulations often include
first names (2006 GSS, McCarty et al. (2001)). First names are particularly useful in
learning about network structure since many aggregate features of alters with a given
name are available from the Census Bureau and Social Security Administration.
Other potential X ′s may be of interest in their own right. McCarty et al. (2001)
also asks about individuals who are HIV positive and the UNDP currently sponsors
several projects that ask about behaviors they deem risk factors for contracting
HIV/AIDS. Both McCarty et al. (2001) and the 2006 GSS module also asked about
particular occupations and life situations. These data are often used to learn about
populations which are difficult to reach using standard surveys (see Killworth et al.
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(1998) for example) and have recently also been used to learn about other social
science phenomena (DiPrete et al., 2010).

Defining “know” (or another relationship such as trust) defines the network of
interest. Given this network, “How many X’s do you know?” data are a type of
network sample. If respondents could recall perfectly from their network and had
full knowledge of all of the group memberships of all alters, then these data would
be “equivalent” to asking a respondent if they know each member of a particular
group of alters. If every Michael in the US population were standing in a room,
for example, we could imagine asking the respondent if he/she has a tie with each
person in the room. Rather than reporting these ties individually as in the com-
plete network case, however, our data consist of only the total number of links the
respondent has with Michaels.

Recent work with this data demonstrates that features of network structure, such
as homophily (the tendency for actors to form relationships with similar others),
are distinguishable even after the aggregation described above (McCormick et al.,
2010). Along with developing a latent space representation for overdispersion, we
also extend this literature by providing a specific pathway from a common complete
network latent space model to a model for “How many X’s do you know?” data.

The remaining sections are organized as follows. In Section 2 we describe a latent
space model for cases when the entire network are observed. Next, in Section 3 we
derive the mathematical relationship between the complete network model presented
in Section 2 and a latent space model for “How many X’s do you know?” data and
present a latent space interpretation of overdispersion. Section 4 gives a discussion
of future directions.

2. A latent space model for complete graphs

Consider two actors i and j whose relationship is described by the sociomatrix ∆
where δij = 1 if there is a link between i and j and 0 otherwise. Let the gregar-
iousness be distributed gi ∼ F(µg, σg) for an actor i and for any member, j, of
subpopulation k, gj∈k ∼ F(µgk , σgk). Group-dependent gregariousness distributions
accommodates variability in overall tie frequency associated with some subpopula-
tions. Politicians and members of the clergy typically have above-average degree,
for example (McCarty et al., 2001). Many hard-to-count subpopulations may dis-
play below-average connectivity. Say there are Nk members of subpopulation k and
N members of the population. Let Sp be the p dimensional hypersphere. zi and
zj are the latent position vectors of i, j on Sp+1, corresponding to a p dimensional
latent space on the p+ 1 dimensional hypersphere.

Consider now a linear latent space model similar to the one presented by Hoff
(2005). That is:

θij = gi + gj + ηz′izj

E(δij |θij) = h(θij)

where h(·) is the link function. The self-closure property of the hypersphere facil-
itates putting uniform distributions on zi. Under this assumption and conditional
on a tie between two actors, the distribution of zj

P (zj |δij = 1, zi) =
P (δij = 1|zi, zj)P (zj)

P (δij = 1|zi)
= Cp+1(η) exp(ηz

′
izj),
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which is M(zi, η). M(zi, η) corresponds to a von-Mises Fisher distribution with
mean zi and concentration η. Thus, η models the overall level of homophily in the
population with individuals distributed uniformly. For members of specific subpop-
ulations, zj∈k ∼ M(υk, ηk) for members of subpopulation k, or a von-Mises Fisher
distribution with center υk and concentration ηk. Higher values of ηk correspond to
distribution with more mass concentrated around υk.

Specifically, we consider the log-linear model such that

E(δij |gi, gj , η, zi, zj) = exp(gi + gj + ηz′izj). (1)

3. Latent space representation of overdispersion

As described in Section 1 a simple conceptualization of “How many X’s do you
know?” data involves asking a respondents if they know every member of a set of
subpopulations then reporting only the aggregate number known in that subpop-
ulation. We begin by computing the expected number of individuals known by a
respondent in a given subpopulation. Next, we derive representations of two net-
work features: degree and fractional subpopulation proportion. We then relate these
quantities through the model for overdispersion presented in Zheng et al. (2006).
From this relationship we relate features of the latent space to overdispersion.

Consider “How many X’s do you know?” data yik where, for a subpopulation k,
yik relates to the full network model in Section 2 as yik =

∑
j∈k δij . Conditioning

on zi and zj∈k, δij are independent Bernoulli trials each with a small probability of
being 1. When Nk is large, which is usually the case, yik follows the Poisson dis-
tribution with rate λik =

∑
j∈k P (δij = 1) = NkP (δij = 1). As discussed in Zheng

et al. (2006), the super-Poisson variation present in the yik’s, or overdispersion, is
defined by variation in individuals’ relative propensity to form ties with members
of certain subpopulations that cannot be explained by degree variation and group
sizes. Therefore, we focus on λik and examine its relationship with degree and
fractional subpopulation size. Beginning by defining λik as the expectation of our
observed data,

E(yik) , λik

= E
∑
j∈k

δij =
∑
j∈k

E(δij)

≈ Nk

∫
zj∈k

exp(gi + gj + ηz′izj)P (zj)P (gj)dzjdgj

= Nk exp(gi)Ek(exp(gj))

∫
zj∈k

exp(ηz′izj)Cp+1(ηk) exp(ηkυ
′
kzj)dzj

= Nk exp(gi)Ek(exp(gj))Cp+1(ηk)

∫
zj∈k

exp
(
(ηzi + ηkυk)

′zj
)
dzj

= Nk exp(gi)Ek(exp(gj))Cp+1(ηk)

∫
zj∈k

exp

(
||ηzi + ηkυk||
||ηzi + ηkυk||

(ηzi + ηkυk)
′zj

)
dzj

The integral now contains the kernel of M
(
||ηzi + ηkυk||, ηzi+ηkυk

||ηzi+ηkυk||

)
, which yields

λik = Nk exp(gi)Ek(exp(gj))

(
Cp+1(ηk)

Cp+1(||ηzi + ηkυk||)

)
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Moving now to the expected respondent degree:

di , E(
∑
j

δij) =
∑
j

E(δij)

≈ N

∫
{zj ,gj}

exp(gi + gj + ηz′izj)P (gj)P (zj)dgjdzj

= N exp(gi)

∫
gj

exp(gj)P (gj)dgj

∫
zj

exp(ηz′izj)P (zj)dzj

= N exp(gi)E(exp(gj))
1

Ap+1

∫
zj

exp(ηz′izj)dzj

Since exp(ηz′izj) is the kernel of M(η, zj) we have

di = N exp(gi)E(exp(gj))
1

Ap+1

1

Cp+1(η)
.

and using the limiting constant 1
Ap+1

= Cp+1(0),

di = N exp(gi)E(exp(gj))

(
Cp+1(0)

Cp+1(η)

)
. (2)

Now moving to the fractional subpopulation size:

βk ,
∑

i

∑
j∈k δij∑

ij δij

where∑
ij

δij = NE(
∑
j

δij) = NE(di)

= N

∫
i
N exp(gi)E(exp(gi))

Cp+1(0)

Cp+1(η)
p(gi)dgi

= N2(E(exp(gi))
2Cp+1(0)

Cp+1(η)
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and∑
i

∑
j∈k

δij =
∑
i

NkE(δij |j ∈ k)

=
∑
i

Nk

∫
j∈k

exp(gi + gj + ηz′izj)p(gj)p(zj)dzjdgj

=
∑
i

NkCp+1(ηk) exp(gi)Ek(exp(gj))

∫
j∈k

exp(ηnυ
′
kzj + ηz′izj)dzj

taking the expectation over i

= NE

(
NkCp+1(ηk) exp(gi)Ek(exp(gj))

∫
j∈k

exp(ηnυ
′
kzj + ηz′izj)dzj

)
= NNkCp+1(ηk)E(exp(gi))Ek(exp(gj))Cp+1(0)

∫
i

∫
j∈k

exp(ηkυ
′
kzj + ηz′izj)dzjdzi

exchanging order of integration

= NNkCp+1(ηk)E(exp(gi))Ek(exp(gj))Cp+1(0)

∫
j∈k

exp(ηkυ
′
kzj)

(∫
i
exp(ηz′izj)dzi

)
dzj

symmetry of inner product makes exp(ηz′izj)the kernel of M(η, zj)

= NNkCp+1(ηk)E(exp(gi))Ek(exp(gj))
Cp+1(0)

Cp+1(η)

∫
j∈k

exp(ηkυ
′
kzj)dzj

where exp(ηkυ
′
kzj)is kernel of M(ηk,υk)

= NNkCp+1(ηk)E(exp(gi))Ek(exp(gj))
Cp+1(0)

Cp+1(η)Cp+1(ηk)

= NNkE(exp(gi))Ek(exp(gj))
Cp+1(0)

Cp+1(η)
.

Thus, after combining the two pieces,

βk =

(
Nk

N

)(
Ek(exp(gj))

E(exp(gi))

)
We subsitute

Cp+1(0)
Cp+1(η)

diβk = Nk exp(gi)Ek(exp(gj)) we have

λik = diβk

(
Cp+1(η)Cp+1(ηk)

Cp+1(0)Cp+1(||ηzi + ηkυk||)

)
Noting that ||ηzi + ηkυk|| =

√
η2 + η2k + 2ηηk cos(θ(zi,υk)) we have

λik = diβk

 Cp+1(η)Cp+1(ηk)

Cp+1(0)Cp+1(
√

η2 + η2k + 2ηηk cos(θ(zi,υk)))

 .

which corresponds to the Zheng et al. (2006) overdispersed model with λik = diβkγik
where γik controls the relative propensity for i to form ties with group k and is given
by

γik =
Cp+1(η)Cp+1(ηk)

Cp+1(0)Cp+1(
√

η2 + η2k + 2ηηk cos(θ(zi,υk)))
. (3)

In the latent space model for the full network (see (1)), the latent space component
(ηz′izj) increases the propensity for individuals who are more similar in the unob-
served social space to interact, which corresponds to a form of non-random mixing.

Section on Survey Research Methods – JSM 2010

1792



If the η parameter were zero, however, we would be left with a model that accounts
for varying gregariousness across actors but assumes random mixing across all other
attributes. Setting η = 0 in (3), we see have that γik = 1 and the model simplifies
to the “null model” for random mixing presented in Zheng et al. (2006).

Rather than estimating γik directly, Zheng et al. (2006) assign a Gamma prior
distribution to γik with a mean of 1 and shape parameter 1/(ωk − 1). The γ’s can
then be integrated out to yield a Negative Binomial distribution with overdispersion
parameter ωk. In the latent space representation, taking the expectation of λik and
rearranging the resulting expression yields that γik has expectation 1. The variance
of γik (and therefore overdispersion) increases monotonically as the concentration
of the subpopulation ηk increases relative to the general level of the population, η.
This result can be verified through simulation (not shown).

4. Discussion

We present a latent space interpretation of overdispersion using “How many X’s do
you know?” data. We begin with a latent space model for the full network, then
aggregate across various subpopulations of interest. We then relate this aggregation
to overdispersion models for this type of data presented in Zheng et al. (2006).

In conceptualizing the mapping from the full network to “How many X’s do
you know?” data we make assumptions about respondents’ abilities to recall their
network. First, we assume that respondents recall accurately from their complete
network. This assumption is typically not valid for moderate to large subpopula-
tions, though some statistical models have been proposed for similar situations (Mc-
Cormick and Zheng, 2007). We also assume that the respondent has accurate in-
formation about the group membership of each of their alters. This issue, known
in sociology literature as transmission errors, is more common with some subpopu-
lations than others (acquaintances of a diabetic may not know the person’s status,
for example). In some cases it is possible to select subpopulation to minimize trans-
mission errors, yet this remains an open problem in cases where subpopulations of
interest are prone to transmission errors.
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